

IABU Headquarters

Delta Electronics, Inc.
Taoyuan3

No.18, Xinglong Rd., Taoyuan City, Taoyuan County 330, Taiwan, R.O.C. TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd.

Wujiang Plant3
1688 Jiangxing East Road,
Wujiang Economic Development Zone
Wujiang City, Jiang Su Province,
People's Republic of China (Post code: 215200)
TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd.

238 Min-Xia Road, Cao-Lu Industry Zone, Pudong, Shanghai, People's Republic of China Post code: 201209 TEL: 021-58635678 / FAX: 021-58630003

Delta Electronics (Japan), Inc.

Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.

234-9, Duck Soo Building 7F, Nonhyun-Dong, Kangnam-Gu, Seoul, Korea 135-010 TEL: 82-2-515-5305 / FAX: 82-2-515-5302

Delta Electronics Int'l (S) Pte Ltd

4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd.

Plot No. 43, Sector – 35, HSIIDC, Gurgaon122001, Haryana, India TEL: 1-919-767-3800 / FAX: 91-124-403-6045

Americas

Delta Products Corporation (USA)

Raleigh Office
P.O. Box 12173,5101 Davis Drive,
Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3813 / FAX: 1-919-767-3969

Delta Greentech (Brasil) S.A

Sao Paulo Office Rua Itapeva, 26-30 Andar Edificio Itapeva One-Bela Vista 01332-000-Sao Paulo-SP-Brazil TEL: +55 11 3568-3850/FAX: +55 11 3568-3865

Europe

Deltronics (The Netherlands) B.V.Eindhoven Office

De Witbogt 15, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

DELTA ASDA-A2 M EN 20120913

*We reserve the right to change the information in this manual without prior notice.

Delta High Resolution AC Servo Drive for Network Communication Applications **ASDA-***A2* Series User Manual

Delta

High

Re

olution

AC S

ervo

Drive

for

Network

 \bigcap

ommunication

Application

erie

Thank you very much for purchasing DELTA's AC servo products.

This manual will be helpful in the installation, wiring, inspection, and operation of Delta AC servo drive and motor. Before using the product, please read this user manual to ensure correct use.

You should thoroughly understand all safety precautions (DANGERS, WARNINGS and STOPS) before proceeding with the installation, wiring and operation. If you do not understand please contact your local Delta sales representative. Place this user manual in a safe location for future reference.

Using This Manual

■ Contents of this manual

This manual is a user guide that provides the information on how to install, operate and maintain ASDA-A2 series AC servo drives and ECMA series AC servo motors. The contents of this manual are including the following topics:

- Installation of AC servo drives and motors
- Configuration and wiring
- Trial run steps
- Control functions and adjusting methods of AC servo drives
- Parameter settings
- Communication protocol
- Inspection and maintenance
- Troubleshooting
- Application examples

Who should use this manual

This user manual is intended for the following users:

- Those who are responsible for designing.
- Those who are responsible for installing or wiring.
- Those who are responsible for operating or programming.
- Those who are responsible for maintaining or troubleshooting.

■ Important precautions

Before using the product, please read this user manual thoroughly to ensure correct use and store this manual in a safe and handy place for quick reference whenever necessary. Besides, please observe the following precautions:

- Do not use the product in a potentially explosive environment.
- Install the product in a clean and dry location free from corrosive and inflammable gases or liquids.

Revision September 2012

Preface ASDA-A2

Do not connect a commercial power supply to the U, V, W terminals of motor.
 Failure to observe this precaution will damage either the Servo motor or drive.

- Ensure that the motor and drive are correctly connected to a ground. The grounding method must comply with the electrical standard of the country (Please refer to NFPA 70: National Electrical Code, 2005 Ed.).
- Do not disconnect the AC servo drive and motor while the power is ON.
- Do not attach, modify and remove wiring when power is applied to the AC servo drive and motor.
- Before starting the operation with a mechanical system connected, make sure the emergency stop equipment can be energized and work at any time.
- Do not touch the drive heat sink or the servo motor during operation.
 Otherwise, it may result in serious personnel injury.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

Carefully note and observe the following safety precautions when receiving, inspecting, installing, operating, maintaining and troubleshooting. The following words, DANGER, WARNING and STOP are used to mark safety precautions when using the Delta's servo product. Failure to observe these precautions may void the warranty!

ASDA-A2 series drives are high-resolution, open type servo drives and must be installed in an NEMA enclosure such as a protection control panel during operation to comply with the requirements of the international safety standards. They are provided with precise feedback control and high-speed calculation function incorporating DSP (Digital Signal Processor) technology, and intended to drive three-phase permanent magnet synchronous motors (PMSM) to achieve precise positioning by means of accurate current output generated by IGBT (Insulated Gate Bipolar Transistor).

ASDA-A2 series drives can be used in industrial applications and for installation in an end-use enclosure that do not exceed the specifications defined in the ASDA-A2 series user manual (Drives, cables and motors are for use in a suitable enclosure with a minimum of a UL50 type 1 or NEMA 250 Type 1 rating).

The words, DANGER, WARNING and STOP, have the following meaning:

Indicates a potentially hazardous situation and if not avoided, may result in serious injury or death.

Indicates a potentially hazardous situation and if not avoided, may result in minor to moderate injury or serious damage to the product.

Indicates an improper action that it is not recommended to do and if doing it may cause damage, malfunction and inability.

ii Revision September 2012

ASDA-A2 Preface

Unpacking Check

> Please ensure that both the servo drive and motor are correctly matched for size (power rating). Failure to observe this precaution may cause fire, seriously damage the drive / motor or cause personal injury.

Installation

Do not install the product in a location that is outside the stated specification for the drive and motor. Failure to observe this caution may result in electric shock, fire, or personal injury.

Wiring

- > Connect the ground terminals to a class-3 ground (Ground resistance should not exceed 100 Ω). Improper grounding may result in electric shock or fire.
- > Do not connect any power supplies to the U, V, W terminals. Failure to observe this precaution may result in serious injury, damage to the drive or fire.
- Ensure that all screws, connectors and wire terminations are secure on the power supply, servo drive and motor. Failure to observe this caution may result in damage, fire or personal injury.
- In order to prevent fire hazard and accidents, please form the wiring by the cable specifications outlined in this user manual.

Operation

- > Before starting the operation with a mechanical system connected, change the drive parameters to match the user-defined parameters of the mechanical system. Starting the operation without matching the correct parameters may result in servo drive or motor damage, or damage to the mechanical system.
- > Ensure that the emergency stop equipment or device is connected and working correctly before operating the motor that is connected to a mechanical system.

> Do not approach or touch any rotating parts (e.g. shaft) while the motor is running. Failure to observe this precaution may cause serious personal injury.

- > In order to prevent accidents, the initial trial run for servo motor should be conducted under no load conditions (separate the motor from its couplings and belts).
- For the initial trial run, do not operate the servo motor while it is connected to its mechanical system. Connecting the motor to its mechanical system may cause damage or result in personal injury during the trail run. Connect the servo motor once it has successfully completed a trail run.
- > Caution: Please perform trial run without load first and then perform trial run with load connected. After the servo motor is running normally and regularly without load, then run servo motor with load connected. Ensure to perform trial run in this order to prevent unnecessary danger.
- Do not touch either the drive heat sink or the motor during operation as they may become hot and personal injury may result.

Maintenance and Inspection

- > Do not touch any internal or exposed parts of servo drive and servo motor as electrical shock may result.
- > Do not remove the operation panel while the drive is connected to an electrical power source otherwise electrical shock may result.
- > Wait at least 10 minutes after power has been removed before touching any drive or motor terminals or performing any wiring and/or inspection as an electrical charge may still remain in the servo drive and servo motor with hazardous voltages even after power has been removed.
- > Do not disassemble the servo drive or motor as electric shock may result.
- > Do not connect or disconnect wires or connectors while power is applied to the drive and motor.
- Only qualified personnel who have electrical knowledge should conduct maintenance and inspection.
- Ensure that the "Charge" indicator ceases when performing any maintenance, inspection or repairing.

Preface ASDA-A2

Main Circuit Wiring

- > Install the encoder cables in a separate conduit from the motor power cables to avoid signal noise. Separate the conduits by 30cm (11.8inches) above.
- > Use multi-stranded twisted-pair wires or multi-core shielded-pair wires for signal, encoder (PG) feedback cables. The maximum length of command input cable is 3m (9.84ft.) and the maximum length of encoder (PG) feedback cables is 20m (65.62ft.).
- As a charge may still remain in the drive with hazardous voltages even after power has been removed, be sure to wait at least 10 minutes after power has been removed before performing any wiring and/or inspection.

It is not recommended to frequently power the drive on and off. Do not turn the drive off and on more than once per minute as high charging currents within the internal capacitors may cause damage.

Main Circuit Terminal Wiring

- > Please perform the wiring after the terminal blocks are all removed from the drive.
- > Insert only one wire into one terminal on the terminal block.
- When inserting wires, please ensure that the conductors are not shorted to adjacent terminals or wires.
- > Ensure to double check the wiring before applying power to the drive.

- 1) In this manual, actual measured values are in metric units. Dimensions in (imperial units) are for reference only. Please use metric for precise measurements.
- 2) The content of this manual may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/ia.

İV Revision September 2012

Table of Contents

Chapter 1	Unpacking Check and Model Explanation	. 1-1
1.1 Ur	npacking Check	1-1
1.2 M	odel Explanation	1-3
1.2.1	Nameplate Information	1-3
1.2.2	Model Name Explanation	1-4
1.3 Se	ervo Drive and Servo Motor Combinations	1-6
1.3.1	220V Series	1-6
1.3.2	400 Series	1-7
1.4 Se	rvo Drive Features	1-8
1.4.1	220V Series	1-8
1.4.2	400 Series	1-11
Chapter 2	Installation and Storage	. 2-1
2.1 In	stallation Notes	2-1
2.2 St	orage Conditions	2-1
2.3 In	stallation Conditions	2-2
2.4 In	stallation Procedure and Minimum Clearances	2-3
2.5 Ci	rcuit Interrupter and Fuse Current Recommended Value	2-7
2.6 EN	Al Filter Selection	2-8
2.7 Re	egenerative Resistors	2-13
Chapter 3	Connections and Wiring	. 3-1
3.1 Co	onnections – 220V series	3-1
3.1.1	Connecting to Peripheral Devices	3-1
3.1.2	Servo Drive Connectors and Terminals	3-2

Revision September 2012

3.	1.3	Wiring Methods	3-4
3.	1.4	Motor Power Cable Connector Specifications	3-6
3.	1.5	Encoder Connector Specifications	3-8
3.	1.6	Cable Specifications for Servo Drive	3-12
3.2	Со	nnections – 400V series	3-14
3.	.2.1	Connecting to Peripheral Devices	3-14
3.	.2.2	Servo Drive Connectors and Terminals	3-15
3.	.2.3	Wiring Methods	3-18
3.	2.4	Motor Power Cable Connector Specifications	3-19
3.	.2.5	Encoder Connector Specifications	3-21
3.	2.6	Cable Specifications for Servo Drive	3-23
3.3	Ва	sic Wiring	3-25
3.	3.1	220V series	3-25
3.	3.2	400V series	3-27
3.4	Inp	out / Output Interface Connector -CN1	3-30
3.	4.1	CN1 Terminal Identification	3-30
3.	4.2	Signals Explanation of Connector CN1	3-32
3.	.4.3	User-defined DI and DO signals	3-45
3.	.4.4	Wiring Diagrams of I/O Signals (CN1)	3-46
3.	.4.5	Application: Using CN1 Convenient Connector for Wiring	3-56
3.5	En	coder Connector CN2	3-59
3.6	Sei	rial Communication Connector CN3	3-63
3.	.6.1	CN3 Terminal Layout and Identification	3-63
3.	6.2	Connection between PC/Keypad and Connector CN3	3-64
3.7	Sei	rial Communication Connector CN4 (USB)	3-65

3.8	Position Feedback Signal Connector CN5 (for Full-closed Loop)	3-66
3.9	CAN open Communication Connector CN6	3-67
3.10	0 Extension digital input connector CN7	3-69
3.1	1 Standard Connection Example - 220V series	3-70
:	3.11.1 Position (PT) Control Mode	3-70
:	3.11.2 Position (PR) Control Mode	3-71
:	3.11.3 Speed Control Mode	3-72
:	3.11.4 Torque Control Mode	3-73
:	3.11.5 CANopen Communication Mode	3-74
3.13	2 Standard Connection Example	3-75
:	3.12.1 Position (PT) Control Mode	3-75
:	3.12.2 Position (PR) Control Mode	3-76
:	3.12.3 Speed Control Mode	3-77
:	3.12.4 Torque Control Mode	3-78
:	3.12.5 CANopen Communication Mode	3-79
Chapte	er 4 Display and Operation	4-1
4.1	Description of the Digital Keypad	4-1
4.2	Display Flowchart	4-2
4.3	Status Display	4-3
4	4.3.1 Save Setting Display	4-3
•	4.3.2 Decimal Point Display	4-3
4	4.3.3 Fault Message Display	4-3
4	4.3.4 Polarity Setting Display	4-3
4	4.3.5 Monitor Setting Display	4-4
4.4	General Function Operation	4-7

4.4.1	Fault Code Display Operation	. 4-7
4.4.2	JOG Operation	. 4-7
4.4.3	Force Output Control Operation	. 4-8
4.4.4	DI Diagnosis Operation	. 4-9
4.4.5	DO Diagnosis Operation	. 4-10
Chapter 5	Trial Run and Tuning Procedure	5-1
5.1 In	spection without Load	. 5-1
5.2 A _l	oplying Power to the Drive	. 5-3
5.3 JC	OG Trial Run without Load	. 5-7
5.4 Sp	peed Trial Run without Load	. 5-9
5.5 Pc	osition Trial Run without Load	. 5-11
5.6 Tu	uning Procedure	. 5-13
5.6.1	Tuning Flowchart	. 5-14
5.6.2	Load Inertia Estimation Flowchart	. 5-15
5.6.3	Auto Mode Tuning Flowchart	. 5-16
5.6.4	Semi-Auto Mode Tuning Flowchart	. 5-18
5.6.5	Limit of Load Inertia Estimation	. 5-20
5.6.6	Mechanical Resonance Suppression Method	. 5-22
5.6.7	Relationship between Tuning Modes and Parameters	. 5-23
5.6.8	Gain Adjustment in Manual Mode	. 5-24
Chapter 6	Control Modes of Operation	6-1
6.1 C	ontrol Modes of Operation	. 6-1
6.2 Po	osition Control Mode	. 6-3
6.2.1	Command Source of Position (Pt) Control Mode	. 6-4
622	Command Source of Position (Pr) Control Mode	6-8

6	.2.3	Structure of Position Control Mode	6-9		
6	.2.4	S-curve Filter for Position Control			
6	.2.5	Electronic Gear Ratio			
6	.2.6	Low-pass Filter	6-15		
6	.2.7	Timing Chart of Position (Pr) Control Mode	6-16		
6	.2.8	Position Loop Gain Adjustment	6-17		
6	.2.9	Low-frequency Vibration Suppression	6-19		
6.3	Sp	eed Control Mode	6-25		
6	.3.1	Command Source of Speed Control Mode	6-25		
6	.3.2	Structure of Speed Control Mode	6-26		
6	.3.3	Smoothing Strategy of Speed Control Mode	6-27		
6	.3.4	Analog Speed Input Scaling	6-32		
6	.3.5	Timing Chart of Speed Control Mode	6-33		
6	.3.6	Speed Loop Gain Adjustment	6-33		
6	.3.7	Resonance Suppression	6-40		
6.4	То	rque Control Mode	6-48		
6	.4.1	Command Source of Torque Control Mode	6-48		
6	.4.2	Structure of Torque Control Mode	6-49		
6	.4.3	Smoothing Strategy of Torque Control Mode	6-50		
6	.4.4	Analog Torque Input Scaling	6-51		
6	.4.5	Timing Chart of Speed Control Mode	6-52		
6.5	Со	ntrol Modes Selection	6-53		
6	.5.1	Speed / Position Control Mode Selection	6-54		
6	.5.2	Speed / Torque Control Mode Selection	6-55		
6	5.5.3	Torque / Position Control Mode Selection	6-56		

6.6	Ot	hers	6-57
6	5.6.1	Speed Limit	6-57
6	5.6.2	Torque Limit	6-57
6	5.6.3	Analog Monitor	6-58
6	5.6.4	Electromagnetic Brake	6-62
Chapte	er 7	Motion Control Functions	7-1
7.1	Мс	otion Control Functions	7-1
7.2	Sys	stem Information	7-1
7	7.2.1	Monitoring Variables	7-2
7	7.2.2	Data Array	7-8
7.3	Мс	otion Axes	7-12
7.4	PR	Mode	7-13
7.5	Co	omparison	7-13
7.6	Pu	lse of User Unit	7-14
7.7	Ро	sition Registers	7-14
7.8	Но	oming Function	7-16
7.9	Tri	iggering PRs	7-17
7.10) Pai	rameter Settings	7-19
7	7.10.1	Motion Commands	7-24
7	7.10.2	Sequence	7-25
7.11	Ele	ectronic Cam (E-Cam)	7-28
7	7.11.1	Capture Function	7-38
7	7.11.2	Compare Function	7-40
Chapte	er 8	Servo Parameters	8-1
8 1	De	finition	8-1

8	3.2 Parameter Summary	8-2
	8.2.1 Parameters List by Group	8-2
	8.2.2 Parameters List by Function	8-20
8	Detailed Parameter Listings	8-33
	Group 0: P0-xx Monitor Parameters	8-33
	Group 1: P1-xx Basic Parameters	8-60
	Group 2: P2-xx Extension Parameters	8-107
	Group 3: P3-xx Communication Parameters	8-151
	Group 4: P4-xx Diagnosis Parameters	8-159
	Group 5: P5-xx Motion Control Parameters	8-172
	Group 6: P6-xx Pr Path Definition Parameters	8-234
	Group 7: P7-xx Pr Path Definition Parameters	8-271
	Table 8.A Input Function Definition	8-281
	Table 8.B Output Function Definition	8-290
Cha	pter 9 Communications	9-1
9	RS-485 & RS-232 Communication Hardware Interface	9-1
9	0.2 Communication Parameters	9-3
9	.3 MODBUS Communication Protocol	9-5
9	.4 Communication Parameter Write-in and Read-out	9-19
Cha	pter 10 Troubleshooting	10-1
1	0.1 Servo Drive Fault Messages Table	10-1
1	0.2 CANopen Communication Fault Messages Table	10-4
1	0.3 Motion Control Fault Messages Table	10-6
1	0.4 Absolute System Fault Messages Table	10-9
1	0.5 Potential Cause and Corrective Actions	10-10

10.6 Clea	aring Faults	. 10-32
Chapter 11	Specifications	. 11-1
11.1 Spe	cifications of Servo Drive (ASDA-A2 Series)	. 11-1
11.1.1	ASDA-A2 220V Series	. 11-1
11.1.2	ASDA-A2 400 Series	. 11-4
11.2 Spe	cifications of Servo Motors (ECMA Series)	. 11-7
11.2.1	ECMA 220V Series	. 11-7
11.2.2	ECMA 400 Series	. 11-13
11.3 Ser	vo Motor Speed-Torque Curves (T-N Curves)	. 11-17
11.3.1	220V Series	. 11-17
11.3.2	400 Series	. 11-18
11.4 Ove	erload Characteristics	. 11-19
11.5 Dim	nensions of Servo Drive	. 11-21
11.5.1	220V Series	. 11-21
11.5.2	400 Series	. 11-28
11.6 Dim	nensions of Servo Motor (ECMA Series)	. 11-32
11.6.1	220V Series	. 11-32
11.6.2	400 Series	. 11-38
Chapter 12	Absolute System	. 12-1
12.1 Bac	kup Battery Boxes	. 12-1
12.1.1	Specifications	. 12-1
12.1.2	Battery Box Dimensions	. 12-4
12.1.3	Connection Cables for Absolute Encoder	. 12-5
12.1.4	Battery Box Cords	.12-6
12.2 Inst	allation	. 12-7

12.2.1	Connection Examples	. 12-7
12.2.2	How To Install A Battery	. 12-10
12.2.3	How to Replace A Battery	. 12-11
12.3 Syst	tem Initialization Procedure and Operation	. 12-14
12.3.1	System Initialization Procedure	. 12-14
12.3.2	Pulse Counting	. 12-15
12.3.3	PUU Counting	. 12-16
12.3.4	Use Digital Inputs/Outputs to Initialize an Absolute System	. 12-18
12.3.5	Use Parameters to Initialize an Absolute System	. 12-19
12.3.6	Use Digital Inputs/Outputs to Read the Absolute Coordinate Data	. 12-19
12.3.7	Use Parameter to Read the Absolute Coordinate Data	. 12-23
12.4 Rela	ated Parameters for Absolute System	. 12-24
12.5 Dig	ital Input (DI) Function Definition (for Absolute System)	. 12-30
12.6 Dig	ital Output (DO) Function Definition (for Absolute System)	. 12-31
12.7 Fau	It Messages for Absolute System	. 12-32
12.7.1	Potential Cause and Corrective Actions	. 12-33
12.8 Rela	ated Monitoring Variables	. 12-35
Appendix A	Accessories	A-1
Annendix R	Maintenance and Inspection	R-1

ASDA-A2

About this Manual...

User Information

Be sure to store this manual in a safe place.

Due to constantly growing product range, technical improvement and alteration or changed texts, figures and diagrams, we reserve the right of this manual contained information change without prior notice.

Coping or reproducing any part of this manual, without written consent of Delta Electronics Inc. is prohibited.

Technical Support and Service

Welcome to contact us or visit our web site (http://www.delta.com.tw/ia/) if you need any technical support, service and information, or, if you have any question in using the product. We are looking forward to serve you needs and willing to offer our best support and service to you. Reach us by the following ways.

ASIA

DELTA ELECTRONICS, INC.

Taoyuan Plant 1

31-1, XINGBANG ROAD,

GUISHAN INDUSTRIAL ZONE,

TAOYUAN COUNTY 33370, TAIWAN, R.O.C.

TEL: 886-3-362-6301

FAX: 886-3-362-7267

JAPAN

DELTA ELECTRONICS (JAPAN), INC.

Tokyo Office

DELTA SHIBADAIMON BUILDING

2-1-14 SHIBADAIMON, MINATO-KU,

TOKYO, 105-0012, JAPAN

TEL: 81-3-5733-1111 FAX: 81-3-5733-1211

NORTH/SOUTH AMERICA

DELTA PRODUCTS CORPORATION (USA)

Raleigh Office

P.O. BOX 12173 5101 DAVIS DRIVE,

RESEARCH TRIANGLE PARK, NC 27709,

U.S.A.

TEL: 1-919-767-3813 FAX: 1-919-767-3969 **EUROPE**

DELTRONICS (THE NETHERLANDS) B.V.

Eindhoven Office

DE WITBOGT 15, 5652 AG EINDHOVEN,

THE NETHERLANDS

TEL: 31-40-259-2850

FAX: 31-40-259-2851

XİV Revision September 2012

Chapter 1 Unpacking Check and Model Explanation

1.1 Unpacking Check

After receiving the AC servo drive, please check for the following:

■ Ensure that the product is what you have ordered.

Verify the part number indicated on the nameplate corresponds with the part number of your order (Please refer to Section 1.2 for details about the model explanation).

■ Ensure that the servo motor shaft rotates freely.

Rotate the motor shaft by hand; a smooth rotation will indicate a good motor. However, a servo motor with an electromagnetic brake can not be rotated manually.

Check for damage.

Inspect the unit to insure it was not damaged during shipment.

■ Check for loose screws.

Ensure that all necessary screws are tight and secure.

If any items are damaged or incorrect, please inform the distributor whom you purchased the product from or your local Delta sales representative.

A complete and workable AC servo system should include the following parts:

Part I: Delta standard supplied parts

220V series

- (1) Servo drive
- (2) Servo motor
- (3) 6 PIN Terminal Block (for L1c, L2c, ⊕, R, S, T)
- (4) 3 PIN Terminal Block (for R, S, T)
- (5) 3 PIN Terminal Block (for L1c, L2c, \bigcirc)
- (6) 6 PIN Terminal Block (for L1c, L2c, ⊕, R, S, T)
- (7) 3 PIN Quick Connector (for U, V, W)
- (8) 3 PIN Quick Connector (for P⊕, D, C)
- (9) One operating lever (for wire to terminal block insertion)
- (10) One jumper bar (installed at pins P⊕ and D of the 3 PIN Terminal Block for P⊕, D, C)
- (11) Instruction Sheets (Multilingual version)

400V series

- (1) Servo drive
- (2) Servo motor
- (3) 3 PIN Terminal Block (for R, S, T)
- (4) 3 PIN Terminal Block (for DC24V, DC0V, \bigcirc)
- (5) Terminal Block (for DC24V, DC0V, R, S, T)
- (6) 3 PIN Quick Connector (for U, V, W)
- (7) 3 PIN Quick Connector (for P⊕, D, C)
- (8) One operating lever (for wire to terminal block insertion, available for 220V series $100W \sim 3kW$ models and 400V series $750W \sim 1.5kW$ models)
- (9) One jumper bar (installed at pins P⊕ and D of the 3 PIN Terminal Block for P⊕, D, C, available for 220V series 100W ~ 4.5kW models and 400V series 750W ~ 1.5kW models)
- (10) Instruction Sheets (Multilingual version)

220V series and 400V series

Part II: Optional parts (Refer to Appendix A)

- (1) One power cable, which is used to connect servo motor to U, V, W terminals of servo drive. This power cable includes a green grounding cable. Please connect the green grounding cable to the ground terminal of the servo drive.
- (2) One encoder cable, which is used to connect the encoder of servo motor to the CN2 terminal of servo drive.
- (3) CN1 Connector: 50 PIN Connector (3M type analog product)
- (4) CN2 Connector: 20 PIN Connector (3M type analog product)
- (5) CN3 Connector: 6 PIN Connector (IEEE1394 analog product) for general communication (RS-485)
- (6) CN4 Connector: 4 PIN Connector (USB Type B product)
- (7) CN6 Connector: RJ45 Connector for high-speed communication (CANopen)
- (8) CN7 Connector: 7 PIN Connector for extension digital inputs (-U models only)

1-2 Revision September 2012

■ Power Input of Servo Drive

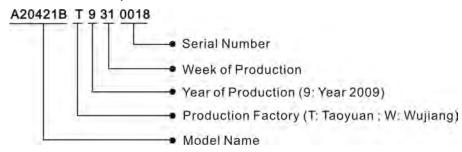
220V series

	Power of Control Circuit	Power of Main Circuit
100W~3kW	L1c, L2C, [©] Quick Connector	R, S, T Quick Connector
4.5kW~15kW	L1c, L2C, 🖲 Terminal Block	R, S, T Terminal Block

400V series

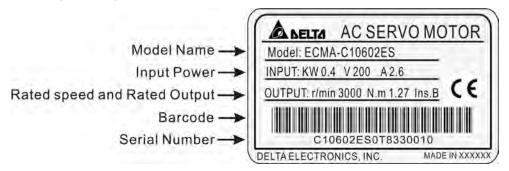
	Power of Control Circuit	Power of Main Circuit
750W~1.5kW	DC24V, DC0V, Quick Connector	R, S, T Quick Connector
2kW~15kW	DC24V, DC0V, \odot Terminal Block	R, S, T Terminal Block

1.2 Model Explanation

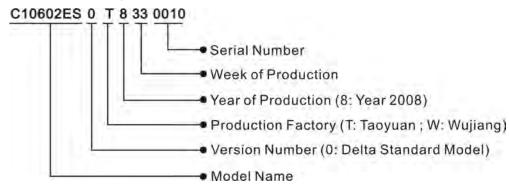

1.2.1 Nameplate Information

ASDA-A2 Series Servo Drive

Nameplate Explanation

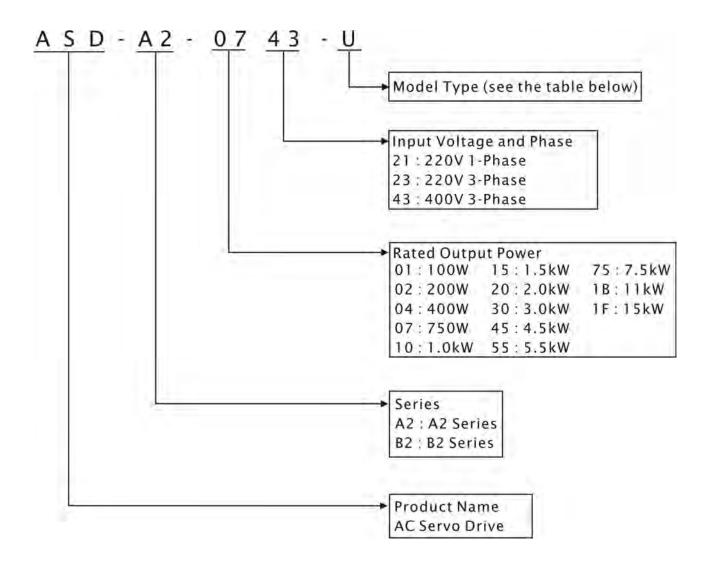


Serial Number Explanation



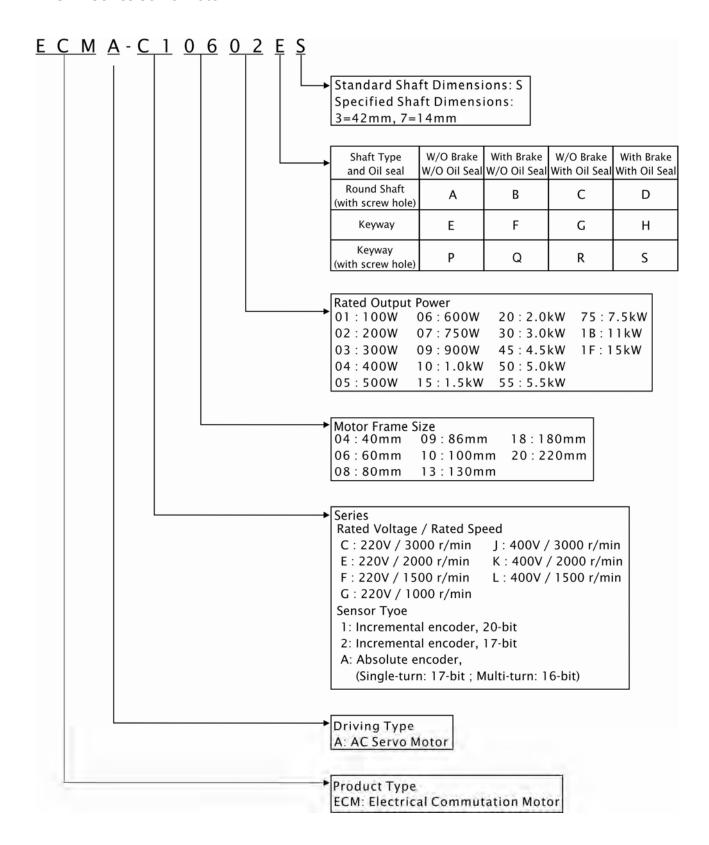
ECMA Series Servo Motor

■ Nameplate Explanation


Serial Number Explanation

1-4 Revision September 2012

1.2.2 Model Name Explanation


ASDA-A2 Series Servo Drive

Model Type

Туре	Full-Closed Control	CANopen	DMCNET	Extension Port for Digital Input	Electronic Cam (E-Cam)
M	Yes	Yes	No	No	Yes
U	Yes	No	No	Yes	Yes
F	Yes	No	Yes	No	No
L	Yes	No	No	No	No

ECMA Series Servo Motor

1-6 Revision September 2012

1.3 Servo Drive and Servo Motor Combinations

The table below shows the possible combination of Delta ASDA-A2 series servo drives and ECMA series servo motors. (Please refer to Section 1.2 for model explanation)

1.3.1 220V Series

Power	Servo Drive	Servo Motor
100W	ASD-A2-0121-□	ECMA-C△0401□S (S=8mm)
200W	ASD-A2-0221-□	ECMA-C∆0602□S (S=14mm)
	ASD-A2-0421-□	ECMA-C∆0604□S (S=14mm)
40004/		ECMA-C∆0804□7 (7=14mm)
400W		ECMA-E△1305□S (S=22mm)
		ECMA-G△1303□S (S=22mm)
	ASD-A2-0721-□	ECMA-C∆0807□S (S=19mm)
750W		ECMA-C△0907□S (S=16mm)
		ECMA-G△1306□S (S=22mm)
1000W	ASD-A2-1021-□	ECMA-C△0910□S (S=16mm)
		ECMA-C△1010□S (S=22mm)
		ECMA-E△1310□S (S=22mm)
		ECMA-G△1309□S (S=22mm)
1500W	ASD-A2-1521-□	ECMA-E△1315□S (S=22mm)
	ASD-A2-2023-□	ECMA-C∆1020□S (S=22mm)
2000W		ECMA-E△1320□S (S=22mm)
		ECMA-E△1820□S (S=35mm)
3000W	ASD-A2-3023-□	ECMA-E△1830□S (S=35mm)
		ECMA-F△1830□S (S=35mm)
4500W	ASD-A2-4523-□	ECMA-F△1845□S (S=35mm)
5500W	ASD-A2-5523-□	ECMA-F△1855□3 (3=42mm)
7500W	ASD-A2-7523-□	ECMA-F△1875□3 (3=42mm)
11kW	ASD-A2-1B23-□	ECMA-F1221B□3 (3=42mm)
15kW	ASD-A2-1F23-□	ECMA-F1221F□S (S=55mm)

- The boxes (□) at the ends of the servo drive model names are for optional configurations (Fullclosed Control, CANopen, DMCNET, Extension Port for Digital Input and Electronic Cam).
 For the actual model name, please refer to the ordering information of the actual purchased product.
- 2) The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations (keyway, brake and oil seal).

The drives shown in the above table are designed according to the three multiple of rated current of motors shown in the above table. If the drives which are designed according to the six multiple of rated current of motors are needed, please contact our distributors or your local Delta sales representative.

1.3.2 400V Series

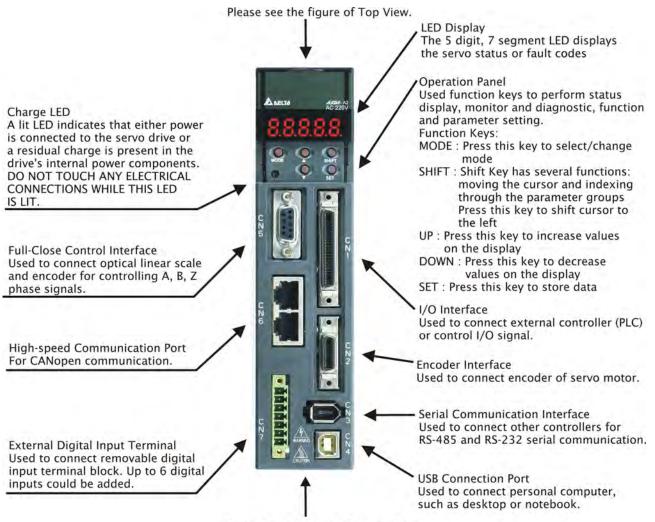
Power	Servo Drive	Servo Motor
750W	ASD-A2-0743-□	ECMA-J10807□S (S=19mm)
1.0W	ASD-A2-1043-□	ECMA-K11310□S (S=22mm)
1.5W	ASD-A2-1543-□	ECMA-K11315□S (S=22mm)
2.0W	ASD-A2-2043-□	ECMA-K11320□S (S=22mm)
3.0W	ASD-A2-3043-□	ECMA-L∆1830□S (S=35mm)
4.5W	ASD-A2-4543-□	ECMA-L11845□S (S=35mm)
5.5W	ASD-A2-5543-□	ECMA-L11855□3 (3=42mm)
7.5W	ASD-A2-7543-□	ECMA-L11875□3 (3=42mm)
11kW	ASD-A2-1B43-□	ECMA-L1221B□3 (3=42mm)
15kW	ASD-A2-1F43-□	ECMA-L1221F□S (3=55mm)

NOTE

- The boxes (□) at the ends of the servo drive model names are for optional configurations (Fullclosed Control, CANopen, DMCNET, Extension Port for Digital Input and Electronic Cam).
 For the actual model name, please refer to the ordering information of the actual purchased product.
- 2) The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations (keyway, brake and oil seal).

The drives shown in the above table are designed according to the three multiple of rated current of motors shown in the above table. If the drives which are designed according to the six multiple of rated current of motors are needed, please contact our distributors or your local Delta sales representative.

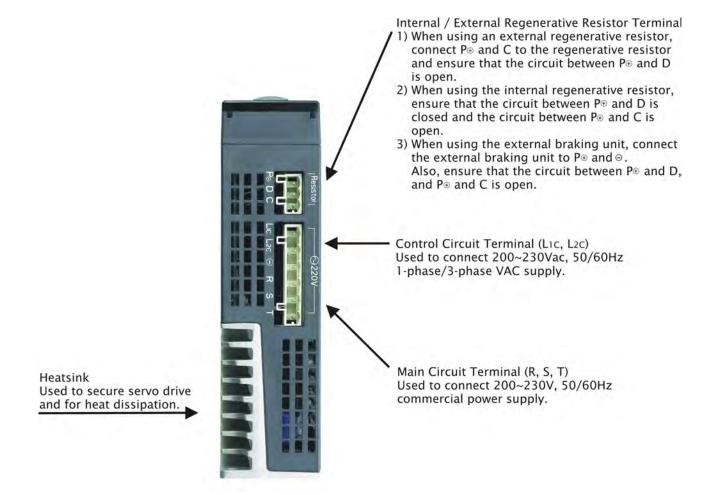
The servo drives shown in the above two tables are designed for use in combination with the specific servo motors. Check the specifications of the drives and motors you want to use.


Also, please ensure that both the servo drive and motor are correctly matched for size (power rating). If the power of motor and drive is not within the specifications, the drive and motor may overheat and servo alarm would be activated. For the detail specifications of servo drives and motors, please refer to Chapter 11 "Specifications".

1-8 Revision September 2012

1.4 Servo Drive Features

1.4.1 220V Series


220V Series - Front View

Please see the figure of Bottom View.


Revision September 2012

220V Series - Top View

1-10 Revision September 2012

220V Series - Bottom View

1.4.2 400V Series

400V Series - Front View

Charge LED

A lit LED indicates that either power is connected to the servo drive or a residual charge is present in the drive's internal power components. DO NOT TOUCH ANY ELECTRICAL CONNECTIONS WHILE THIS LED IS LIT.

Full-Close Control Interface Used to connect optical linear scale and encoder for controlling A, B, Z phase signals.

High-speed Communication Port For CANopen communication.

External Digital Input Terminal Used to connect removable digital input terminal block. Up to 6 digital inputs could be added.

of Top View.

Please see the figure

LED Display
The 5 digit, 7 segment LED displays
the servo status or fault codes

Operation Panel

Used function keys to perform status display, monitor and diagnostic, function and parameter setting.

Function Keys:

MODE : Press this key to select/change mode

SHIFT: Shift Key has several functions: moving the cursor and indexing through the parameter groups Press this key to shift cursor to the left

UP : Press this key to increase values on the display

DOWN : Press this key to decrease values on the display

SET: Press this key to store data

I/O Interface

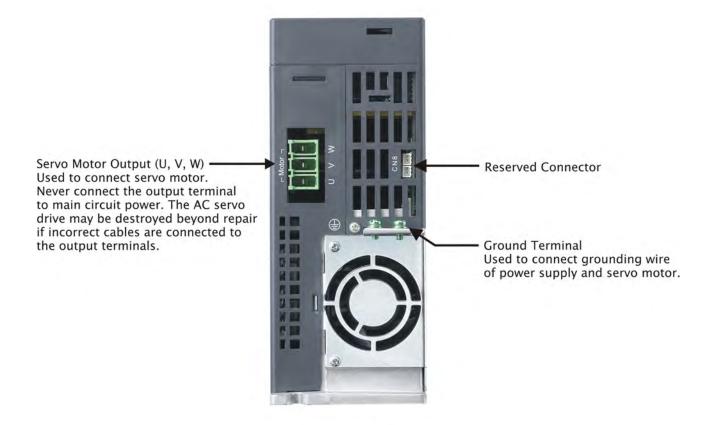
Used to connect external controller (PLC) or control I/O signal.

Encoder Interface

Used to connect encoder of servo motor.

Serial Communication Interface Used to connect other controllers for RS-485 and RS-232 serial communication.

USB Connection Port Used to connect personal computer, such as desktop or notebook.


Please see the figure of Bottom View.

1-12

400V Series - Top View

Internal / External Regenerative Resistor Terminal 1) When using an external regenerative resistor, connect P⊕ and C to the regenerative resistor and ensure that the circuit between Po and D is open. 2) When using the internal regenerative resistor, ensure that the circuit between P⊕ and D is closed and the circuit between P⊕ and C is open. 3) When using the external braking unit, connect the external braking unit to P⊕ and Θ. Also, ensure that the circuit between P⊕ and D, and P⊕ and C is open. Control Circuit Terminal (DC24V, DC0V) Used to connect 24VDC±10% power supply. Main Circuit Terminal (R, S, T) Used to connect 380~480V, 50/60Hz commercial power supply. Heatsink Used to secure servo drive and for heat dissipation.

400V Series - Bottom View

1-14 Revision September 2012

Chapter 2 Installation and Storage

2.1 Installation Notes

Please pay close attention on the following installation notes:

- Do not bend or strain the connection cables between servo drive and motor.
- When mounting the servo drive, make sure to tighten all screws to secure the drive in place.
- If the servo motor shaft is coupled directly to a rotating device ensure that the alignment specifications of the servo motor, coupling, and device are followed. Failure to do so may cause unnecessary loads or premature failure to the servo motor.
- If the length of cable connected between servo drive and motor is more than 20m, please increase the wire gauge of the encoder cable and motor connection cable (connected to U, V, W terminals).
- Make sure to tighten the screws for securing motor.

2.2 Storage Conditions

The product should be kept in the shipping carton before installation. In order to retain the warranty coverage, the AC servo drive should be stored properly when it is not to be used for an extended period of time. Some storage suggestions are:

- Store in a clean and dry location free from direct sunlight.
- Store within an ambient temperature range of -20°C to +65°C (-4°F to 149°F).
- Store within a relative humidity range of 0% to 90% and non-condensing.
- Do not store in a place subjected to corrosive gases and liquids.
- Correctly packaged and placed on a solid surface.

2.3 Installation Conditions

Operating Temperature

ASDA-A2 Series Servo Drive : 0°C to 55°C (32°F to 131°F)

ECMA Series Servo Motor : 0°C to 40°C (32°F to 104°F)

The ambient temperature of servo drive for long-term reliability should be under 45°C (113°F).

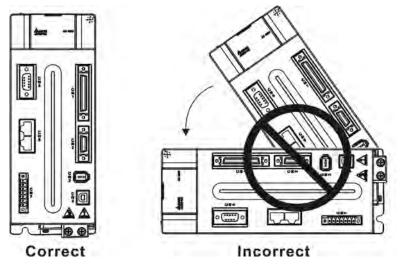
If the ambient temperature of servo drive is greater than 45°C (113°F), please install the drive in a well-ventilated location and do not obstruct the airflow for the cooling fan.

Caution

The servo drive and motor will generate heat. If they are installed in a control panel, please ensure sufficient space around the units for heat dissipation.

Pay particular attention to vibration of the units and check if the vibration has impacted the electric devices in the control panel. Please observe the following precautions when selecting a mounting location. *Failure to observe the following precautions may void the warranty!*

- Do not mount the servo drive or motor adjacent to heat-radiating elements or in direct sunlight.
- Do not mount the servo drive or motor in a location subjected to corrosive gases, liquids, or airborne dust or metallic particles.
- Do not mount the servo drive or motor in a location where temperatures and humidity will exceed specification.
- Do not mount the servo drive or motor in a location where vibration and shock will exceed specification.
- Do not mount the servo drive or motor in a location where it will be subjected to high levels of electromagnetic radiation.


2-2 Revision September 2012

2.4 Installation Procedure and Minimum Clearances

Installation Procedure

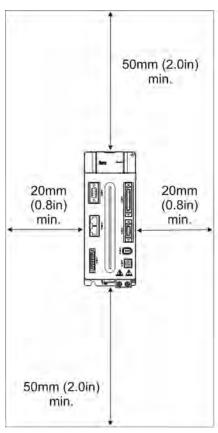
Incorrect installation may result in a drive malfunction or premature failure of the drive and or motor. Please follow the guidelines in this manual when installing the servo drive and motor.

The ASDA-A2 servo drive should be mounted perpendicular to the wall or in the control panel. In order to ensure the drive is well ventilated, ensure that the all ventilation holes are not obstructed and sufficient free space is given to the servo drive. Do not install the drive in a horizontal position or malfunction and damage will occur.

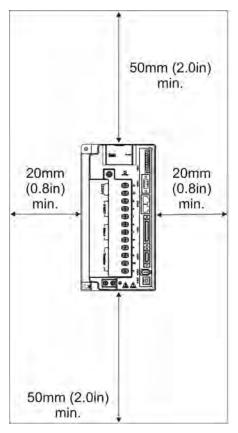
Drive Mounting

The ASDA-A2 Servo drives must be back mounted vertically on a dry and solid surface such as a NEMA enclosure. A minimum spacing of two inches must be maintained above and below the drive for ventilation and heat dissipation. Additional space may be necessary for wiring and cable connections. Also, as the drive conducts heat away via the mounting, the mounting plane or surface should not conduct heat into the drive from external sources

Motor Mounting


The ECMA Servo motors should be mounted firmly to a dry and solid mounting surface to ensure maximum heat transfer for maximum power output and to provide a good ground. For the dimensions and weights specifications of servo drive or motor, please refer to Chapter 11 "Specifications".

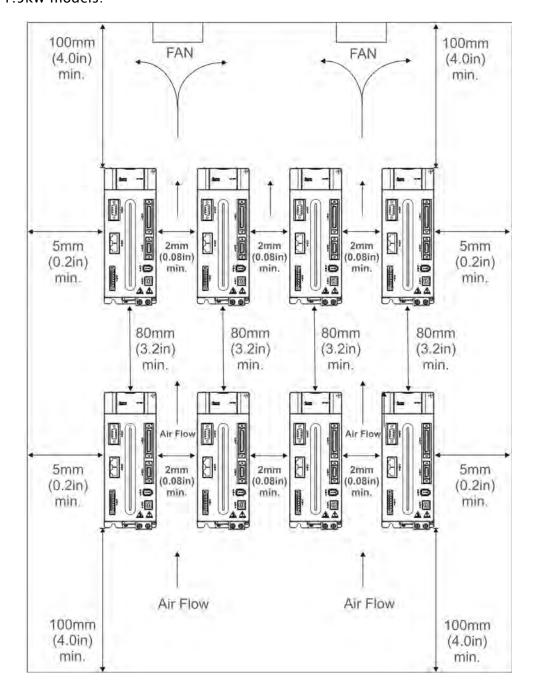
Minimum Clearances


Install a fan to increase ventilation to avoid ambient temperatures that exceed the specification. When installing two or more drives adjacent to each other please follow the clearances as shown in the following diagram.

■ Minimum Clearances

750W ~ 1.5kW models:

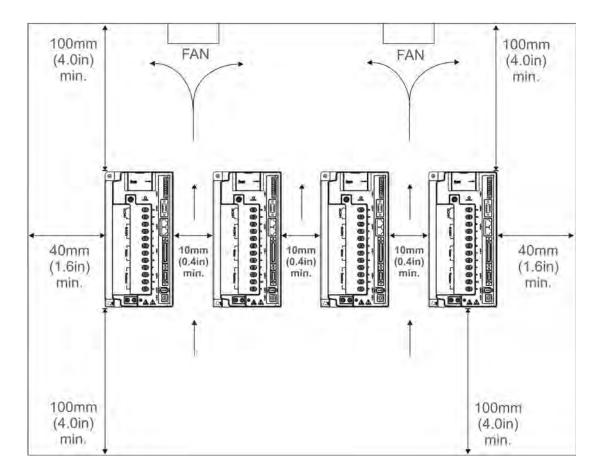
2kW ~ 5.5kW models:



The scale of the clearances does not match the dimensions as shown in the drawing above. In the event of any discrepancy between the clearances and the dimensions, the dimensions shall prevail.

2-4 Revision September 2012

■ Side by Side Installation


750W ~ 1.5kW models:

The scale of the clearances does not match the dimensions as shown in the drawing above. In the event of any discrepancy between the clearances and the dimensions, the dimensions shall prevail.

2kW ~ 5.5kW models:

The scale of the clearances does not match the dimensions as shown in the drawing above. In the event of any discrepancy between the clearances and the dimensions, the dimensions shall prevail.

2-6 Revision September 2012

2.5 Circuit Interrupter and Fuse Current Recommended Value

> Caution: Please use circuit interrupter and fuse which are recognized by and comply with the UL or CSA standards.

220V Series

Servo Drive Model	Recommended Breaker	Recommended Fuse (Class T)
Operation Mode	General	General
ASD-A2-0121-□	5A	5A
ASD-A2-0221-□	5A	5A
ASD-A2-0421-□	10A	10A
ASD-A2-0721-□	10A	20A
ASD-A2-1021-□	15A	25A
ASD-A2-1521-□	20A	40A
ASD-A2-2023-□	30A	50A
ASD-A2-3023-□	30A	70A
ASD-A2-4523-□	70A	140A
ASD-A2-5523-□	75A	150A
ASD-A2-7523-□	95A	175A
ASD-A2-1B23-□	-	-
ASD-A2-1F23-□	-	-

400V Series

Servo Drive Model	Recommended Breaker	Recommended Fuse (Class T)
Operation Mode	General	General
ASD-A2-0743-□	10A	20A
ASD-A2-1043-□	15A	25A
ASD-A2-1543-□	20A	40A
ASD-A2-2043-□	30A	50A
ASD-A2-3043-□	30A	70A
ASD-A2-4543-□	70A	140A
ASD-A2-5543-□	75A	150A
ASD-A2-7543-□	95A	175A
ASD-A2-1B43-□	-	-
ASD-A2-1F43-□	-	-

When using a GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of equal to or more than 200mA, and not less than 0.1-second detection time to avoid nuisance tripping.

2.6 EMI Filter Selection

AC Servo Drive - EMI Filter Cross Reference

220V Series

ltam	Power	Servo Drive Model	Recommend	ed EMI Filter	FootPrint	
ltem	Power	Servo Drive Model	1 PH	3PH		
1	100W	ASD-A2-0121-□	RF007S21AA	RF022B43AA	N	
2	200W	ASD-A2-0221-□	RF007S21AA	RF022B43AA	N	
3	400W	ASD-A2-0421-□	RF007S21AA	RF022B43AA	N	
4	750W	ASD-A2-0721-□	RF007S21AA	RF037B43BA	N	
5	1.0kW	ASD-A2-1021-□	RF007S21AA	RF037B43BA	N	
6	1.5kW	ASD-A2-1521-□	RF007S21AA	RF037B43BA	N	
7	2.0kW	ASD-A2-2023-□	-	RF037B43BA	N	
8	3.0kW	ASD-A2-3023-□	-	RF037B43BA	N	
9	4.5kW	ASD-A2-4523-□	-	RF075M43BA	N	
10	5.5kW	ASD-A2-5523-□	-	RF075M43BA	Υ	
11	7.5kW	ASD-A2-7523-□	-	30TDRT1W4	Υ	
12	11.0kW	ASD-A2-1B23-□	-	50TDS4W4C	-	
13	15.0kW	ASD-A2-1F23-□	-	50TDS4W4C	-	

400V Series

Item	Power	Servo Drive Model	Recommended EMI Filter	FootPrint
1	750W	ASD-A2-0743-□	RF007S43AA	N
2	1000W	ASD-A2-1043-□	RF007S43AA	N
3	1500W	ASD-A2-1543-□	RF022B43AA	N
4	2000W	ASD-A2-2043-□	RF037B43BA	N
5	3000W	ASD-A2-3043-□	RF037B43BA	N
6	4500W	ASD-A2-4543-□	RF075M43BA	N
7	5500W	ASD-A2-5543-□	RF075M43BA	Υ
8	7500W	ASD-A2-7543-□	RF075M43BA	Υ
9	11kW	ASD-A2-1B23-□	-	-
10	15kW	ASD-A2-1F23-□	-	-

The boxes (\Box) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

2-8 Revision September 2012

Installation

All electrical equipment, including AC servo drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMI filter with correct installation, much of the interference can be eliminated. It is recommended to use Delta's EMI filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC servo drive and EMI filter are installed and wired according to user manual:

- EN61000-6-4 (2001)
- EN61800-3 (2004) PDS of category C2
- EN55011+A2 (2007) Class A Group 1

General Precaution

To ensure the best interference elimination performance when using Delta's EMI filter, please follow the guidelines in this user manual to perform wiring and/or installation. In addition, please also observe the following precautions:

- EMI filter and AC servo drive should be installed on the same metal plate.
- Please install AC servo drive on same footprint with EMI filter or install EMI filter as close as possible to the AC servo drive.
- All wiring should be as short as possible.
- Metal plate should be grounded.
- The cover of EMI filter and AC servo drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

Choose Suitable Motor Cable and Precautions

Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to observe the following precautions when selecting motor cable.

- Use the cable with shielding (double shielding is the best).
- The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
- Remove any paint on metal saddle for good ground contact with the plate and shielding (Please refer to Figure 1 on page B-3).
- The connection between the metal saddle and the shielding on both ends of the motor cable should be correct and well installed. Please refer to Figure 2 on page B-3 for correct wiring method.

Remove any paint on metal saddle for good ground contact with the plate and shielding.

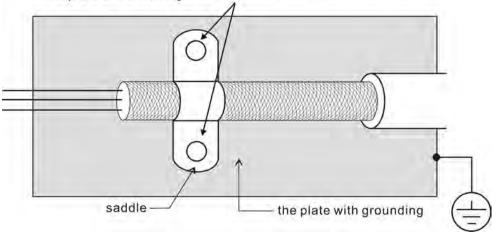
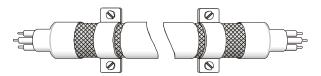
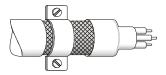
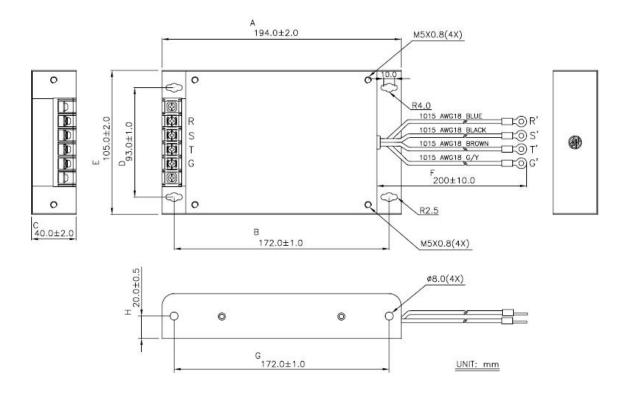
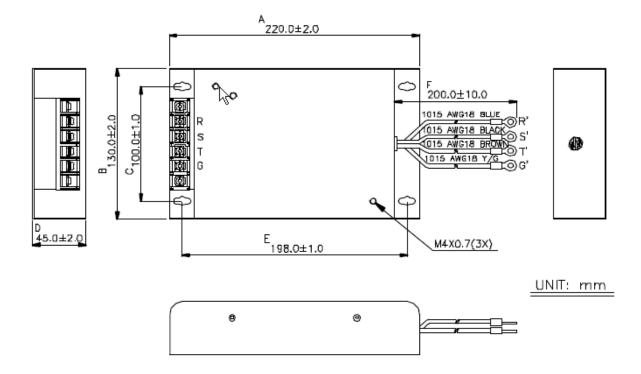




Figure 1

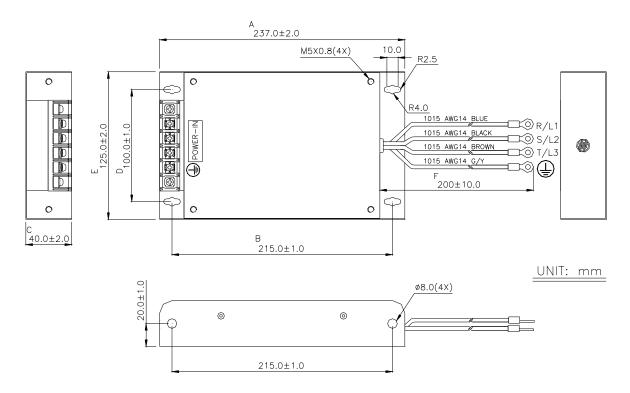
Saddle on both ends

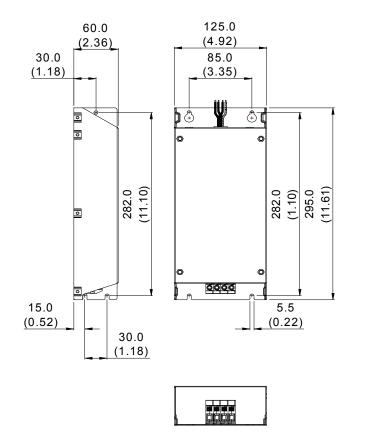


Saddle on one end


Figure 2

Dimensions


Delta Part Number: 08TDT1W4S


Delta Part Number: 11TDT1W4S

Delta Part Number: 20TDT1W4D

Delta Part Number: RF075M43BA

2-12 Revision September 2012

2.7 Regenerative Resistors

■ Built-in Regenerative Resistor

When the output torque of servo motor in reverse direction of motor rotation speed, it indicates that regenerative power has returned from the load to the servo drive. This power will be transmitted into the capacitance of the DC Bus and result in rising voltage. When the voltage rises too high, the servo system need to dissipate the extra energy by using a regenerative resistor. The ASDA-A2 series servo drive provides a built-in regenerative resistor which is equipped as standard (400W~5.5kW models only). Users can also connect an external regenerative resistor if more regenerative capacity is needed. The following table shows the specifications of the servo drive's built-in regenerative

The following table shows the specifications of the servo drive's built-in regenerative resistor and the amount of regenerative power (average value) that it can process.

220V Series

	Specifications of Built-in Regenerative Resistors										
Servo Drive (kW)	Resistance (Ohm) (Parameter P1-52)	Capacity (Watt) (Parameter P1-53)	Regenerative Power processed by built-in regenerative resistor (Watt) *1	Min. Allowable Resistance (Ohm)							
0.1	-	-	-	30							
0.2	-	-	-	30							
0.4	40	40	-	30							
0.75	40	60	30	20							
1.0	40	60	30	20							
1.5	40	60	30	20							
2.0	20	100	50	10							
3.0	20	100	50	10							
4.5	20	100	50	10							
5.5	-	-	-	8							
7.5	-	-	-	5							
11.0	-	-	-	5							
15.0	-	-	-	3							

400V Series

	Specifications of Built-in Regenerative Resistors									
Servo Drive (kW)	Resistance (Ohm) (Parameter P1-52)	Capacity (Watt) (Parameter P1-53)	Min. Allowable Resistance (Ohm)							
0.75	80	100	60							
1.0	80	100	60							
1.5	80	100	40							
2.0	-	-	40							
3.0	-	-	30							
4.5	-	-	20							
5.5	-	-	20							
7.5	-	-	15							
11.0	-	-	15							
15.0	-	-	10							

When the regenerative power exceeds the processing capacity of the servo drive, install an external regenerative resistor. Please pay close attention to the following notes when using a regenerative resistor.

- 1. Make sure the settings of resistance (parameter P1-52) and capacity (parameter P1-53) are set correctly.
- 2. When installing an external regenerative resistor, make sure that its resistance value is the same as the resistance of the built-in regenerative resistor. If combining multiple small-capacity regenerative resistors in parallel to increase the regenerative resistor capacity, make sure that the resistance value of the regenerative resistor complies with the specifications listed in the table above.
- 3. In general, when the amount of regenerative power (average value) that can be processed is used at or below the rated load ratio, the resistance temperature will increase to 120°C or higher (when the regeneration occurs continuously). For safety reasons, forced air cooling is a good way to reduce the temperature of the regenerative resistors. We also recommend using regenerative resistors with thermal switches. As for the load characteristics of the regenerative resistors, please check with the manufacturer.

2-14 Revision September 2012

■ External Regenerative Resistor

When using an external regenerative resistor, connect it to $P \oplus$ and C, and make sure the circuit between $P \oplus$ and D is open. We recommend using external regenerative resistors with resistance values that follow the table above (Specifications of Built-in Regenerative Resistors). We ignore the dissipative power of IGBT (Insulated Gate Bipolar Transistor) in order to let the users easily calculate the capacity of regenerative resistor. In the following sections, we will describe Regenerative Power Calculation Method and Simple Calculation Method for calculating the regenerative power capacity of external regenerative resistors.

■ Regenerative Power Calculation Method

(1) Without Load

When there is no external load torque, if the servo motor repeats operation, the returned regenerative power generated when braking will transmitted into the capacitance of DC bus. After the capacitance voltage exceeds some high value, regenerative resistor can dissipate the remained regenerative power. Use the table and procedure described below to calculate the regenerative power.

220V Series

Servo Drive (kW)		Servo Motor	Rotor Inertia J (x 10 ⁻⁴ kg.m ²)	Regenerative power from empty load 3000r/min to stop Eo (joule)	Max. regenerative power of capacitance Ec (joule)	
	0.1	ECMA-C10402□□	0.037	0.18	3	
	0.2	ECMA-C10602□□	0.177	0.87	4	
	0.4	ECMA-C10604□□	0.277	1.37	8	
Low Inertia	0.4	ECMA-C10804□□	0.68	3.36	0	
	0.75	ECMA-C10807□□	1.13	5.59	14	
	1.0	ECMA-C11010□□	2.65	13.1	18	
	2.0	ECMA-C11020□□	4.45	22.0	21	
	0.4	ECMA-E11305□□	8.17	40.40	8	
	1.0	ECMA-E11310□□	8.41	41.59	18	
Medium	1.5	ECMA-E11315□□	11.18	55.28	18	
Inertia	2.0	ECMA-E11320□□	14.59	72.15	21	
	2.0	ECMA-E11820□□	34.68	171.50	21	
	3.0	ECMA-F11830□□	54.95	217.73	28	
	3.0	ECMA-F11830□□	54.95	217.73	28	
Medium-	4.5	ECMA-F11845□□	77.75	384.47	25	
High Inertia	5.5	ECMA-F11855□□	99.78	493.40	27	
	7.5	ECMA-F11875□□	142.7	705.66	93	

Servo Drive (kW)		Servo Motor	Rotor Inertia J (x 10 ⁻⁴ kg.m ²)	Regenerative power from empty load 3000r/min to stop Eo (joule)	Max. regenerative power of capacitance Ec (joule)	
Medium-	11.0	ECMA-F1221B□□	329.0	723.07 (2000r/min)	117	
High Inertia	15.0	ECMA-F1221F□□	553.0	1215.38(2000r/min)	156	
	0.4	ECMA-G11303□□	8.17	40.40	8	
High Inertia	0.75	ECMA-G11306□□	8.41	41.59	14	
	1.0	ECMA-G11309□□	11.18	55.29	18	

Eo = $J \times wr^2/182$ (joule) , Wr : r/min

400V Series

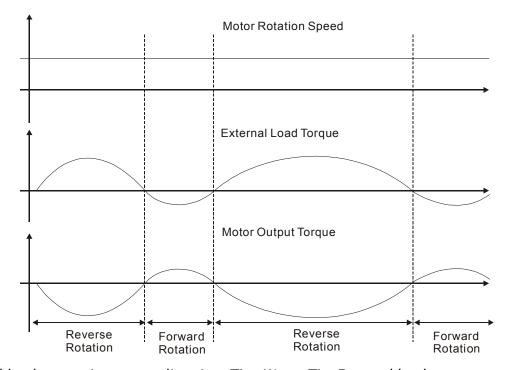
Servo E (kW	_	Servo Motor	Rotor Inertia J (x 10 ⁻⁴ kg.m ²)	Regenerative power from empty load 3000r/min to stop Eo (joule)	Max. regenerative power of capacitance Ec (joule)
Low Inertia	0.75	ECMA-J10807□□	1.13	5.59	42.43
	1.0	ECMA-K11310□□	8.41	18.48	51.17
Medium Inertia	1.5	ECMA-K11315□□	11.18	24.57	57.41
	2.0	ECMA-K11320□□	14.59	18.04	34.94
	3.0	ECMA-L11830□□	54.95	67.93	42.43
	4.5	ECMA-L11845□□	77.75	96.12	51.17
Medium-	5.5	ECMA-L11855□□	99.78	123.35	57.41
High Inertia	7.5	ECMA-L11875□□	142.7	176.41	62.40
	11.0	ECMA-L1221B□□	-	-	-
	15.0	ECMA-L1221F□□	-	-	-

Eo = $J \times wr^2/182$ (joule)

, Wr : r/min

2-16 Revision September 2012 If the load inertia is N × motor inertia, the regenerative power will be (N+1) x E0 when servo motor brakes from 3000r/min to 0. Then, the regenerative resistor can dissipate: (N+1) x E0 - Ec (joule). If the time of repeat operation cycle is T sec, then the regenerative power = $2 \times ((N+1) \times E0 - Ec) / T$. The calculating procedure is as follows:

Step	Procedure	Equation and Setting Method
1	Set the capacity of regenerative resistor to the maximum	Change the value of P1-53 to maximum
2	Set the operation cycle T	Input by the users
3	Set motor speed Wr	Input by the users or read via P0-02 Drive State Display
4	Set load/motor inertia ratio N	Input by the users or read via P0-02 Drive State Display
5	Calculate the max. regenerative power Eo	$Eo = J \times wr^2/182$
6	Set the regenerative power Ec that can be absorbed	Refer to the table above
7	Calculate the required regenerative power capacity	2 x (N+1) x Eo - Ec) / T


For example:

If we use 400W servo drive, the time of repeat operation cycle is T = 0.4 sec, max. motor speed is 3000r/min, the load inertia = $7 \times motor$ inertia, then the necessary the power of regenerative resistor = $2 \times ((7+1) \times 1.68 - 8) / 0.4 = 27.2W$. If the calculation result is smaller than regenerative power, we recommend the users to use the built-in 60W regenerative resistor. Usually the built-in regenerative resistor provided by ASDA-A2 series servo drives can meet the requirement of general application when the external load inertia is not excessive.

The users can see when the capacity of regenerative resistor is too small, the accumulated power will be larger and the temperature will also increase. The fault, AL005 may occur if the temperature is over high. The following figure shows the actual operation of regenerative resistor.

(2) With Load

When there is an external load torque, servo motor is in reverse rotation when external load greater than motor torque. Servo motor is usually in forward rotation and the motor torque output direction is the same as the rotation direction. However, there is still some special condition. If the motor output torque is in the reverse direction of rotation, the servo motor is also in the reverse direction of rotation. The external power is input into the servo drive through servo motor. The Figure 6.21 below is an example. The users can see the motor is in forward rotation at constant speed when a sudden external load torque change and great power is transmitted to regenerative resistor rapidly.

External load torque in reverse direction: TL x Wr TL: External load torque For the safety, we strongly recommend the users should select the proper resistance value according to the load.

For example:

When external load torque is a +70% rated torque and rotation speed reaches 3000r/min, if using 400W servo drive (rated torque: 1.27Nt-m), then the users need to connect a external regenerative resistor which power is 2 x (0.7 x 1.27) x (3000 x 2 x π / 60) = 560W, 40 Ω .

■ Simple Calculation Method

The users can select the adequate regenerative resistors according to the allowable frequency required by actual operation and the allowable frequency when the servo motor runs without load. The allowable frequency when the servo motor run without load is the maximum frequency that can be operated during continuous operation when servo motor accelerate from 0r/min to rated speed and decelerate from rated speed down to 0r/min. The allowable frequencies when the servo motor run without load are summarized in the following table.

Allowable frequency when the servo motor runs without load (times/min) and uses a built-in regenerative resistor													
Motor Capacity	600W	750W	900W	1.0 kW	1.5 kW	2.0 kW	2.0 kW	3.0 kW	4.5 kW	5.5 kW	7.5 kW	11.0 kW	15.0 kW
Servo Motor	06	07	09	10	15	20	20	30	45	55	75	1 B	1F
ECMA□□C	-	312	-	137	-	83 (F100)	-	-	-	-	-	-	-
ECMA□□E	-	-	-	42	32	24 (F130)	10 (F180)	11	-	-	-	-	-

2-18 Revision September 2012

Allow	Allowable frequency when the servo motor runs without load (times/min) and uses a built-in regenerative resistor												
Motor Capacity	600W	750W	900W	1.0 kW	1.5 kW	2.0 kW	2.0 kW	3.0 kW	4.5 kW	5.5 kW	7.5 kW	11.0 kW	15.0 kW
Servo Motor	06	07	09	10	15	20	20	30	45	55	75	1 B	1F
ECMA□□F	-	-	-	-	-	-	-	11	8	-	-	-	-
ECMA□□G	42	-	31	-	-	-	-	-	-	-	-	-	-
ECMA□□J	-	537	-	-	-	-	-	-	-	-	-	-	-
ECMA□□K	-	-	-	162	122	-	-	-	-	-	-	-	-
ECMA□□L	-	-	-	-	-	-	-	-	-	-	-	-	-

When the servo motor runs with load, the allowable frequency will change according to the changes of the load inertia and rotation speed. Use the following equation to calculate the allowable frequency.

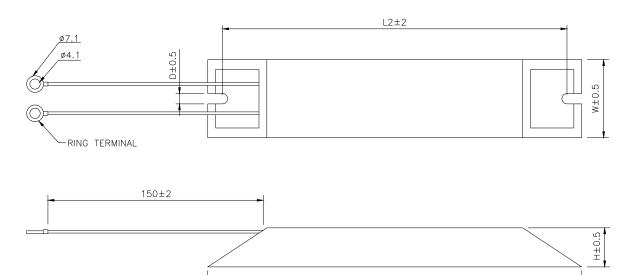
Allowable frequency =
$$\frac{\text{Allowable frequency when servo motor run without load}}{\text{m+1}} \times \left(\frac{\text{Rated speed}}{\text{Operating speed}}\right)^2 \frac{\text{times}}{\text{min.}}$$

m = load/motor inertia ratio

The users can select the adequate external regenerative resistors according to the allowable frequency by referring to the table below:

Allowable frequency when the servo motor run without load (times/min) and uses external regenerative resistor										
Motor Capacity			Е	СМА						
Recommended	100W	200W	400W (F60)	400 (F8		750\	N 1.0kW	2.0kW		
Regenerative Resistor Specifications	01	02	04	0-	4	07	10	20		
BR400W040 (400W 40Ω)	-	-	8608	35	06	211	925	562		
BR1K0W020 (1kW 20Ω)	-	-	-	87	65	527	4 2312	1406		
Motor Capacity	y ECMA□□E									
Recommended	0.5kW	1 kW	1.5kw)kW 30)	2.0kW (F180)	3.0kW		
Regenerative Resistor Specifications	05	1.0	1 !	5	2	20	20	30		
BR400W040 (400W 40Ω)	291	283	21	3	1	63	68	-		
BR1K0W020 (1kW 20Ω)	729	708	53	3	4	08	171	-		
BR1K5W005*2 (3kW 10Ω)	-	-	-			-	-	331		
Motor Capacity		_		СМА	F	:				
	3.0KW	4.5KW	/ 5.51	KW	7.5	kW	11.0kW	15.0kW		
Recommended Regenerative Resistor Specifications	30	45	5!	5	7	' 5	1 B	1F		
BR1K5W005*2 (3kW 10Ω)	331	234	18	2	1	27	124	74		

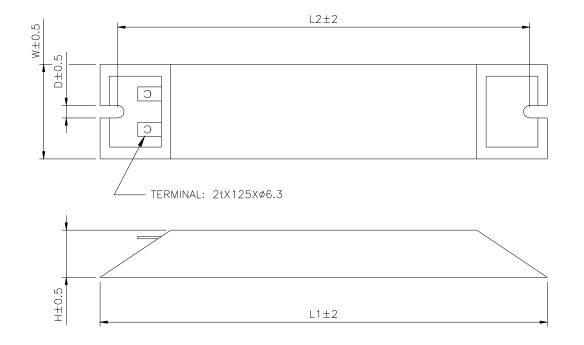
	Allowable frequency when the servo motor run without load (times/min) and uses external regenerative resistor									
Motor Capacity	ECMA□□G									
	0.3k	W	0.6kW	1	0.9kW					
Recommended Regenerative Resistor Specifications	03		06		09					
BR400W040 (400W 40Ω)	292	2	283		213	3				
BR1K0W020 (1kW 20Ω)	729)	708		533	3				
Motor Capacity	ECMA□□K									
Recommended	1.0kW		1.5kW	I	2.0kW					
Regenerative Resistor Specifications	10		15		20					
BR400W040 (400W 40Ω)	-		488		665	5				
Motor Capacity	_		ECMA							
_	3.0KW	4.5KW	5.5KW	7.5kW	11.0kW	15.0kW				
Recommended Regenerative Resistor Specifications	30	45	55	75	18	1F				
BR400W040 (400W 40Ω)	177	-	-	-	-	-				
BR1K0W020 (1kW 20Ω)	-	312	243	170	-	-				

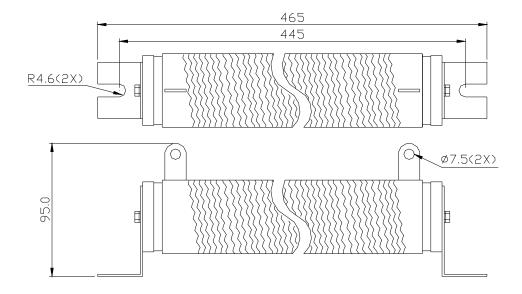

When the regenerative resistor capacity is not enough, the users can connect to multiple the same capacity regenerative resistors in parallel to increase it.

2-20 Revision September 2012

Dimensions

Delta Part Number : BR400W040 (400W 40 Ω)

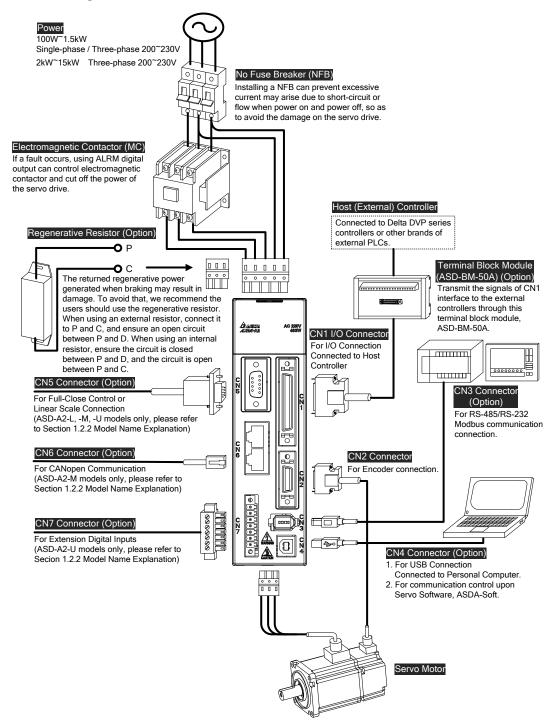

L1	L2	Н	D	W	MAX. WEIGHT(g)
265	250	30	5.3	60	930


Delta Part Number : BR1K0W020 (1kW 20 Ω)

L1	L2	Н	D	W	MAX. WEIGHT(g)
400	385	50	5.3	100	2800

L1±2

Delta Part Number : BR1K5W005 (3kW 10Ω)


Chapter 3 Connections and Wiring

This chapter provides information on wiring ASDA-A2 series products, the descriptions of I/O signals and gives typical examples of wiring diagrams.

3.1 Connections - 220V series

3.1.1 Connecting to Peripheral Devices

Figure 3.1 Configuration

3.1.2 Servo Drive Connectors and Terminals

Terminal Identification	Terminal Description		Notes			
L1c, L2c	Control circuit terminal	Used to connect single-phase AC control circuit power depending on connecting servo drive model.				
R, S, T	Main circuit terminal	Used to connect to depending on con				
		Used to connect servo motor				
		Terminal Symbol	Wire Color	De	escription	
		U	Red	Connoc	ting to three-	
U, V, W	Servo motor output	V	White	phase r	notor main	
FG (⊕)	output	W	Black	circuit (cable.	
		FG(⊕)	Green		ting to terminal (🕒) ervo drive.	
		Internal resistor	Ensure the between Percircuit is op	and D,		
	Regenerative resistor terminal or braking unit	External resistor	Connect regenerative resistor to P+ and C, and ensure an open circuit between P+ and D.			
P⊕, D, C, ⊖		External braking unit	Connect P⊕ and ⊕ of braking unit to P⊕ and ⊕ of servo drive and ensure an open circuit between P⊕ and D, and P⊕ and C. (N terminal is built in L1C, L2C, ⊕, and R, S, T.) P⊕: Connecting to (+) terminal V_BUS voltage. ⊕: Connecting to (-) terminal of V_BUS voltage.			
two places	Ground terminal	Used to connect quantity and servo motor.		ire of po	wer supply	
CN1	I/O connector (Option)	Used to connect e section 3.3 for de		rollers.	Please refer to	
		Used to connect of refer to section 3			or. Please	
		Terminal Symbol	Wire Co	olor	Pin No.	
	Encoder	T+	Blue		5	
CN2	connector	T-	Blue/Bl	ack	4	
	(Option)	Reserved	-		-	
		Reserved	-		-	
		+5V	Red & Red	/White	14, 16	
		GND	Black Black/W		13, 15	

3-2 Revision September 2012

Terminal Identification	Terminal Description	Notes
CN3	Communication connector (Option)	Used for RS-485 or RS-232 communication connection. Please refer to section 3.6 for details.
CN4	USB connector (Type B) (Option)	Used to connect personal computer (PC or notebook). Please refer to section 3.7 for details.
CN5	Position feedback signal connector (for full-closed loop) (Option)	Used to connect to linear scale or encoder to constitute a full-closed loop. Please refer to section 3.8 for details.
CN6	CANopen communication port (Option)	RJ45 connector, used for CANopen communication. Please refer to section 3.9 for details.
CN7	Extension digital input terminal (Option)	Used to connect to extension digital inputs. Please refer to section 3.10 for details.
CN8	Reserved connector	Reserved
CN9	Communication extension connector (Option)	Used to connect to other extension cards (will be available soon).

Wiring Notes

Please observe the following wiring notes while performing wiring and touching any electrical connections on the servo drive or servo motor.

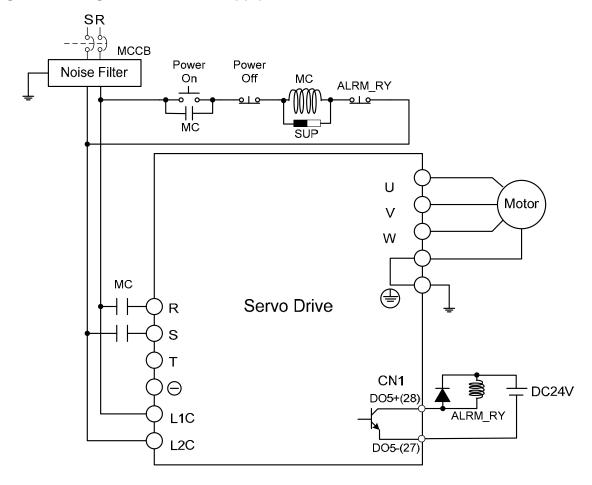
- 1. Ensure to check if the power supply and wiring of the "power" terminals (R, S, T, L_{1C} , L_{2C} , U, V, & W) is correct.
- 2. Please use shielded twisted-pair cables for wiring to prevent voltage coupling and eliminate electrical noise and interference.
- 3. As a residual hazardous voltage may remain inside the drive, please do not immediately touch any of the "power" terminals (R, S, T, L₁C, L₂C, U, V, & W) and/or the cables connected to them after the power has been turned off and the charge LED is lit. (Please refer to the Safety Precautions on page ii).
- 4. The cables connected to R, S, T and U, V, W terminals should be placed in separate conduits from the encoder or other signal cables. Separate them by at least 30cm (11.8 inches).
- 5. If the encoder cable (CN2) or the cable for position feedback signal connector (CN5) is too short, please use a twisted-shield signal wire with grounding conductor. The wire length should be 20m (65.62ft.) or less. For lengths greater than 20m (65.62ft.), the wire gauge should be doubled in order to lessen any signal

attenuation. For the encoder cable specification, please use AWG26 wire size and the Metal braided shield twisted-pair cable which meets the UL2464 specification.

- 6. When using CANopen communication, please use the shielded twisted-pair cables to ensure the communication quality.
- 7. The shield of shielded twisted-pair cables should be connected to the SHIELD end (terminal marked (b)) of the servo drive.
- 8. For the connectors and cables specifications, please refer to section 3.1.6 for details.

3.1.3 Wiring Methods

For servo drives from 200W to 1.5kW the input power can be either single or three-phase. However, single -phase connections are for servo drives 1.5kW and below only.


In the wiring diagram figures 3.2 & 3.3:

Power ON: contact "a" (normally open)

Power OFF /ALRM_RY: contact "b" (normally closed)

MC: coil of electromagnetic contactor, self-holding power, contact of main circuit power

Figure 3.2 Single-Phase Power Supply Connection (for 1.5kW and below models)

Revision September 2012

MCCB Power Power Noise Filter Off On MC ALRM_RY _ H-MC SUP U Motor ٧ W MC Servo Drive R S Т CN1 Θ DC24V DO5+(28) ALRM_RY L1C L2C DO5-(27)

Figure 3.3 Three-Phase Power Supply Connection (for all models)

3.1.4 Motor Power Cable Connector Specifications

The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

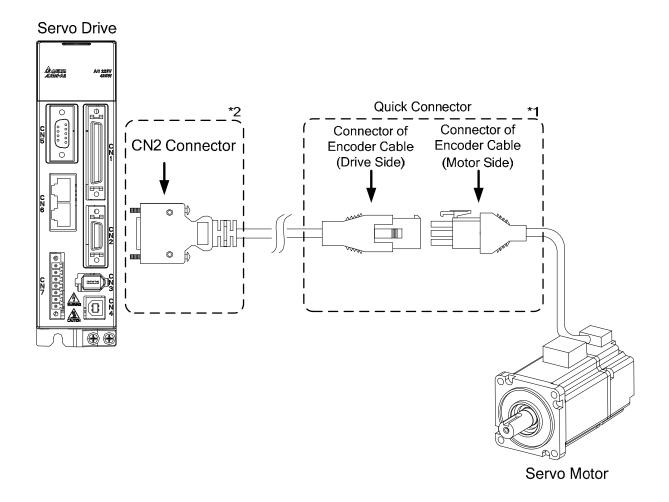
Motor Model Name	U, V, W / Electromagnetic Brake Connector	Terminal Identification
ECMA-C△0401□S (100W) ECMA-C△0602□S (200W) ECMA-C△0604□S (400W) ECMA-C△0804□7 (400W) ECMA-C△0807□S (750W) ECMA-C△0907□S (750W) ECMA-C△0910□S (1000W)	HOUSING : JOWLE (C4201H00-2*2PA)	A
ECMA-C△0401□S (100W) ECMA-C△0602□S (200W) ECMA-C△0604□S (400W) ECMA-C△0804□7 (400W) ECMA-C△0807□S (750W) ECMA-C△0907□S (750W) ECMA-C△0910□S (1000W) *□: with brake	HOUSING : JOWLE (C4201H00-2*3PA)	В
ECMA-G△1303□S (300W) ECMA-E△1305□S (500W) ECMA-G△1306□S (600W) ECMA-G△1309□S (900W) ECMA-C△1010□S (1000W) ECMA-E△1310□S (1000W) ECMA-E△1315□S (1500W) ECMA-C△1020□S (2000W) ECMA-E△1320□S (2000W)	3106A-20-18S	C

Revision September 2012

Motor Model Name	U, V, W / Electromagnetic Brake Connector	Terminal Identification
ECMA-E△1820□S (2000W) ECMA-E△1830□S (3000W) ECMA-F△1830□S (3000W) ECMA-F△1845□S (4500W) ECMA-F11855□3 (5500W)	3106A-24-11S	D
ECMA-F11855□3 (5500W) ECMA-F11875□3 (7500W) ECMA-F1221B□3 (11kW) ECMA-F1221F□S (15kW)	32 - 17 D A	E

Motor Model Name	U, V, W / Electromagnetic Brake Connector	Terminal Identification
ECMA-F21855□3(5500W) ECMA-F21875□3(7500W)	A B 10SL-4	F

Terminal Identification	U (Red)	V (White)	W (Black)	CASE GROUND (Green)	BRAKE1 (Yellow)	BRAKE2 (Blue)
Α	1	2	3	4	-	-
В	1	2	4	5	3	6
С	F	I	В	E	G	Н
D	D	E	F	G	Α	В
E	Α	В	С	D	-	-


Terminal Identification	BRAKE1	BRAKE2
F	Α	В

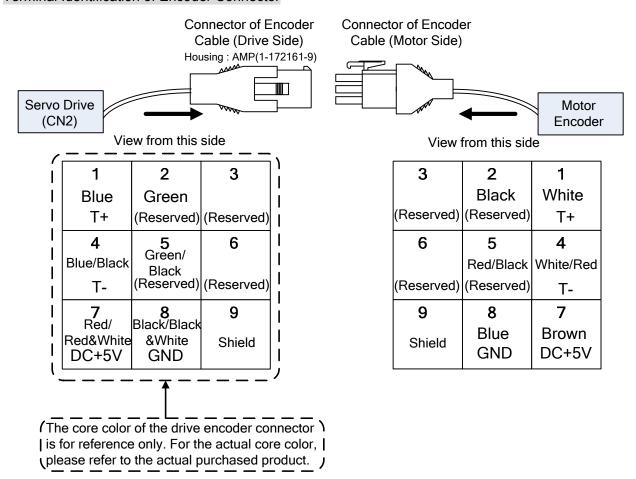
NOTE

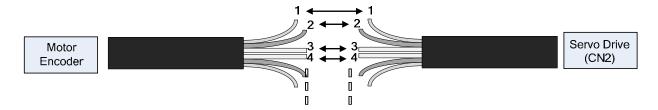
- 1) The coil of brake has no polarity. The names of terminal identification are BRAKE1 (Yellow) and BRAKE2 (Blue).
- 2) The power supply for brake is DC24V. Never use it for VDD, the +24V source voltage.

3.1.5 Encoder Connector Specifications

Encoder Cable Connection (Diagram 1)

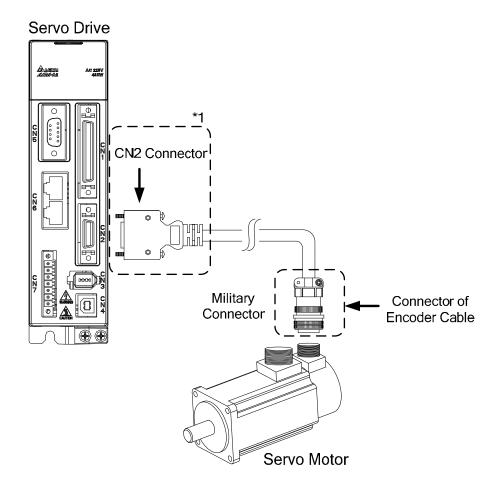
The scale of the objects does not match the dimensions as shown in the drawing above. For different models of AC servo drives and motors, the connection cables may differ.


- 1) Please refer to the descriptions of "Terminal Identification of Encoder Connector" on page 3-9.
- 2) Please refer to section 3.4 for the descriptions of "Encoder Connector CN2".


3-8

The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

Motor Model Name	Encoder Connector	Terminal Identification
ECMA-C△0401□S (100W) ECMA-C△0602□S (200W) ECMA-C△0604□S (400W) ECMA-C△0804□7 (400W) ECMA-C△0807□S (750W) ECMA-C△0907□S (750W) ECMA-C△0910□S (1000W)	963 View from this side View from this side 147 HOUSING AMP (1-172161-9)	A


Terminal Identification of Encoder Connector

If the users do not use the connector (without housing) and connect the cores from the cable for wiring, please follow the terminal identification and core number of encoder connector shown in the above table to complete the wiring. The users need to connect core #1 to core #1, core #2 to core #2 and so on. To ease connection and to avoid wiring error, it is recommended to number the cores first in accordance with the terminal identification and then conducting the wiring.

Encoder Cable Connection (Diagram 2)

The scale of the objects does not match the dimensions as shown in the drawing above. For different models of AC servo drives and motors, the connection cables may differ.

1) Please refer to section 3.4 for the descriptions of "Encoder Connector CN2".

3-10 Revision September 2012

The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

Motor Model Name	Encoder Co	nnecto	r	
ECMA-G△1303□S (300W) ECMA-E△1305□S (500W) ECMA-G△1306□S (600W)				
ECMA-G△1309□S (900W) ECMA-C△1010□S (1000W)	View from	Pin No.	Terminal Identification	Color
ECMA-E△1310□S (1000W)		Α	T+	Blue
ECMA-E△1315□S (1500W) ECMA-C△1020□S (2000W)		В	T -	Blue& Black
ECMA-E△1320□S (2000W) ECMA-E△1820□S (2000W)	B A M	S	DC+5V	Red/Red &White
ECMA-E△1830□S (3000W) ECMA-F△1830□S (3000W)	F G H	R	GND	Black/ Black& White
ECMA-F△1845□S (4500W) ECMA-F△1855□3 (5500W)	3106A-20-29S Military Connector	L	BRAID SHIELD	-
ECMA-F△1875□3 (7500W) ECMA-F1221B□3 (11kW) ECMA-F1221F□S (15kW)				

Please note:

- 1. The shield of shielded twisted-pair cables should be connected to the SHIELD end (terminal marked $\stackrel{\frown}{=}$) of the servo drive.
- 2. For the connectors and cables specifications, please refer to section 3.1.6 for details.

3.1.6 Cable Specifications for Servo Drive

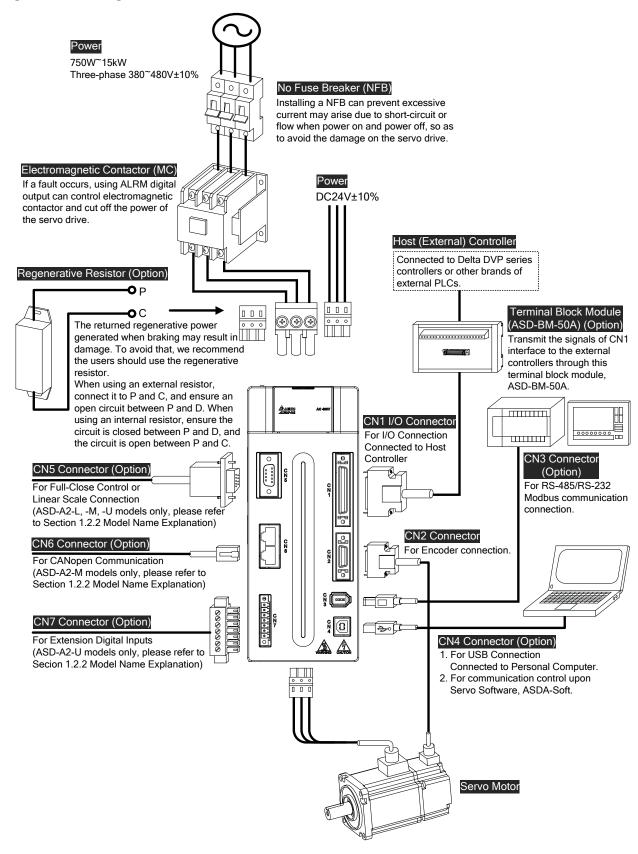
Power Cable

Servo Drive and Servo Motor		Pov	ver Cable - Wire	Gauge AWG (m	m²)
Servo Drive a	and Servo Motor	L1c, L2c	R, S, T	U, V, W	P⊕, C
ASD-A2-0121-□	ECMA-C△0401□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
ASD-A2-0221-□	ECMA-C∆0602□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
	ECMA-C∆0604□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
ASD A3 0431 □	ECMA-C∆0804□7	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
ASD-A2-0421-□	ECMA-E△1305□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
	ECMA-G△1303□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
	ECMA-C∆0807□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
ASD-A2-0721-□	ECMA-C∆0907□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
	ECMA-G△1306□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)
	ECMA-C△0910□S	1.3 (AWG16)	2.1 (AWG14)	1.3 (AWG16)	2.1 (AWG14)
ASD A2 1021 □	ECMA-C△1010□S	1.3 (AWG16)	2.1 (AWG14)	1.3 (AWG16)	2.1 (AWG14)
ASD-A2-1021-□	ECMA-E△1310□S	1.3 (AWG16)	2.1 (AWG14)	1.3 (AWG16)	2.1 (AWG14)
	ECMA-G△1309□S	1.3 (AWG16)	2.1 (AWG14)	1.3 (AWG16)	2.1 (AWG14)
ASD-A2-1521-□	ECMA-E△1315□S	1.3 (AWG16)	2.1 (AWG14)	1.3 (AWG16)	2.1 (AWG14)
	ECMA-C△1020□S	1.3 (AWG16)	2.1 (AWG14)	2.1 (AWG14)	2.1 (AWG14)
ASD-A2-2023-□	ECMA-E∆1320□S	1.3 (AWG16)	2.1 (AWG14)	2.1 (AWG14)	2.1 (AWG14)
	ECMA-E△1820□S	1.3 (AWG16)	2.1 (AWG14)	3.3 (AWG12)	2.1 (AWG14)
ASD-A2-3023-□	ECMA-E△1830□S	1.3 (AWG16)	2.1 (AWG14)	3.3 (AWG12)	2.1 (AWG14)
A3D-A2-3023-L	ECMA-F△1830□S	1.3 (AWG16)	2.1 (AWG14)	3.3 (AWG12)	2.1 (AWG14)
ASD-A2-4523-□	ECMA-F△1845□S	1.3 (AWG16)	3.3 (AWG12)	8.4 (AWG8)	3.3 (AWG12)
ASD-A2-5523-□	ECMA-F△1855□3	1.3 (AWG16)	3.3 (AWG12)	13.3 (AWG6)	3.3 (AWG12)
ASD-A2-7523-□	ECMA-F△1875□3	1.3 (AWG16)	5.3 (AWG10)	13.3 (AWG6)	3.3 (AWG12)
ASD-A2-1B23-□	ECMA-F1221B□3	1.3 (AWG16)	8.4 (AWG8)	13.3 (AWG6)	8.4 (AWG8)
ASD-A2-1F23-□	ECMA-F1221F□S	1.3 (AWG16)	13.3 (AWG6)	21.2 (AWG4)	13.3 (AWG6)

3-12 Revision September 2012

Encoder Cable

	Encoder Cable - Wire Gauge AWG (mm²)			1 ²)
Servo Drive	Wire Size	Core Number	UL Rating	Standard Wire Length
ASD-A2-0121-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-0221-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-0421-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-0721-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-1021-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-1521-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-2023-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-3023-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-4523-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-5523-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-7523-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-1B23-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)
ASD-A2-1F23-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)


NOTE

- 1) Please use shielded twisted-pair cables for wiring to prevent voltage coupling and eliminate electrical noise and interference.
- 2) The shield of shielded twisted-pair cables should be connected to the SHIELD end (terminal marked \oplus) of the servo drive.
- 3) In order to prevent fire hazard and accidents, please form the wiring by following the cable specifications outlined above.
- 4) The boxes (□) at the ends of the servo drive model names represent the model type of ASDA-A2 series. For the actual model name, please refer to the ordering information of the actual purchased product.
- 5) The boxes (\triangle) in the servo motor model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the servo motor model names are for optional configurations. (keyway, brake and oil sea).

3.2 Connections - 400V series

3.2.1 Connecting to Peripheral Devices

Figure 3.4 Configuration

3-14 Revision September 2012

3.2.2 Servo Drive Connectors and Terminals

Terminal Identification	Terminal Description		Notes		
DC24V, DC0V	Control circuit terminal	Used to connect DC control circuit power depending on connecting servo drive model.			
R, S, T	Main circuit terminal	Used to connect three-phase AC main circuit power depending on connecting servo drive model.			
		Used to connect s	servo motor		
		Terminal Symbol	Wire Color	De	escription
11 3/ 34/	_	U	Red	Connec	ting to three-
U, V, W	Servo motor output	V	White	phase r	notor main
FG ([⊕])	Сигрис	W	Black	circuit cable.	
		_		Connec	ting to
		FG(⊕)	Green		terminal (🕀) servo drive.
		Internal resistor	Ensure the between Pecircuit is op	and D,	
		External resistor	Connect reg P⊕ and C, a circuit betw	ind ensu	
, 5, 0,	Regenerative resistor terminal or braking unit	Connect P+ and - of braking unit to P+ and - of servo drivand ensure an open circuit between P+ and D, and P+ arc. (N terminal is built in L1c, - and R, S, T.) P+ : Connecting to (+) terminal V_BUS voltage.			servo drive, circuit and P⊕ and ilt in L1C, L2C,
		(: Connecting to (-) terminal of V_BUS voltage.		
two places	Ground terminal	Used to connect gand servo motor.	grounding wire of power supply		
CN1	I/O connector (Option)	Used to connect e section 3.3 for de	to connect external controllers. Please refer to n 3.3 for details.		
		Used to connect encoder of servo motor. Please refer to section 3.4 for details.			
		Terminal Symbol	Wire Co	olor	Pin No.
	Encoder	T+	Blue		5
CN2	connector	T-	Blue/Bl	ack	4
	(Option)	Reserved	-		-
		Reserved	-		-
		+5V	Red & Red		14, 16
		GND	Black Black/W		13, 15

Terminal Identification	Terminal Description	Notes
CN3	Communication connector (Option)	Used for RS-485 or RS-232 communication connection. Please refer to section 3.6 for details.
CN4	USB connector (Type B) (Option)	Used to connect personal computer (PC or notebook). Please refer to section 3.7 for details.
CN5	Position feedback signal connector (for full-closed loop) (Option)	Used to connect to linear scale or encoder to constitute a full-closed loop. Please refer to section 3.8 for details.
CN6	CANopen communication port (Option)	RJ45 connector, used for CANopen communication. Please refer to section 3.9 for details.
CN7	Extension digital input terminal (Option)	Used to connect to extension digital inputs. Please refer to section 3.10 for details.
CN8	Reserved connector	Reserved
CN9	Communication extension connector (Option)	Used to connect to other extension cards (will be available soon).

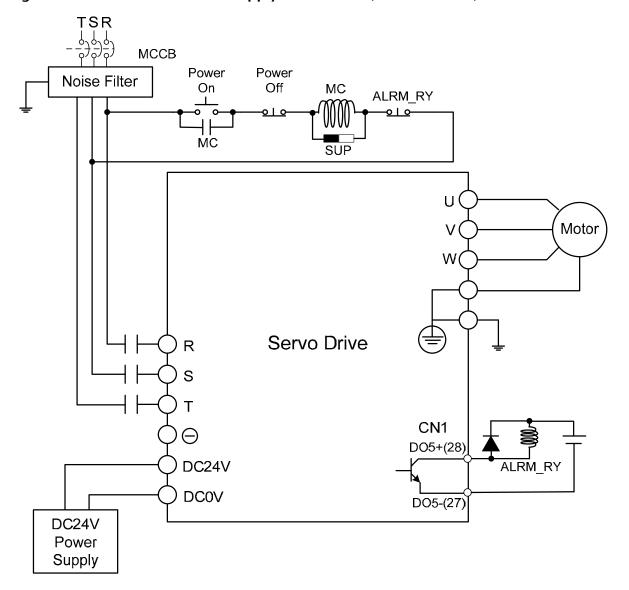
3-16 Revision September 2012

Wiring Notes

Please observe the following wiring notes while performing wiring and touching any electrical connections on the servo drive or servo motor.

- Ensure to check if the power supply and wiring of the "power" terminals (R, S, T, DC24V & DC0V) is correct.
- 2. Please use shielded twisted-pair cables for wiring to prevent voltage coupling and eliminate electrical noise and interference.
- 3. As a residual hazardous voltage may remain inside the drive, please do not immediately touch any of the "power" terminals (R, S, T, DC24V & DC0V) and/or the cables connected to them after the power has been turned off and the charge LED is lit. (Please refer to the Safety Precautions on page ii).
- 4. The cables connected to R, S, T and U, V, W terminals should be placed in separate conduits from the encoder or other signal cables. Separate them by at least 30cm (11.8 inches).
- 5. If the encoder cable (CN2) or the cable for position feedback signal connector (CN5) is too short, please use a twisted-shield signal wire with grounding conductor. The wire length should be 20m (65.62ft.) or less. For lengths greater than 20m (65.62ft.), the wire gauge should be doubled in order to lessen any signal attenuation. For the encoder cable specification, please use AWG26 wire size and the Metal braided shield twisted-pair cable which meets the UL2464 specification.
- 6. When using CANopen communication, please use the shielded twisted-pair cables to ensure the communication quality.
- 7. The shield of shielded twisted-pair cables should be connected to the SHIELD end (terminal marked (b)) of the servo drive.
- 8. For the connectors and cables specifications, please refer to section 3.1.6 for details.

3.2.3 Wiring Methods


For 400V series servo drives from 750W to 7.5kW the input power can be three-phase only. Single -phase connections are for 200V series servo drives 1.5kW and below only. In the wiring diagram figures 3.5:

Power ON: contact "a" (normally open)

Power OFF /ALRM_RY: contact "b" (normally closed)

MC: coil of electromagnetic contactor, self-holding power, contact of main circuit power

Figure 3.5 Three-Phase Power Supply Connection (for all models)

3-18 Revision September 2012

3.2.4 Motor Power Cable Connector Specifications

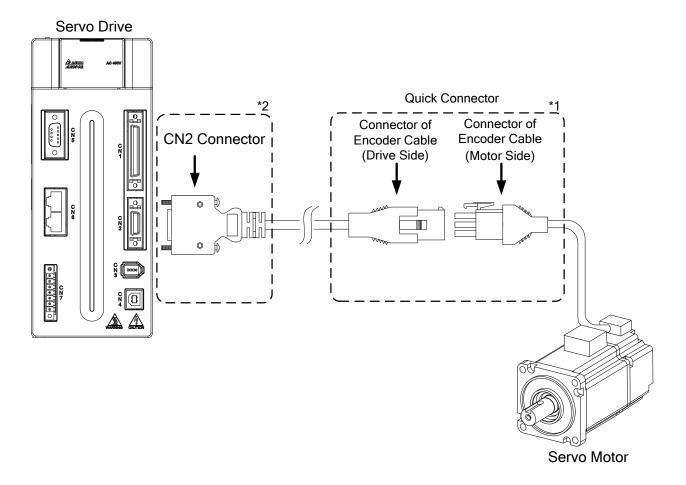
The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

Motor Model Name	U, V, W / Electromagnetic Brake Connector	Terminal Identification
ECMA-J10807□S (750W)	HOUSING: MOLEX (39-01-2041)	А
ECMA-J10807□S (750W) *□ : with brake	36 25 14	В
	HOUSING: MOLEX (39-01-2061)	
ECMA-K11310□S (1000W) ECMA-K11315□S (1500W) ECMA-K11320□S (2000W)	3106A-20-18S	С
ECMA-L△1830□S (3000W) ECMA-L11845□S (4500W) ECMA-L11855□3 (5500W) ECMA-L11875□3 (7500W)	3106A-24-11S	D

Motor Model Name	U, V, W / Electromagnetic Brake Connector	Terminal Identification
ECMA-L1221B□3(11kW) ECMA-L1221F□S (15kW)	32 - 17 D A	E

Terminal Identification	U (Red)	V (White)	W (Black)	CASE GROUND (Green)	BRAKE1 (Yellow)	BRAKE2 (Blue)
Α	1	2	3	4	-	-
В	1	2	4	5	3	6
С	F	I	В	E	G	Н
D	D	Е	F	G	Α	В
E	Α	В	С	D	-	-

Terminal Identification	BRAKE1	BRAKE2
F	Α	В

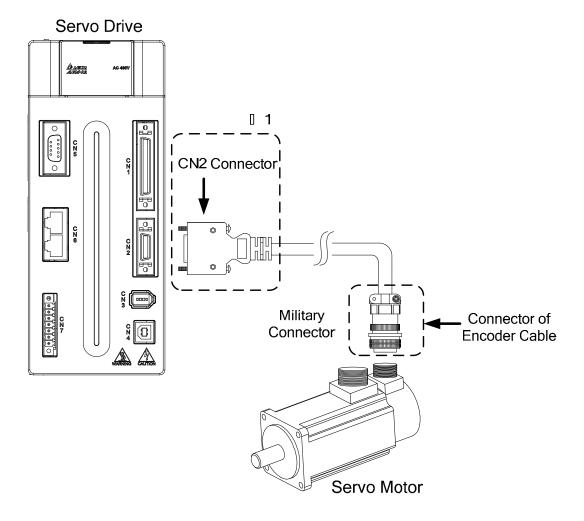


- 1) The coil of brake has no polarity. The names of terminal identification are BRAKE1 (Yellow) and BRAKE2 (Blue).
- 2) The power supply for brake is DC24V. Never use it for VDD, the +24V source voltage.

3-20 Revision September 2012

3.2.5 Encoder Connector Specifications

Encoder Cable Connection (Diagram 1)


The scale of the objects does not match the dimensions as shown in the drawing above. For different models of AC servo drives and motors, the connection cables may differ.

- 1) Please refer to the descriptions of "Terminal Identification of Encoder Connector" on page 3-9.
- 2) Please refer to section 3.4 for the descriptions of "Encoder Connector CN2".

The boxes (\Box) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

Motor Model Name	Encoder Connector	
ECMA-J10807□S (750W)	963 852 View from this side this side this side this side 147 HOUSING! AMP (1-172161-9)	

Encoder Cable Connection (Diagram 2)

The scale of the objects does not match the dimensions as shown in the drawing above. For different models of AC servo drives and motors, the connection cables may differ.

1) Please refer to section 3.4 for the descriptions of "Encoder Connector CN2".

3-22 Revision September 2012

The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

Motor Model Name	Encoder Co	nnecto	r	
ECMA-K11310□S (1000W)	View from this side	Pin No.	Terminal Identification	Color
ECMA-K11315□S (1500W)		Α	T+	Blue
ECMA-K11320□S (2000W) ECMA-L△1830□S (3000W)		В	Т-	Blue& Black
ECMA-L11845□S (4500W) ECMA-L11855□3 (5500W)	B A MO	S	DC+5V	Red/Red &White
ECMA-L11875□3 (7500W) ECMA-L1221B□3 (11KW)	E S O	R	GND	Black/ Black& White
ECMA-L1221B□3 (15KW)	3106A-20-29S Military Connector	L	BRAID SHIELD	_

Please note:

- 1. The shield of shielded twisted-pair cables should be connected to the SHIELD end (terminal marked $\stackrel{\frown}{=}$) of the servo drive.
- 2. For the connectors and cables specifications, please refer to section 3.1.6 for details.

3.2.6 Cable Specifications for Servo Drive

Power Cable

Samua Driva a	and Sarva Matar	Power Cable - Wire Gauge AWG (mm²)						
Servo Drive a	ınd Servo Motor	DC24V, DC0V	R, S, T	U, V, W	P⊕, C			
ASD-A2-0743-□	ECMA-J10807□S	1.3 (AWG16)	2.1 (AWG14)	0.82 (AWG18)	2.1 (AWG14)			
ASD-A2-1043-□	ECMA-K11310□S	1.3 (AWG16)	2.1 (AWG14)	1.3 (AWG16)	2.1 (AWG14)			
ASD-A2-1543-□	ECMA-K11315□S	1.3 (AWG16)	2.1 (AWG14)	1.3 (AWG16)	2.1 (AWG14)			
ASD-A2-2043-□	ECMA-K11320□S	1.3 (AWG16)	2.1 (AWG14)	2.1 (AWG14)	2.1 (AWG14)			
ASD-A2-3043-□	ECMA-L△1830□S	1.3 (AWG16)	2.1 (AWG14)	3.3 (AWG12)	2.1 (AWG14)			
ASD-A2-4543-□	ECMA-L11845□S	1.3 (AWG16)	3.3 (AWG12)	8.4 (AWG8)	3.3 (AWG12)			
ASD-A2-5543-□	ECMA-L11855□3	1.3 (AWG16)	3.3 (AWG12)	13.3 (AWG6)	3.3 (AWG12)			
ASD-A2-7543-□	ECMA-L11875□3	1.3 (AWG16)	5.3 (AWG10)	13.3 (AWG6)	3.3 (AWG12)			
ASD-A2-1B43-□	ECMA-L1221B□3	1.3 (AWG16)	5.3 (AWG10)	13.3 (AWG6)	10.5 (AWG7)			
ASD-A2-1F43-□	ECMA-L1221F□S	1.3 (AWG16)	6.6 (AWG9)	13.3 (AWG6)	10.5 (AWG7)			

Encoder Cable

	Encoder Cable - Wire Gauge AWG (mm²)								
Servo Drive	Wire Size	Core Number	UL Rating	Standard Wire Length					
ASD-A2-0743-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-1043-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-1543-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-2043-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-3043-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-4543-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-5543-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-7543-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-1B43-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					
ASD-A2-1F43-□	0.13 (AWG26)	10 core (4 pair)	UL2464	3m (9.84ft.)					

NOTE

- 1) Please use shielded twisted-pair cables for wiring to prevent voltage coupling and eliminate electrical noise and interference.
- 2) The shield of shielded twisted-pair cables should be connected to the SHIELD end (terminal marked (**)) of the servo drive.
- 3) In order to prevent fire hazard and accidents, please form the wiring by following the cable specifications outlined above.
- 4) The boxes (□) at the ends of the servo drive model names represent the model type of ASDA-A2 series. For the actual model name, please refer to the ordering information of the actual purchased product.
- 5) The boxes (\triangle) in the servo motor model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the servo motor model names are for optional configurations. (keyway, brake and oil sea).

3-24 Revision September 2012

3.3 Basic Wiring

3.3.1 **220V series**

Figure 3.6 Basic Wiring Schematic of 400W and below models (Without built-in regenerative resistor)

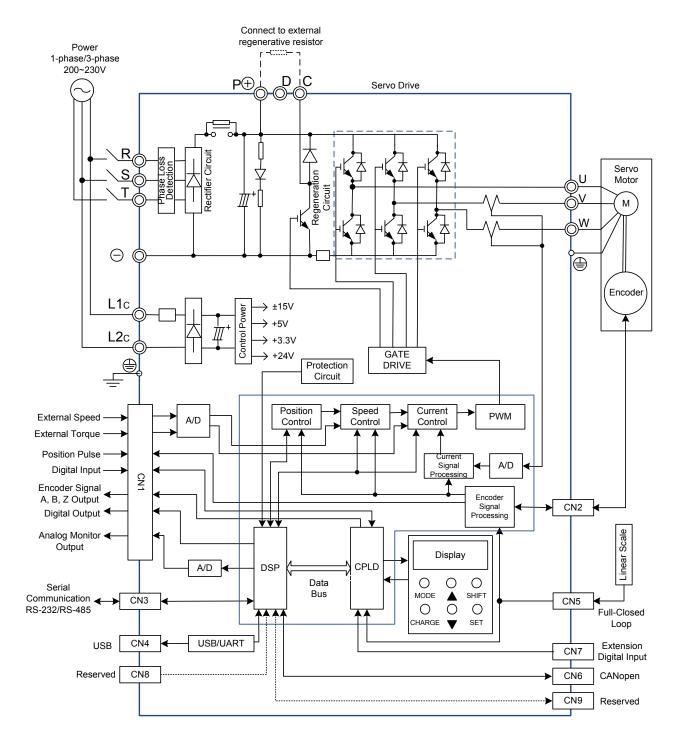
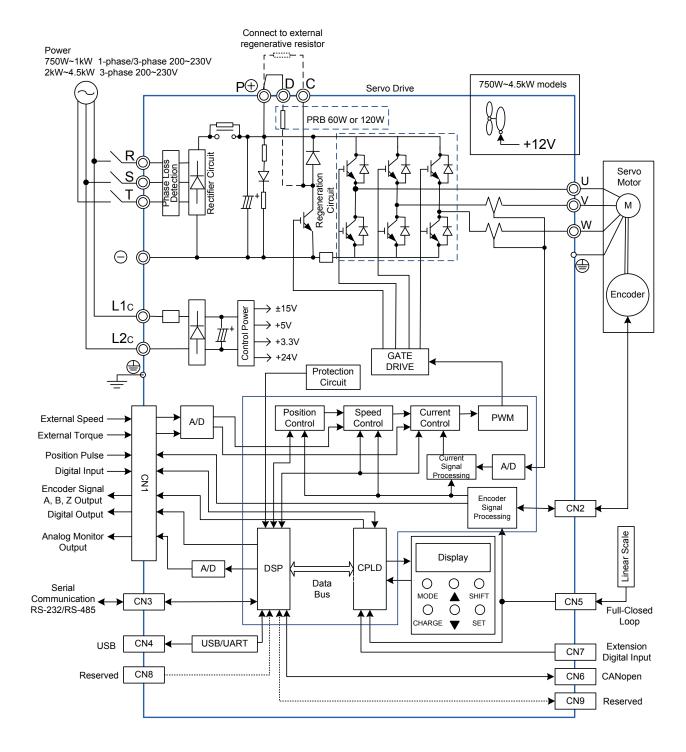
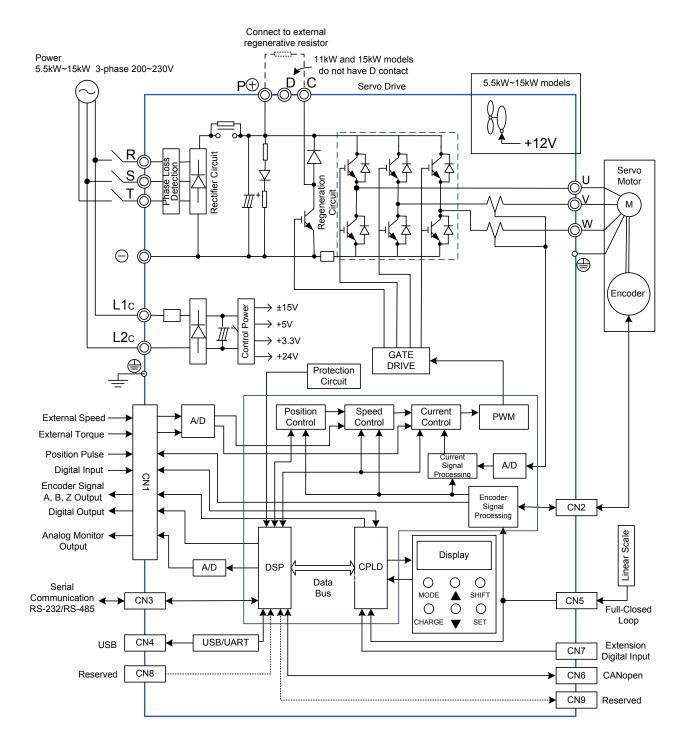




Figure 3.7 Basic Wiring Schematic of 750W to 4.5kW models (With built-in regenerative resistor and fan)

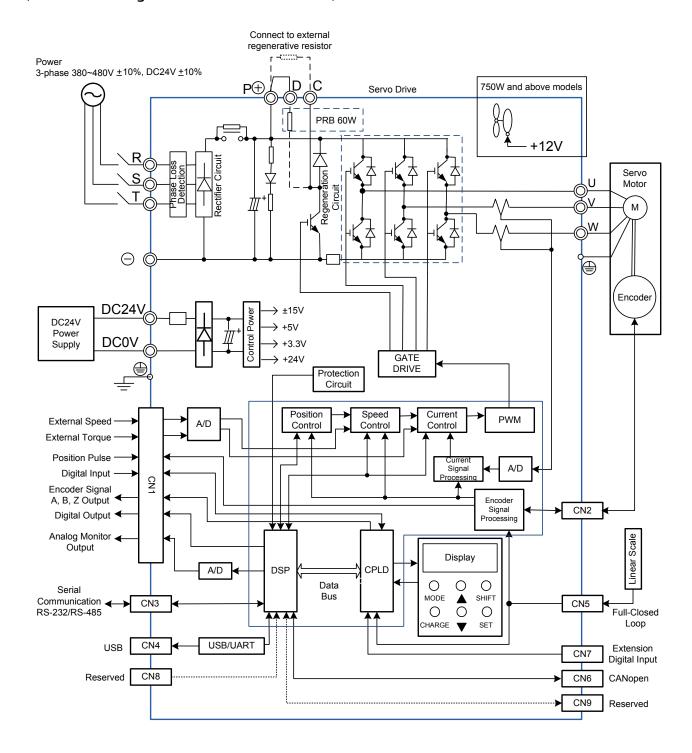

3-26 Revision September 2012

Figure 3.8 Basic Wiring Schematic of 5.5kW to 15kW models (With built-in fan but no regenerative resistor)

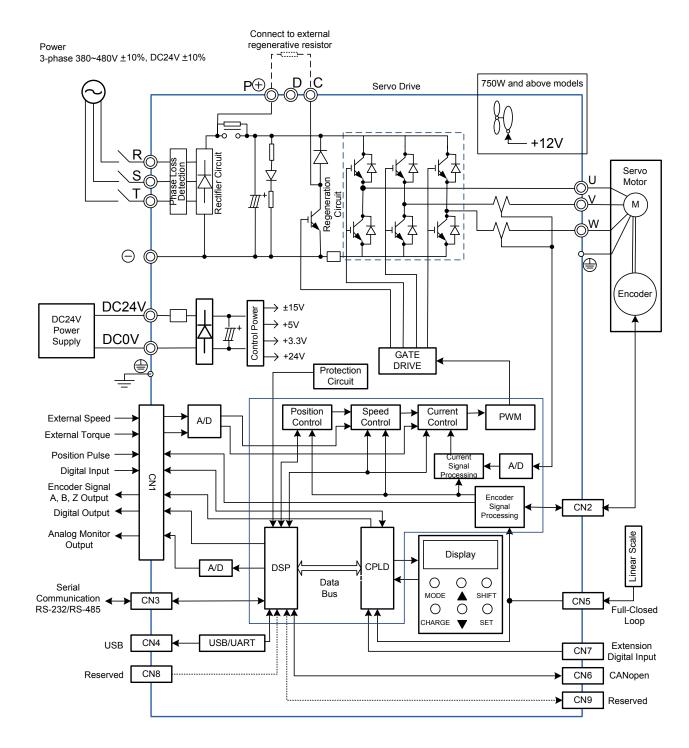

3.3.2 400V series

Figure 3.9 Basic Wiring Schematic of 750W to 1.5kW models (With built-in regenerative resistor and fan)

3-28 Revision September 2012

Figure 3.10 Basic Wiring Schematic of 2kW to 15kW models (With built-in fan but no regenerative resistor)

3.4 Input / Output Interface Connector -CN1

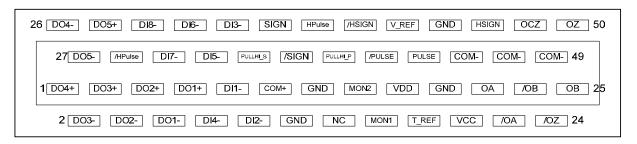
The CN1 Interface Connector provides access to three signal groups:

- i General interface for the analog speed and torque control, encoder reference signal from the motor, pulse / direction inputs, and reference voltages.
- ii 8 programmable Digital Inputs (DI), can be set via parameters P2-10 ~ P2-17
- iii 5 programmable Digital Outputs (DO), can be set via parameters P2-18 ~ P2-22

A detailed explanation of each group is available in Section 3.3.2, Tables 3.A, 3.B & 3.C.

3.4.1 CN1 Terminal Identification

Figure 3.11 The Layout of CN1 Drive Connector



Side View

Rear View

Layout of CN1

3-30 Revision September 2012

CN1 Terminal Signal Identification

			1	DO4+	Digital output				26	DO4-	Digital output
2	DO3-	Digital output				27	DO5-	Digital output			
			3	DO3+	Digital output				28	DO5+	Digital output
4	DO2-	Digital output				29	/HPULSE	High-speed			
			5	DO2+	Digital output			position pulse (-)	30	DI8-	Digital input
6	DO1-	Digital output				31	DI7-	Digital input			
			7	DO1+	Digital output				32	DI6-	Digital input
8	DI4-	Digital input				33	DI5-	Digital input			
			9	DI1-	Digital input				34	DI3-	Digital input
10	DI2-	Digital input				35	PULL	Pulse applied			
			11	COM+	Power input (12~24V)		HI_S (SIGN)	power (SIGN)	36	SIGN	Position sign (+)
12	GND	Analog input signal ground				37	/SIGN	Position sign (-)			
		signal ground	13	GND	Analog input				38	HPULSE	High-speed
14	NC	No Connection			signal ground	39	PULL HI_P	Pulse applied Power			position pulse (+)
			15	MON2	Analog		(PULSE)	(PULSE)	40	/HSIGN	High-speed
16	MON1	Analog monitor			monitor output 2	41	/PULSE	Pulse input (-)			position sign (-)
		output 1	17	VDD	+24V power				42	V_REF	Analog speed
18	T_REF	Analog torque			output (for external I/O)	43	PULSE	Pulse input (+)			input (+)
		Input	19	GND	Analog input				44	GND	Analog input
20	VCC	+12V power output			signal ground	45	COM-	VDD(24V) power			signal ground
		(for analog command)	21	OA	Encoder A pulse			ground	46	HSIGN	High-speed position sign
22	/OA	Encoder			output	47	COM-	VDD(24V)			(+)
		/A pulse output	23	/OB	Encoder /B pulse			power ground	48	OCZ	Encoder Z pulse open-
24	/OZ	Encoder /Z			output	49	COM-	VDD(24V)			collector output
		pulse output	25	ОВ	Encoder B pulse			power ground	50	OZ	Encoder Z pulse line-
					output						driver output

NOTE

1) The terminal marked "NC" must be left unconnected (No Connection). The NC terminal is used within the servo drive. Any outside connection to the NC terminal will result in damage to the drive and void the warranty!

3.4.2 Signals Explanation of Connector CN1

The Tables 3.A, 3.B, & 3.C detail the three groups of signals of the CN1 interface. Table 3.A details the general signals. Table 3.B details the Digital Output (DO) signals and Table 3.C details the Digital Input (DI) signals. The General Signals are set by the factory and can not be changed, reprogrammed or adjusted. Both the Digital Input and Digital Output signals can be programmed by the users.

Table 3.A General Signals

S	ignal	Pin No	Details	Wiring Diagram (Refer to 3.4.4)
Analog Signal Input	V_REF	42	 Motor speed command: -10V to +10V, corresponds to -3000 ~ +3000 r/min speed command (Factory default setting). Motor speed command: -10V to +10V, corresponds to -3 ~ +3 rotations position command (Factory default setting). 	C1
	T_REF	18	Motor torque command: -10V to +10V, corresponds to -100% to +100% rated torque command.	C1
Analog Monitor Output	MON1 MON2	16 15	Monitor operation status: Motor characteristics such as speed and current can be represented by analog voltages. The drive provides two channels which can be configured with the parameter P0-03 to output the desired characteristics. Please reference the parameter P0-03 for monitoring commands and P1-04 / P1-05 for scaling factors. Output voltage is reference to the power ground.	C2
Position Pulse Input	PULSE /PULSE SIGN /SIGN	43 41 36 37	The drive can accept two different types of pulse inputs: Line-driver input (max. input frequency is 500Kpps) and Open-collector input (max. input frequency is 200Kpps). Three different pulse commands can be selected via parameter P1-00. They are A phase + B phase (Quadrature), CW pulse + CCW pulse, and Pulse + Direction.	C3/C4
	PULL HI_P PULL HI_S	39 35	When an Open-collector type of pulse is used, this terminal must be connected to a pull-up power supply.	C3/C4
High- speed Position Pulse Input	HPULSE /HPULSE HSIGN /HSIGN	38 29 46 40	The drive can accept two different types of high-speed pulse inputs: +5V input and Line-driver input. The max. input frequency is 4MHz. Three different pulse commands can be selected via parameter P1-00. They are A phase + B phase (Quadrature), CW pulse + CCW pulse, and Pulse + Direction.	C4-2

3-32 Revision September 2012

Si	gnal	Pin No	Details	Wiring Diagram (Refer to 3.4.4)
	OA /OA	21 22		
Position Pulse	OB /OB	25 23	Encoder signal output A, B, Z (Line-driver output). The motor encoder signals are available through these terminals.	C13/C14
Output	OZ /OZ	50 24		
	OCZ	48	Encoder signal output Z (Open-collector output).	-
	VDD	17	VDD is the +24V source voltage provided by the drive. Maximum permissible current 500mA.	
Power	COM+ COM-	11 45 47 49	COM+ is the common voltage rail of the Digital Input (DI) and Digital Output (DO) signals. When using VDD, VDD should be connected to COM+. If not using VDD, the users should add an external applied power (+12V to +24V). The positive end of this applied power should be connected to COM+ and the negative end of this applied power should be connected to COM	-
	VCC	20	VCC is a +12V power rail provided by the drive. It is used for providing simple analog command (analog speed or analog torque command). Maximum permissible current 100mA.	
	GND	12,13, 19,44	The polarity of VCC is with respect to Ground (GND).	
Other	NC	14	See previous note for NC terminal description of CN1 connector on page 3-13.	

The Digital Input (DI) and Digital Output (DO) have factory default settings which correspond to the various servo drive control modes. (See section 6.1). However, both the DI's and DO's can be programmed independently to meet the requirements of the users.

Detailed in Tables 3.B and 3.C are the DO and DI functions with their corresponding signal name and wiring schematic. The factory default settings of the DI and DO signals are detailed in Table 3.G and 3.H.

All of the DI's and DO's and their corresponding pin numbers are factory set and non-changeable, however, all of the assigned signals and control modes are user changeable. For Example, the factory default setting of DO5 (pins 28/27) can be assigned to DO1 (pins 7/6) and vise versa.

The following Tables 3.B and 3.C detail the functions, applicable operational modes, signal name and relevant wiring schematic of the default DI and DO signals.

Table 3.B DO Signals

DO Signal	Assigned Control Mode		No. ault)	Details	Wiring Diagram (Refer to 3.4.4)
SRDY	ALL	7	6	SRDY is activated when the servo drive is ready to run. All fault and alarm conditions, if	(10000000000000000000000000000000000000
SON	Not assigned	-	-	present, have been cleared. SON is activated when control power is applied the servo drive. The drive may or may not be ready to run as a fault / alarm condition may exist. Servo ON (SON) is "ON" with control power applied to the servo drive, there may be a fault condition or not. The servo is not ready to run. Servo ready (SRDY) is "ON" where the servo is ready to run, NO fault / alarm exists.	
ZSPD	ALL	5	4	ZSPD is activated when the drive senses the motor is equal to or below the Zero Speed Range setting as defined in parameter P1-38. For Example, at factory default ZSPD will be activated when the drive detects the motor rotating at speed at or below 10 r/min, ZSPD will remain activated until the motor speed increases above 10 r/min.	
TSPD	ALL (except PT, PR)	-	-	TSPD is activated once the drive has detected the motor has reached the Target Rotation Speed setting as defined in parameter P1-39. TSPD will remain activated until the motor speed drops below the Target Rotation Speed.	C5/C6/C7/C8
TPOS	PT, PR, PT-S, PT-T, PR-S, PR-T	1	26	 When the drive is in PT mode, TPOS will be activated when the position error is equal and below the setting value of P1-54. When the drive is in PR mode, TPOS will be activated when the drive detects that the position of the motor is in a -P1-54 to +P1-54 band of the current command position. For Example, at factory default TPOS will activate once the motor is in -99 pulses range of the current command position, then deactivate after it reaches +99 pulses range of the desired position. 	
TQL	Not assigned	-	-	TQL is activated when the drive has detected that the motor has reached the torques limits set by either the parameters P1-12 ~ P1-14 of via an external analog voltage.	
ALRM	ALL	28	27	ALRM is activated when the drive has detected a fault condition. (However, when Reverse limit error, Forward limit error, Emergency stop, Serial communication error, and Undervoltage these fault occur, WARN is activated first.)	

3-34 Revision September 2012

DO Signal	Assigned DO Signal Control		No. ault)	Details	Wiring Diagram
3	Mode	+	-		(Refer to 3.4.4)
BRKR	ALL	-	-	BRKR is activated actuation of motor brake.	
НОМЕ	ALL	3	2	HOME is activated when the servo drive has detected that the "HOME" sensor (ORGP, digital input 0x24) has been detected.	
OLW	ALL	-	-	OLW is activated when the servo drive has detected that the motor has reached the output overload level set by the parameter P1-56.	
WARN	ALL	-	-	Servo warning output. WARN is activated when the drive has detected Reverse limit error, Forward limit error, Emergency stop, Serial communication error, and Undervoltage these fault conditions.	
OVF	ALL	-	-	Position command overflow. OVF is activated when the servo drive has detected that a position command overflows.	
SNL (SCWL)	PR	-	-	Reverse software limit. SNL is activated when the servo drive has detected that reverse software limit is reached.	
SPL (SCCWL)	PR	-	-	Forward software limit. SPL is activated when the servo drive has detected that forward software limit is reached.	
Cmd_OK	PR	-	-	Internal position command completed output. Cmd_OK is activated when the servo drive has detected that the internal position command has been completed.	C5/C6/C7/C8
CAP_OK	PR	-	-	Capture operation completed output. CAP_OK is activated when the servo drive has detected that capture operation has been completed.	
MC_OK	PR	-	-	Motion control completed output. MC_OK is activated when CMD_OK and TPOS are both ON. It indicates MC_OK is activated only when the servo drive has detected that the position command has been given and the positioning has been completed also. If only CMD_OK or TPOS is ON, MC_OK will not be activated.	
CAM_AREA	PR	-	-	CAM_AREA is activated when the servo drive has detected the master position of E-CAM (electronic CAM) is within the setting area.	
S_CMP	S, Sz	-	-	S_CMP will be activated when the speed error is equal or below the setting value of P1-47.	
SDO_0	ALL	-	-	Output the status of bit00 of P4-06.	
SDO_1	ALL	-	-	Output the status of bit01 of P4-06.	
SDO_2	ALL	-	-	Output the status of bit02 of P4-06.	
SDO_3	ALL	-	-	Output the status of bit03 of P4-06.	

DO Signal	Assigned Control	Pin No. (Default) Details		Wiring Diagram	
	Mode	+	-		(Refer to 3.4.4)
SDO_4	ALL	-	-	Output the status of bit04 of P4-06.	
SDO_5	ALL	-	-	Output the status of bit05 of P4-06.	
SDO_6	ALL	-	-	Output the status of bit06 of P4-06.	
SDO_7	ALL	-	-	Output the status of bit07 of P4-06.	
SDO_8	ALL	-	-	Output the status of bit08 of P4-06.	
SDO_9	ALL	-	-	Output the status of bit09 of P4-06.	CE /CE /C7 /C9
SDO_A	ALL	-	-	Output the status of bit10 of P4-06.	C5/C6/C7/C8
SDO_B	ALL	-	-	Output the status of bit11 of P4-06.	
SDO_C	ALL	-	-	Output the status of bit12 of P4-06.	
SDO_D	ALL	-	-	Output the status of bit13 of P4-06.	
SDO_E	ALL	-	-	Output the status of bit14 of P4-06.	
SDO_F	ALL	-	-	Output the status of bit15 of P4-06.	

NOTE

- 1) PINS 3 & 2 can either be TSPD or HOME dependent upon control mode selected.
- 2) The DO signals that do not have pin numbers in Tables 3.B are not default DO signals. If the users want to use these non-default DO signals, the users need to change the settings of parameters P2-18 ~ P2-22. The "state" of the output function may be turned ON or OFF as it will be dependant on the settings of parameters P2-18 ~ P2-22. Please refer to section 3.3.3 for details.

3-36 Revision September 2012

Table 3.C DI Signals

DI Signal	Assigned Control Mode	Pin No. (Default)	Details	Wiring Diagram (Refer to 3.4.4)
SON	ALL	9	Servo On. Switch servo to "Servo Ready".	
ARST	ALL	33	A number of Faults (Alarms) can be cleared by activating ARST. Please see table 10-3 for applicable faults that can be cleared with the ARST command. However, please investigate Fault or Alarm if it does not clear or the fault description warrants closer inspection of the drive system.	
GAINUP	ALL	-	Gain switching	
CCLR	PT, PR	10	When CCLR is activated, the setting parameter P2-50 Pulse Clear Mode is executed.	
ZCLAMP	ALL	-	When this signal is On and the motor speed value is lower than the setting value of P1-38, it is used to lock the motor in the instant position while ZCLAMP is On.	
CMDINV	PR, T, S	-	When this signal is On, the motor is in reverse rotation.	
CTRG	PR, PR-S, PR-T	10	When the drive is in PR mode and CTRG is activated, the drive will command the motor to move the stored position which correspond the POS 0 ~ POS 5 settings. Activation is triggered on the rising edge of the pulse.	C9/C10/C11 /C12
TRQLM	S, Sz	10	ON indicates the torque limit command is valid.	
SPDLM	T, Tz	10	ON indicates the speed limit command is valid.	
POS0		34		
POS1		8		
POS2	P, PR,	-	When the PR Control Mode is selected, the 64 stored positions are programmed via a	
POS3	PR-S, PR-T	-	combination of the POS 0 ~ POS 5 commands. See table 3.D.	
POS4		-		
POS5		-		
STOP	-	-	Motor stop.	
SPD0	S, Sz,	34	Select the source of speed command:	
SPD1	PT-S, PR-S, S-T	8	See table 3.E.	

DI Signal	Assigned Control Mode	Pin No. (Default)	Details	Wiring Diagram (Refer to 3.4.4)
ТСМ0	PT, T, Tz, PT-T,	34	Select the source of torque command:	
TCM1	PR-T, S-T	8	See table 3.F.	
S-P	PT-S, PR-S	31	Speed / Position mode switching OFF: Speed, ON: Position	
S-T	S-T	31	Speed / Torque mode switching OFF: Speed, ON: Torque	
T-P	PT-T, PR-T	31	Torque / Position mode switching OFF: Torque, ON: Position	
PT-PR	PT, PR	-	Internal position (PR) and external pulse (PT) mode switching. OFF: PT, ON: PR	
PTAS	РТ	-	External command source selection: pulse and analog voltage switching. OFF: The command source is external pulse. ON: The command source is external analog voltage.	
PTCMS	РТ	-	External command source selection: high-speed / low-speed pulse switching OFF: The command source is low-speed pulse (PULSE, /PULSE, SIGN, /SIGN). ON: The command source is high-speed pulse (HPULSE, /HPULSE, HSIGN, /HSIGN). When high-speed pulse is selected, the users can add an external manual pulse generator and use this DI signal to switch the command source.	C9/C10/C11 /C12
EMGS	ALL	30	It should be contact "b" and normally ON or a fault (AL013) will display.	
NL(CWL)	PT, PR, S, T, Sz, Tz	32	Reverse inhibit limit. It should be contact "b" and normally ON or a fault (AL014) will display.	
PL(CCWL)	PT, PR, S, T, Sz, Tz	31	Forward inhibit limit. It should be contact "b" and normally ON or a fault (AL015) will display.	
ORGP	PR	-	When ORGP is activated, the drive will command the motor to start to search the reference "Home" sensor.	
SHOM	PR	-	When SHOM is activated, the drive will command the motor to move to "Home".	
CAM	PR	-	Electronic cam engaging control. [see P5-88]	
JOGU	ALL	-	Forward JOG input. When JOGU is activated, the motor will JOG in forward direction. [see P4-05]	

3-38 Revision September 2012

DI Signal	Assigned Control Mode	Pin No. (Default)	Details	Wiring Diagram (Refer to 3.4.4)
JOGD	ALL	-	Reverse JOG input. When JOGD is activated, the motor will JOG in reverse direction. [see P4-05]	
EV1	PR	-	Event trigger command 1.	
EV2	PR	-	Event trigger command 2.	
EV3	PR	-	Event trigger command 3. (available for ASDA-A2 firmware version V1.008 sub04 or later)	
EV4	PR	-	Event trigger command 4. (available for ASDA-A2 firmware version V1.008 sub04 or later)	C9/C10/C11 /C12
GNUM0	PT, PR, PT-S, PR-S	-	Electronic gear ratio (Numerator) selection 0. [See P2-60~P2-62]	
GNUM1	PT, PR, PT-S, PR-S	-	Electronic gear ratio (Numerator) selection 1. [See P2-60~P2-62]	
INHP	PT, PT-S	-	Pulse inhibit input. When the drive is in position mode, if INHP is activated, the external pulse input command is not valid.	

NOTE

1) The DI signals that do not have pin numbers in Tables 3.C are not default DI signals. If the users want to use these non-default DI signals, the users need to change the settings of parameters P2-10 ~ P2-17. The "state" of the output function may be turned ON or OFF as it will be dependant on the settings of parameters P2-10 ~ P2-17. Please refer to section 3.3.3 for details.

Table 3.D Source of Position Command

Position Command	POS5	POS4	POS3	POS2	POS1	POS0	CTRG	Parameters
P1	ON	ON	ON	ON	ON	ON	†	P6-00
PI	ON	ON	ON	ON	UN	UN		P6-01
P2	ON	ON	ON	ON	ON	OFF	†	P6-02
PZ	ON	ON	UN	ON	UN	OFF		P6-03
~								~
DEO	OFF	OFF	ON	ON	OFF	ON	†	P6-98
P50	OFF	OFF	UN	ON	OFF	UN		P6-99
DE 1	OFF	OFF	ON	ON	OFF	OFF	†	P7-00
P51	OFF	OFF	ON	ON	OFF	OFF		P7-01
~								~
D6.4	OFF	OFF	OFF	OFF	OFF	OFF	†	P7-26
P64	OFF	OFF	OFF	OFF	OFF	OFF		P7-27

Table 3.E Source of Speed Command

SPD1	SPD0	Parameters
OFF	OFF	S mode: analog input Sz mode: 0
OFF	ON	P1-09
ON	OFF	P1-10
ON	ON	P1-11

Table 3.F Source of Torque Command

TCM1	ТСМ0	Parameters
OFF	OFF	T mode: analog input Tz mode: 0
OFF	ON	P1-12
ON	OFF	P1-13
ON	ON	P1-14

The default DI and DO signals in different control mode are listed in the following table 3.G and table 3.H. Although the content of the table 3.G and table 3.H do not provide more information than the table 3.B and table 3.C above, as each control mode is separated and listed in different row, it is easy for user to view and can avoid confusion. However, the Pin number of each signal can not be displayed in the table 3.G and table 3.H.

3-40 Revision September 2012

Table 3.G Default DI signals and Control modes

Signal	DI Code	Function	PT	PR	S	Т	Sz	Tz	PT-S	PT- T	PR-S	PR- T	S-T
SON	0x01	Servo On	DI1	DI1	DI1	DI1	DI1	DI1	DI1	DI1	DI1	DI1	DI1
ARST	0x02	Reset	DI5	DI5	DI5	DI5	DI5	DI5					
GAINUP	0x03	Gain switching											
CCLR	0x04	Pulse clear	DI2						DI2	DI2			
ZCLAMP	0x05	Low speed CLAMP											
CMDINV	0x06	Command input reverse control											
Reserved	0x07	Reserved											
CTRG	0x08	Command triggered		DI2							DI2	DI2	
TRQLM	0x09	Torque limit enabled			DI2		DI2						
SPDLM	0x10	Speed limit enabled				DI2		DI2					
POS0	0x11	Position command selection 0 (1~64)		DI3							DI3	DI3	
POS1	0x12	Position command selection 1 (1~64)		DI4							DI4	DI4	
POS2	0x13	Position command selection 2 (1~64)											
POS3	0x1A	Position command selection 3 (1~64)											
POS4	0×1B	Position command selection 4 (1~64)											
POS5	0x1C	Position command selection 5 (1~64)											
STOP	0x46	Motor stop											
SPD0	0x14	Speed command selection 0 (1~4)			DI3		DI3		DI3		DI5		DI3
SPD1	0x15	Speed command selection 1 (1~4)			DI4		DI4		DI4		DI6		DI4
ТСМ0	0x16	Torque command selection 0 (1~4)	DI3			DI3		DI3		DI3		DI5	DI5
TCM1	0x17	Torque command selection 1 (1~4)	DI4			DI4		DI4		DI4		DI6	DI6
S-P	0x18	Position / Speed mode switching (OFF: Speed, ON: Position)							DI7		DI7		
S-T	0x19	Speed / Torque mode switching (OFF: Speed, ON: Torque)											DI7
T-P	0×20	Torque / Position mode switching (OFF: Torque, ON: Position)								DI7		DI7	

Signal	DI Code	Function	PT	PR	S	Т	Sz	Tz	PT-S	PT- T	PR-S	PR- T	S-T
PT-PR	0x2B	Internal position (PR) and external pulse (PT) mode switching (OFF: PT, ON: PR)											
PTAS	0x2C	External command source selection: pulse and analog voltage switching (in PT mode only)											
PTCMS	0x2D	External command source selection: high- speed / low-speed pulse switching (in PT mode only)											
EMGS	0x21	Emergency stop	DI8	DI8	DI8	DI8	DI8	DI8	DI8	DI8	DI8	DI8	DI8
NL(CWL)	0x22	Reverse inhibit limit	DI6	DI6	DI6	DI6	DI6	DI6					
PL(CCWL)	0x23	Forward inhibit limit	DI7	DI7	DI7	DI7	DI7	DI7					
ORGP	0x24	Reference "Home" sensor											
SHOM	0x27	Move to "Home"											
CAM	0x36	Electronic cam engaging control											
JOGU	0x37	Forward JOG input											
JOGD	0x38	Reverse JOG input											
EV1	0x39	Event trigger command 1 [see P5-98, P5-99]											
EV2	0x3A	Event trigger command 2 [see P5-98, P5-99]											
EV3	0x3B	Event trigger command 1 (available for ASDA-A2 firmware version V1.008 sub04 or later)											
EV4	0x3C	Event trigger command 2 (available for ASDA-A2 firmware version V1.008 sub04 or later)											
GNUM0	0x43	Electronic gear ratio (Numerator) selection 0											
GNUM1	0x44	Electronic gear ratio (Numerator) selection 1											
INHP	0x45	Pulse inhibit input											

3-42 Revision September 2012

1) For Pin numbers of DI1~DI8 signals, please refer to section 3.3.1.

Table 3.H Default DO signals and Control modes

Signal	DO Code	Function	PT	PR	S	Т	Sz	Tz	PT-S	PT-T	PR-S	PR-T	S-T
SRDY	0x01	Servo ready	DO1	DO1	DO1	DO1	DO1	DO1	DO1	DO1	DO1	DO1	DO1
SON	0x02	Servo On											
ZSPD	0x03	At Zero speed	DO2	DO2	DO2	DO2	DO2	DO2	DO2	DO2	DO2	DO2	DO2
TSPD		At Speed reached			DO3	DO3	DO3	DO3	DO3	DO3	DO3	DO3	DO3
TPOS	0x05	At Positioning completed	DO4	DO4					DO4	DO4	DO4	DO4	DO4
TQL	0x06	At Torques limit											
ALRM	0x07	Servo alarm (Servo fault) activated	DO5	DO5	DO5	DO5	DO5	DO5	DO5	DO5	DO5	DO5	DO5
BRKR	0x08	Electromagnetic brake control			DO4	DO4	DO4	DO4					
НОМЕ	0x09	Homing completed	DO3	DO3									
OLW	0x10	Output overload warning											
WARN	0x11	Servo warning activated											
OVF	0x12	Position command overflow											
SNL (SCWL)	0x13	Reverse software limit											
SPL (SCCWL)	0x14	Forward software limit											
Cmd_OK	0x15	Internal position command completed output											
CAP_OK	0x16	Capture operation completed output											
MC_OK	0x17	Motion control completed output											
CAM_AREA	0x18	Master position of E- CAM (electronic CAM)											
SP_OK	0x19	Speed reached output											
SDO_0	0x30	Output the status of bit00 of P4-06.											
SDO_1	0x31	Output the status of bit01 of P4-06.											

Signal	DO Code	Function	PT	PR	S	Т	Sz	Tz	PT-S	PT-T	PR-S	PR-T	S-T
SDO_2	0x32	Output the status of bit02 of P4-06.											
SDO_3	0x33	Output the status of bit03 of P4-06.											
SDO_4	0x34	Output the status of bit04 of P4-06.											
SDO_5	0x35	Output the status of bit05 of P4-06.											
SDO_6	0x36	DILUG OI P4-06.											
SDO_7	0x37	Output the status of bit07 of P4-06.											
SDO_8	0x38	Output the status of bit08 of P4-06.											
SDO_9	0x39	Output the status of bit09 of P4-06.											
SDO_A	0x3A	Output the status of bit10 of P4-06.											
SDO_B	0x3B	DIT 1 OT P4-06.											
SDO_C	0x3C	Output the status of bit12 of P4-06.											
SDO_D	0x3D	Output the status of bit13 of P4-06.											
SDO_E	0x3E	Output the status of bit14 of P4-06.											
SDO_F	0x3F	Output the status of bit15 of P4-06.											

NOTE

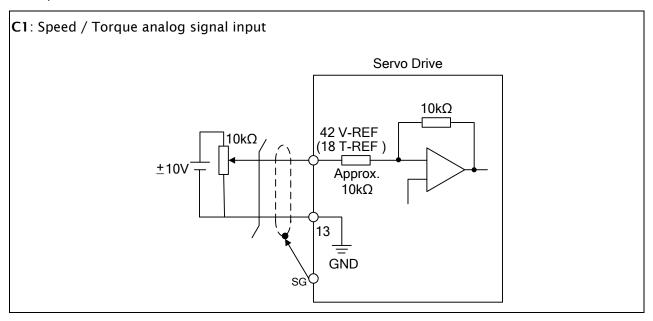
1) For Pin numbers of DO1~DO5 signals, please refer to section 3.3.1.

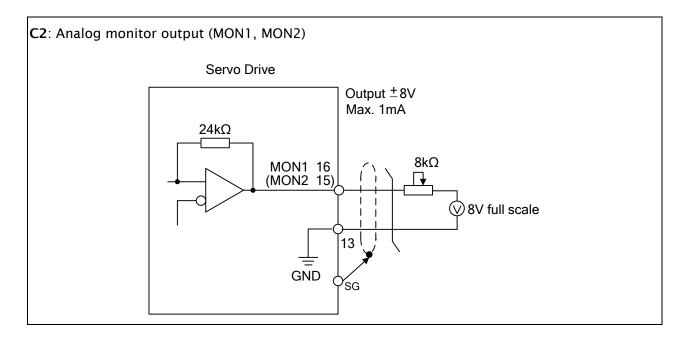
3-44 Revision September 2012

3.4.3 User-defined DI and DO signals

If the default DI and DO signals could not be able to fulfill users' requirements, there are still user-defined DI and DO signals. The setting method is easy and they are all defined via parameters. The user-defined DI and DO signals are defined via parameters P2-10 to P2-17 and P2-18 to P2-22.

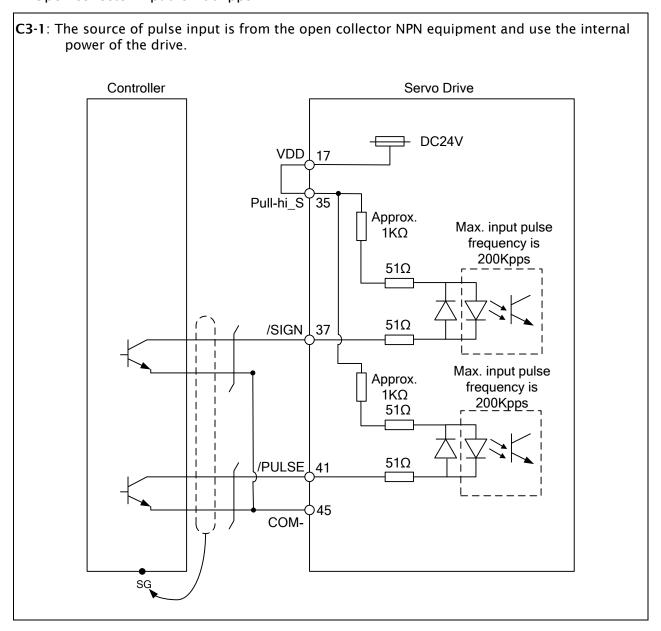
Please refer to the following Table 3.I for the settings.


Table 3.I User-defined DI and DO signals


Signal	Name	Pin No.	Parameters
	DI1-	Pin 9 of CN1	P2-10
	DI2-	Pin 10 of CN1	P2-11
	DI3-	Pin 34 of CN1	P2-12
	DI4-	Pin 8 of CN1	P2-13
Standard DI	DI5-	Pin 33 of CN1	P2-14
	DI6-	Pin 32 of CN1	P2-15
	DI7-	Pin 31 of CN1	P2-16
	DI8-	Pin 30 of CN1	P2-17
	EDI9	Pin 2 of CN7	P2-36
F	EDI10	Pin 3 of CN7	P2-37
Extension DI	EDI11	Pin 4 of CN7	P2-38
	EDI12	Pin 5 of CN7	P2-39
	EDI13	Pin 6 of CN7	P2-40
	EDI14	Pin 7 of CN7	P2-41

Signal	Name	Pin No.	Parameters				
	DO1+	Pin 7 of CN1					
	DO1-	Pin 6 of CN1	P2-18				
	DO2+	Pin 5 of CN1	P2-19				
	DO2-	DO2- Pin 4 of CN1					
	DO3+	Pin 3 of CN1	P2-20				
Standard DO	DO3-	Pin 2 of CN1	FZ-20				
	DO4+	Pin 1 of CN1	D2 21				
	DO4-	Pin 26 of CN1	P2-21				
	DO5+	Pin 28 of CN1	P2-22				
	DO5-	Pin 27 of CN1	FZ-ZZ				

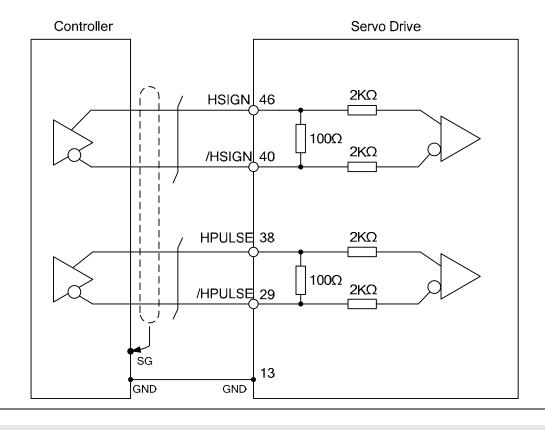
3.4.4 Wiring Diagrams of I/O Signals (CN1)


The valid voltage range of analog input command in speed and torque mode is -10V \sim +10V. The command value can be set via relevant parameters. The value of input impedance is $10k\Omega$.

3-46 Revision September 2012

There are two kinds of pulse inputs, Line driver input and Open-collector input. Max. input pulse frequency of Line-driver input is 500kpps and max. input pulse frequency of Open-collector input is 200kpps.

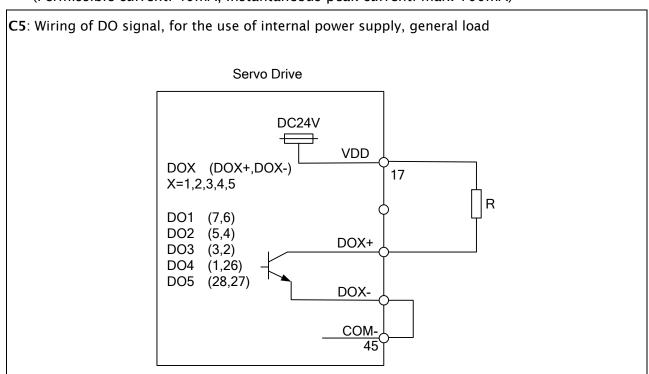
C3-2: The source of pulse input is from the open collector NPN equipment and use the external power. Controller Servo Drive Pull-hi_S | 35 Approx. Max. input pulse 1ΚΩ DC24V frequency is 200Kpps 51Ω 51Ω /SIGN ↓ 37 Max. input pulse Approx. frequency is 1ΚΩ 200Kpps 51Ω 51Ω /PULSE \ 41 45 COM-

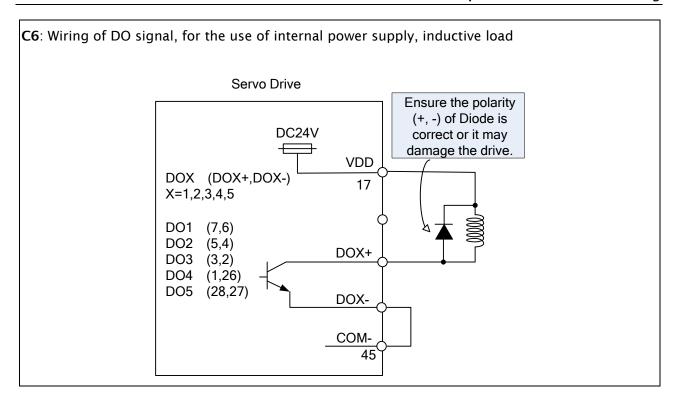


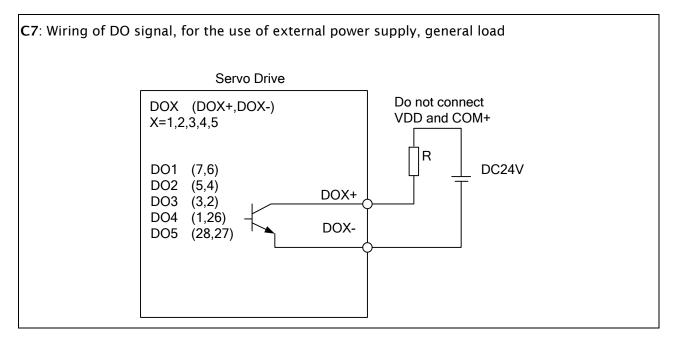
> Caution: Do not use dual power supply. Failure to observe this caution may result in damage to the servo drive and servo motor.

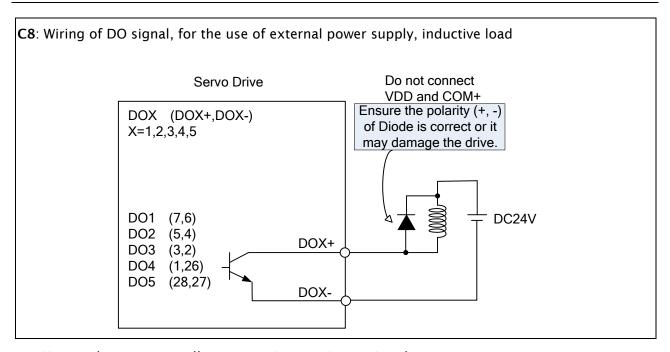
3-48 Revision September 2012

C4-2: High-speed pulse input (Line driver). It requires 5V power supply only. Never apply a 24V power supply.

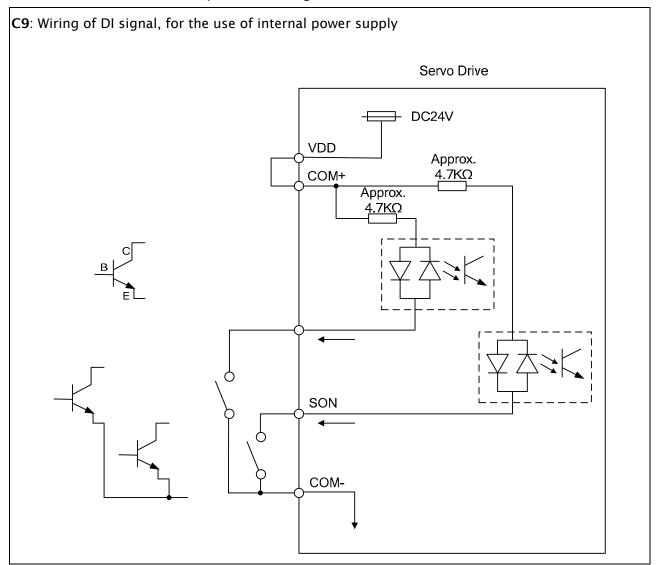


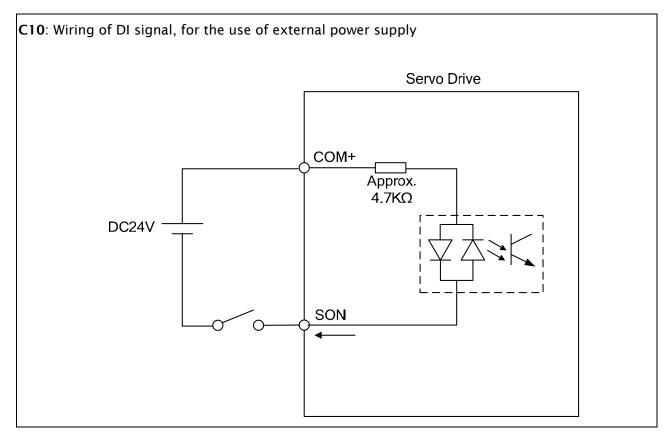

Caution: Ensure that the ground terminal of the controller and the servo drive should be connected to each other.


Be sure to connect a diode when the drive is applied to inductive load.

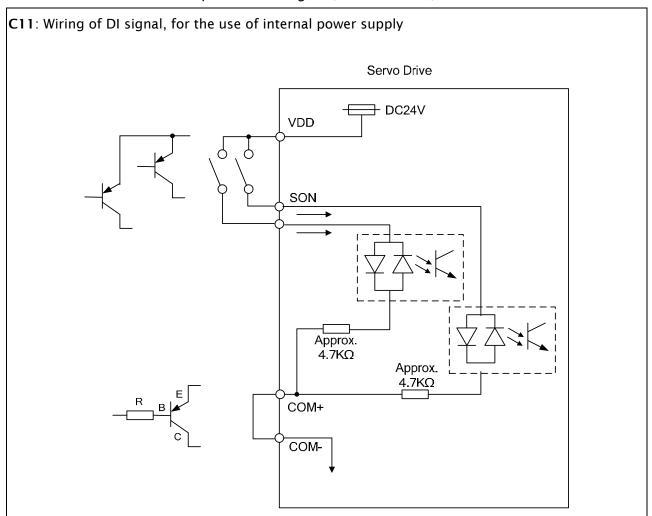

(Permissible current: 40mA, Instantaneous peak current: max. 100mA)

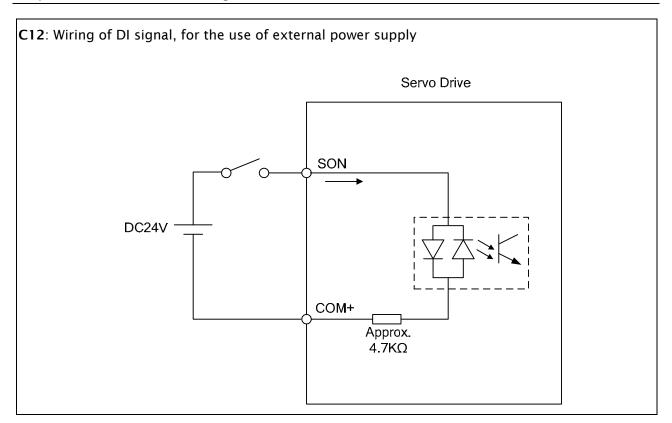
3-50



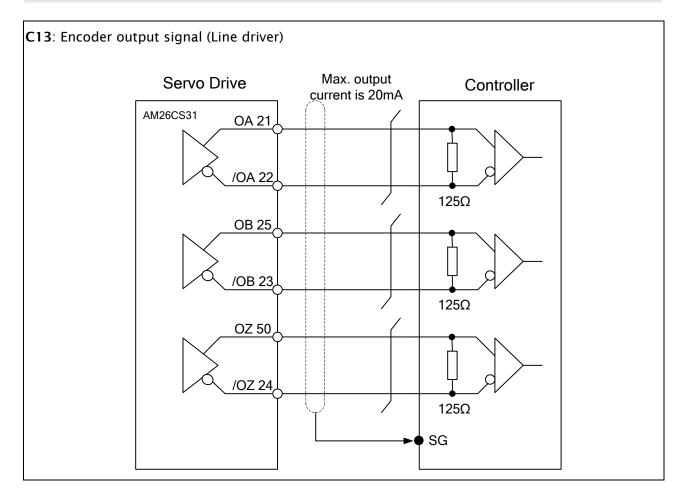


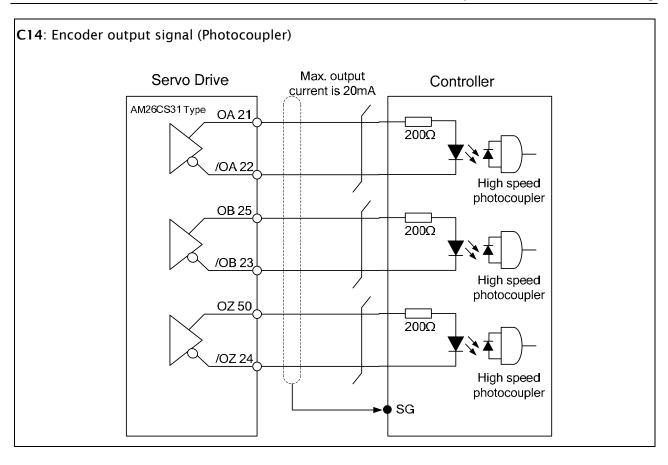
Use a relay or open-collector transistor to input signal.

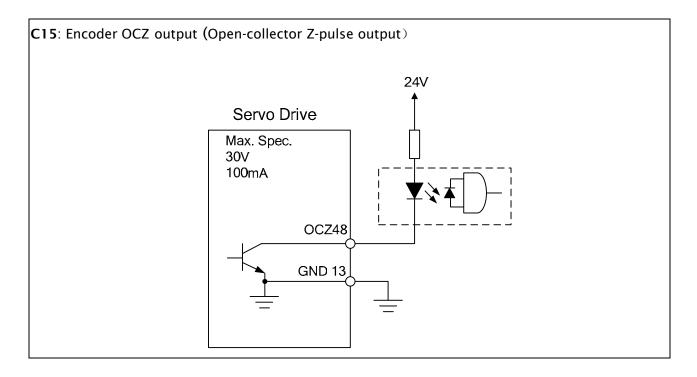

NPN transistor with multiple emitter fingers (SINK Mode)



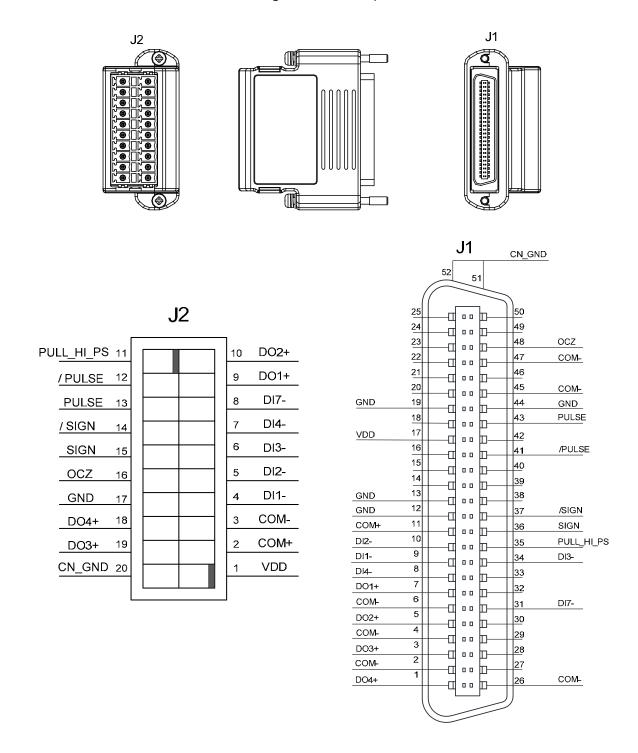
3-52 Revision September 2012


PNP transistor with multiple emitter fingers (SOURCE Mode)

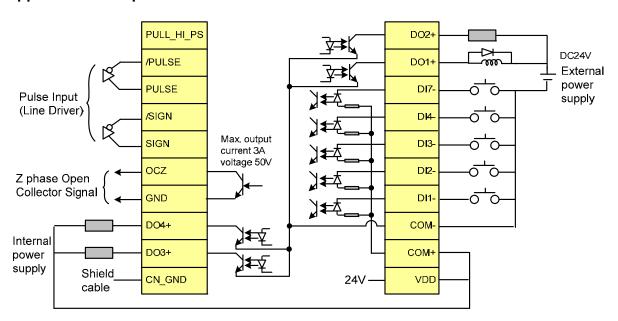


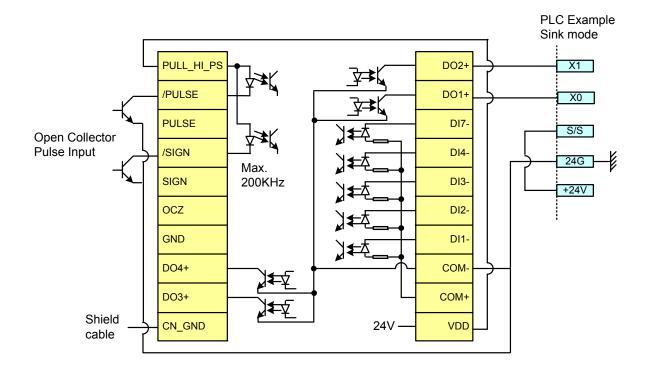


> Caution: Do not use dual power supply. Failure to observe this caution may result in damage to the servo drive and servo motor.

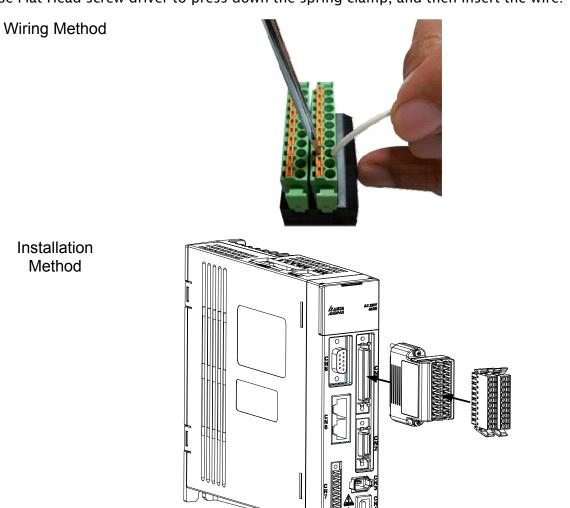

3-54 Revision September 2012

3.4.5 Application: Using CN1 Convenient Connector for Wiring


The CN1 convenient connector (ASD-IF-SC5020) is designed for quick and easy wiring, and especially suitable for the applications with limited DI/O requests. It's applicable to ASDA-A2, ASDA-A2R and similar series AC servo drives. Its spring clamp terminals are convenient for wiring because that users do not need to solder a wire to the connector and the spring can hold a wire tightly even due to vibration. There are 5 digital inputs, 4 digital outputs, pulse command inputs, and an open collector type Z phase output on the connector. Please refer to the following table for the pin definition of the connector.



3-56 Revision September 2012


	J2	J1				
PIN	Description	PIN	Description			
1	VDD	17	VDD			
2	COM+	11	COM+			
3	COM-	2,4,6,26,45,47	COM-			
4	DI1-	9	DI1-			
5	DI2-	10	DI2-			
6	DI3-	34	DI3-			
7	DI4-	8	DI4-			
8	DI7-	31	DI7-			
9	DO1+	7	DO1+			
10	DO2+	5	DO2+			
11	PULL_HI_PS	35	PULL_HI_PS			
12	/PULSE	41	/PULSE			
13	PULSE	43	PULSE			
14	/SIGN	37	/SIGN			
15	SIGN	36	SIGN			
16	OCZ	48	OCZ			
17	GND	12,13,19,44	GND			
18	DO4+	1	DO4+			
19	DO3+	3	DO3+			
20	CN_GND	51,52	CN_GND			

Application Example

Use Flat-Head screw driver to press down the spring clamp, and then insert the wire.

3.5 Encoder Connector CN2

Feedback to the amplifier of the UVW signals for commutation is via the ABZ encoder signal wires. Following rotor position sensing the amplifier automatically switches to encoding for commutation control.

The 20-bit encoder is automatically multiplied to 1280000ppr for increased control accuracy.

Figure 3.12 The layout of CN2 Drive Connector

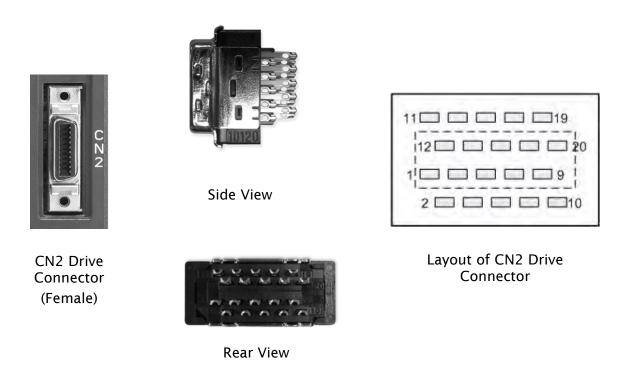
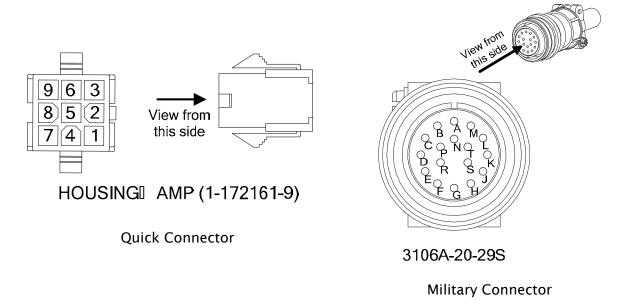
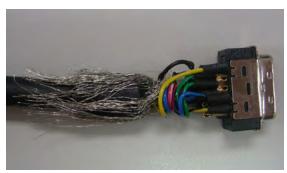
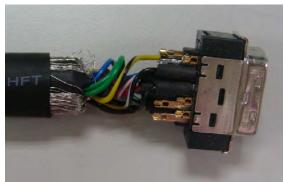



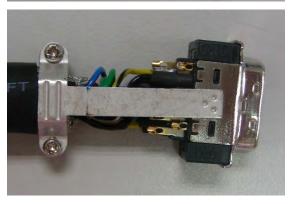
Figure 3.13 The layout of CN2 Motor Connector

CN2 Terminal Signal Identification

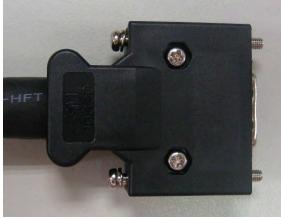

Drive Connector		Motor Connector			
PIN No.	Terminal Identification	Description	Military Connector	Quick Connector	Color
5	T+	Serial communication signal input / output (+)	Α	1	Blue
4	T-	Serial communication signal input / output (-)	В	4	Blue & Black
-	-	Reserved	-	-	-
-	-	Reserved	-	-	-
14,16	+5V	+5V power supply	S	7	Red / Red & White
13,15	GND	Ground	R	8	Black / Black & White
Shell	Shielding-	Shielding	Ĺ	9	-

3-60 Revision September 2012


Using the encoder cable with shielding (double shielding is the best) is able to prevent voltage coupling and eliminate the noise and interference from other electrical sources. Be sure to observe the following steps to complete the shielding surrounding the encoder cable.

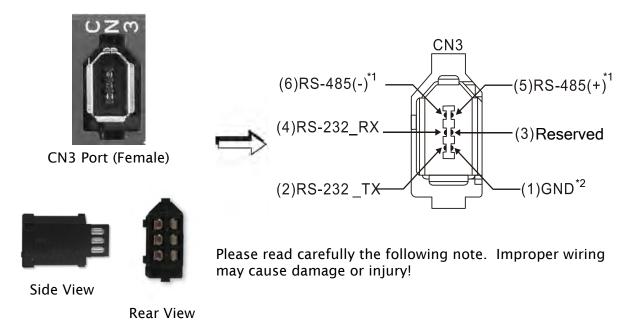

(1) Cut through the cable with the scissors and make the metal core wires with shielding exposed to a normal magnetic field. The reserved core wire length should be 20~30mm. Then, cover a 45mm heat shrink tube on the cable.

(2) Spread and trim the metal core wires with shielding. Ensure to follow the table of CN2 Terminal Signal Identification to connect the pins one by one.


(3) Leave a length of 5~10mm metal core wires with shielding outside of the cable for the installation of the metal saddle on the end. The other unexposed wires of the cable should be protected by heat shrink tube for good ground contact.

(4) Install a metal saddle to cover the exposed metal core wires. The metal saddle must completely cover all the exposed metal core wires. The connection between the metal saddle and the metal part of the connector on both ends of the cable should be correct and well installed.

(5) Install the connector with shielding into the plastic case as shown in the figure.

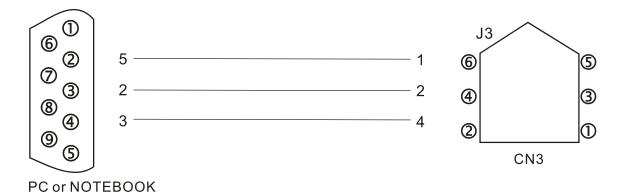

(6) Tighten the screws to complete a shielded CN2 connector.

3.6 Serial Communication Connector CN3

3.6.1 CN3 Terminal Layout and Identification

The servo drive can be connected to a PC or controller via this serial communication connector CN3. Users can operate the servo drive through PC software supplied by Delta. The communication connector/port of Delta servo drive can provide two common serial communication interfaces: RS-232 and RS-485 connection. RS-232 is mostly be used but is somewhat limited. The maximum cable length for an RS-232 connection is 15 meters (50 feet). Using RS-485 interface can allow longer distance for transmission and support multiple drives to be connected simultaneously.

Figure 3.14 The layout of CN3 Drive Connector

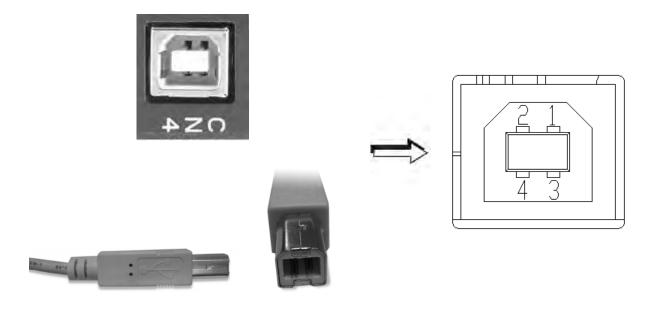

CN3 Terminal Signal Identification

PIN No.	Signal Name	Terminal Identification	Description
1	Grounding	GND	Ground
2	RS-232 data transmission	RS-232_TX	For data transmission of the servo drive. Connected to the RS-232 interface of PC.
3	-	-	Reserved
4	RS-232 data receiving	RS-232_RX	For data receiving of the servo drive. Connected to the RS-232 interface of PC.
5	RS-485 data transmission	RS-485(+)	For data transmission of the servo drive (differential line driver + end)
6	RS-485 data transmission	RS-485(-)	For data transmission of the servo drive (differential line driver - end)

NOTE

- 1) For the connection of RS-485, please refer to page 9.3.
- 2) There are two kinds of IEEE1394 communication cables available on the market. If the user uses one kind of cable, which its GND terminal (Pin 1) and its shielding is short-circuited, the communication may be damaged. Never connect the case of the terminal to the ground of this kind of communication cable.

3.6.2 Connection between PC and Connector CN3

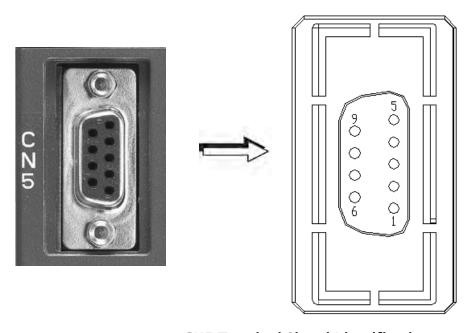


3-64 Revision September 2012

3.7 Serial Communication Connector CN4 (USB)

The servo drive can be connected to a PC via this serial communication connector CN4. Users can operate the servo drive through PC software supplied by Delta. The USB transmission speed can reach up to 1MB. Therefore, the users can easily monitor the servo drive data in real time by using Data Scope function provided by Delta PC software.

Figure 3.15 The layout of CN4 Drive Connector


CN4 Terminal Signal Identification

PIN No.	Signal Name	Description
1	V bus	DC +5V (external power supply)
2	D-	Data-
3	D+	Data+
4	GND	Ground

3.8 Position Feedback Signal Connector CN5 (for Full-closed Control)

The servo drive can be connected to a linear scale or external encoder to constitute a full-closed loop via this position feedback signal connector CN5. In position mode, the pulse position commands given by the external controller just refer to the control loop structure of the external linear scale. Please refer to Chapter 6 for more descriptions.

Figure 3.16 The layout of CN5 Drive Connector

CN5 Terminal Signal Identification

PIN No.	Signal Name	Terminal Identification	Description
1	/Z phase input	Opt_/Z	Linear scale /Z phase output
2	/B phase input	Opt_/B	Linear scale /B phase output
3	B phase input	Opt_B	Linear scale B phase output
4	A phase input	Opt_A	Linear scale A phase output
5	/A phase input	Opt_/A	Linear scale /A phase output
6	Encoder grounding	GND	Ground
7	Encoder grounding	GND	Ground
8	Encoder power	+5V	Linear scale 5V power
9	Z phase input	Opt_Z	Linear scale Z phase output

- 1) Only for the connection of encoders/linear scales that support AB phase signals and require a voltage of 5V.
- 2) Supports up to 1280000 pulse/rev superior encoder/linear scale resolution (A pulse number per motor revolution for a full-closed loop that corresponds to an optical signal with AB (Quadrature) phase pulses (4x).). Please refer to the settings of parameter P1-72 in Chapter 8.

3-66 Revision September 2012

3.9 CANopen Communication Connector CN6

CANopen Communication Connector CN6 is designed in accordance with CANopen DS301 and DS402 implementation. With this connector CN6, the servo drive can be connected to a CAN device so as to perform position, speed and torque control, or read and monitor the status of the servo drive through CANopen communication.

The station numbers of CANopen communication are the same as RS-232 and RS-485 communication and all be determined by parameter P3-00. The transmission speed can be reached up to 1Mbps. There are two communication ports of connector CN6, one is for transmission and the other is for receiving, convenient for connecting to more than one servo drives in serial. Ensure to connect a termination resistor to the last connected servo drive.

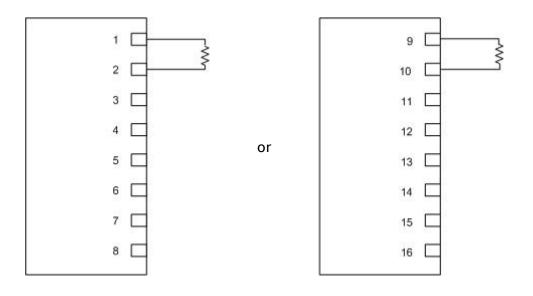
Figure 3.17 The layout of CN6 Drive Connector

CN6 Terminal Signal Identification

PIN No.	Signal Name	Description
1, 9	CAN_H	CAN_H bus line (dominant high)
2, 10	CAN_L	CAN_H bus line (dominant low)
3, 11	CAN_GND	Ground / 0 V / V -
4, 12	-	Reserved
5, 13	-	Reserved
6, 14	-	Reserved
7, 15	CAN_GND	Ground / 0 V / V -
8, 16	-	Reserved

CN6
RJ45
Connector

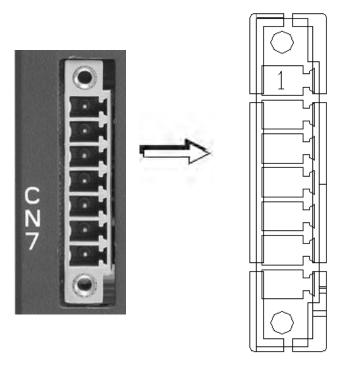
Ensure to connect a termination resistor


Figure 3.18 Connecting more than one servo drives via CANopen communication HMI / PLC or Controller

1) It is recommended to use a terminal resistor of 120Ω (Ohm), 0.25W and above.

AC Servo Drive

2) The multiple servo drives are connected in serial by connector CN6 via CANopen communication. There are two communication ports of connector CN6, one is for transmission and the other is for receiving, convenient for connecting to more than one servo drives in serial. Ensure to connect a termination resistor to the last connected servo drive. Please refer to the following figures for the wiring diagrams of terminal resistors.

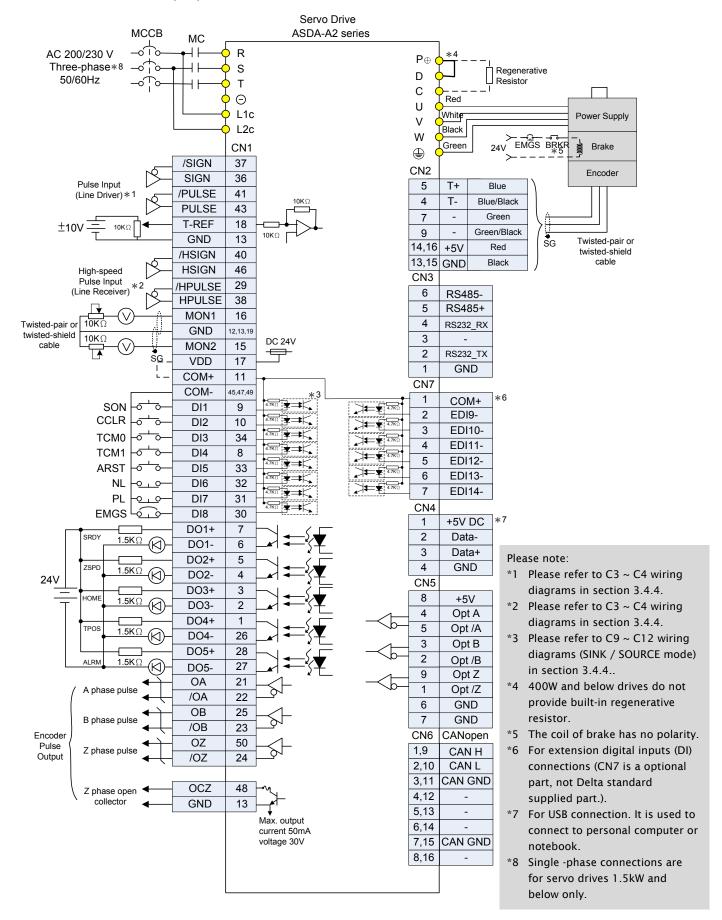


3-68 Revision September 2012

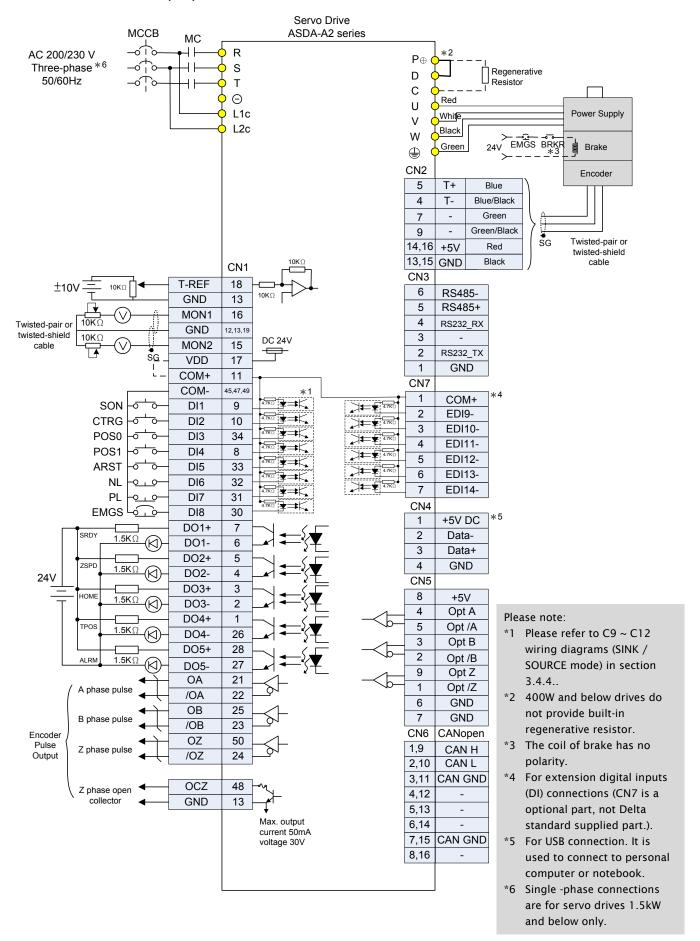
3.10 Extension digital input connector CN7

ASDA-A2 series provides single-axis point-to-point position control function and the position numbers can be up to 64 points. When internal 8 programmable Digital Inputs (DI) which can be set via parameters P2-10 ~ P2-17 can not satisfied, the users can use this extension digital input connector CN7 to increase more digital inputs. Up to 6 programmable external Digital Inputs (DI) could be added.

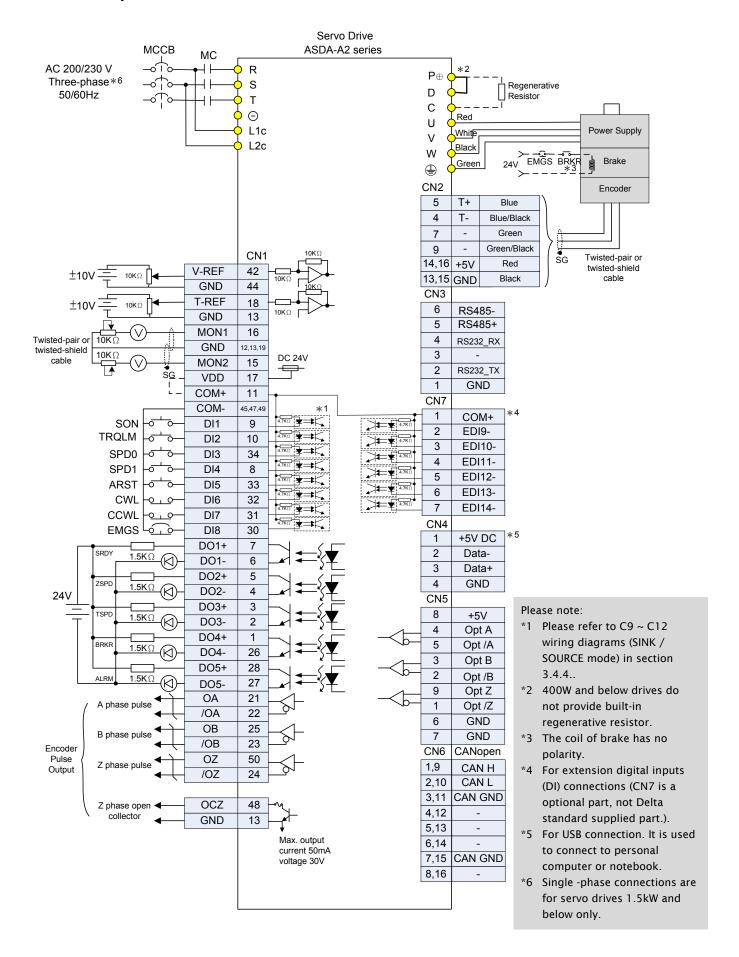
CN7 Terminal Signal Identification


PIN No.	Signal Name	Terminal Identification	Description
1 (NOTE)	VDD 24V power	COM+	VDD (24V) power supply, same as Pin 11 of CN1
2	Extension DI9	EDI 9-	Digital input DI9-
3	Extension DI10	EDI 10-	Digital input DI10-
4	Extension DI11	EDI 11-	Digital input DI11-
5	Extension DI12	EDI 12-	Digital input DI12-
6	Extension DI13	EDI 13-	Digital input DI13-
7	Extension DI14	EDI 14-	Digital input DI14-

Caution: Do not use dual power supply. Failure to observe this caution may result in damage to the servo drive and servo motor.

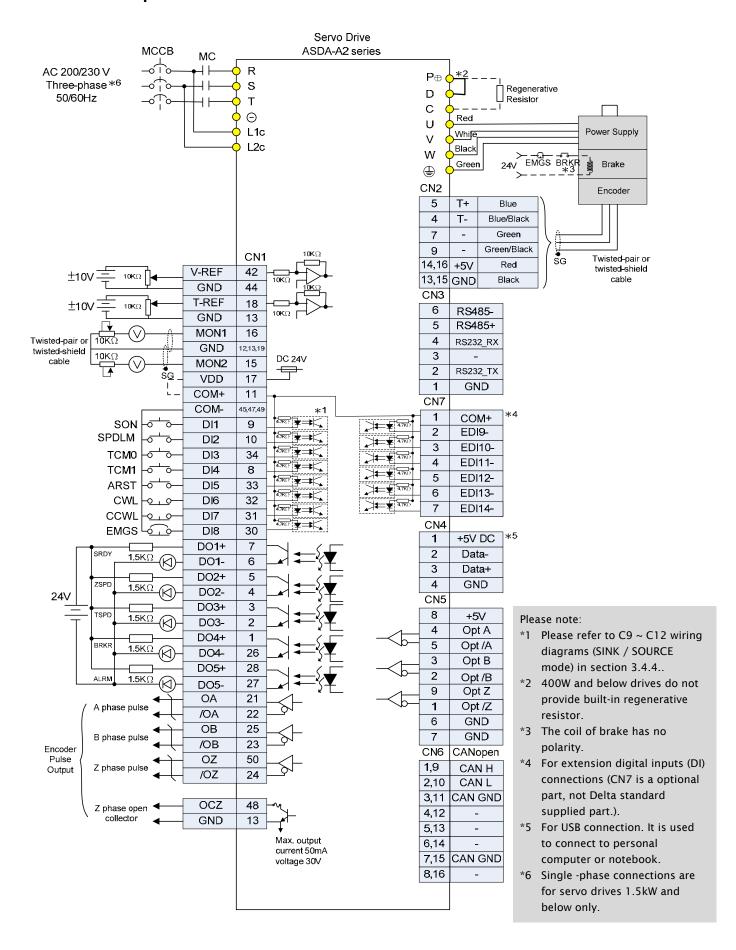

3.11 Standard Connection Example - 220V series

3.11.1 Position (PT) Control Mode

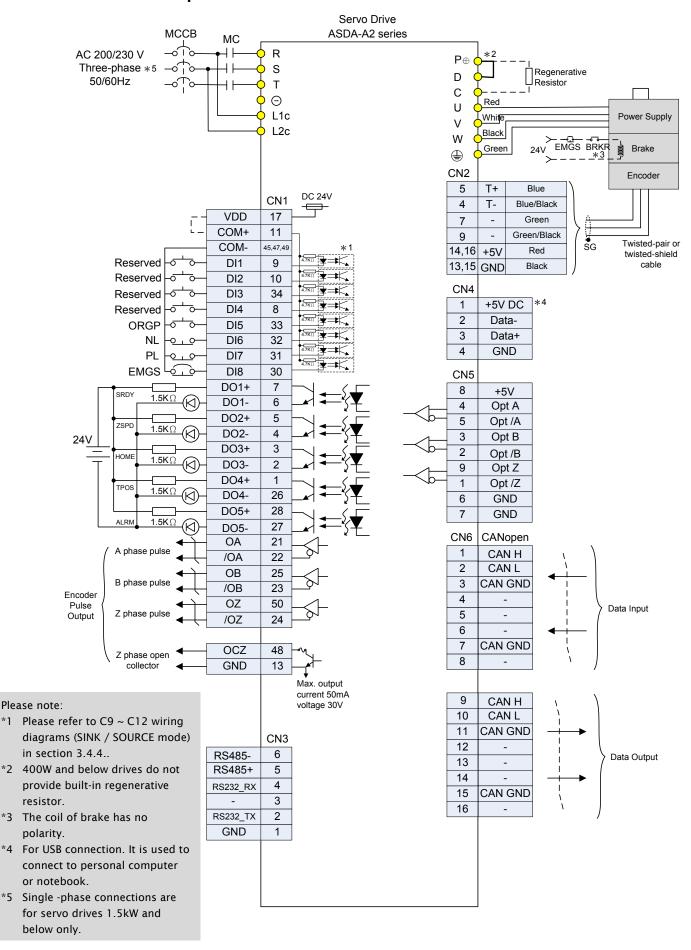


3-70 Revision September 2012

3.11.2 Position (PR) Control Mode

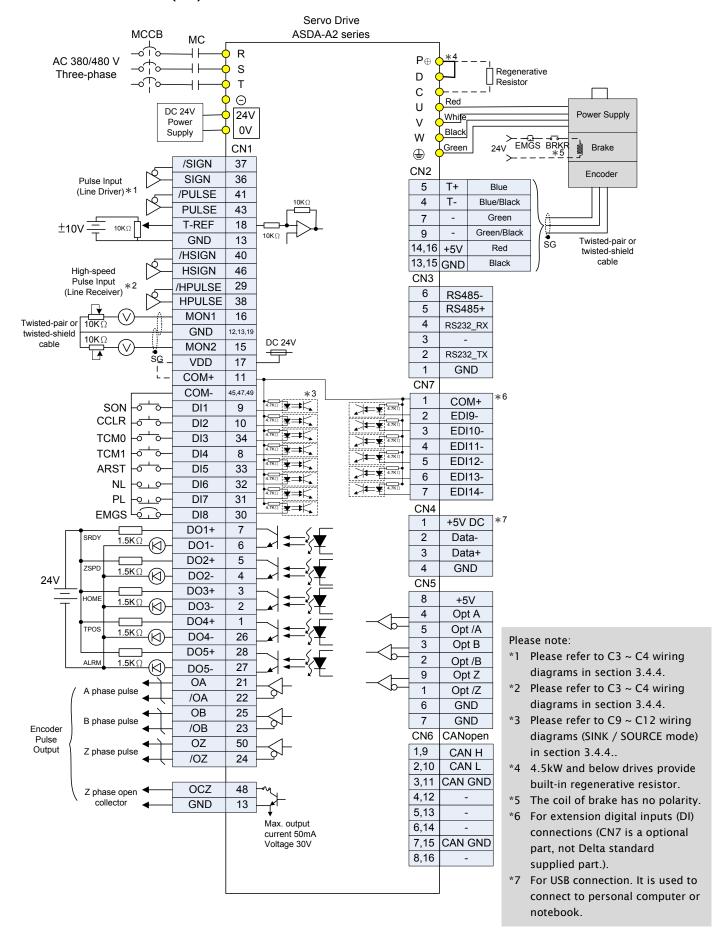


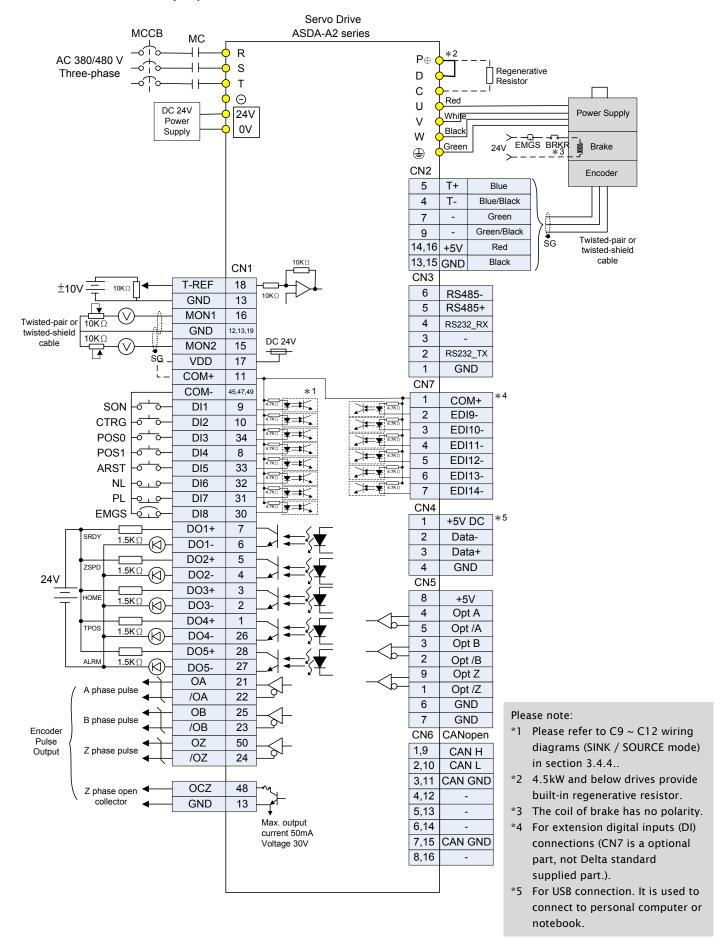
3.11.3 Speed Control Mode



3-72 Revision September 2012

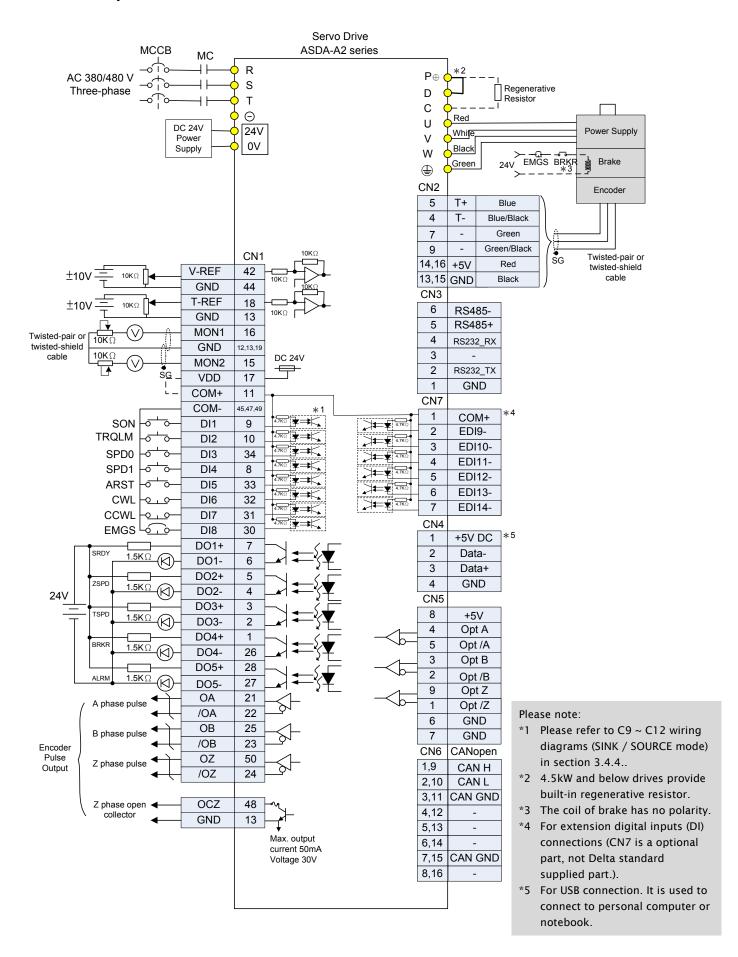
3.11.4 Torque Control Mode


3.11.5 CANopen Communication Mode

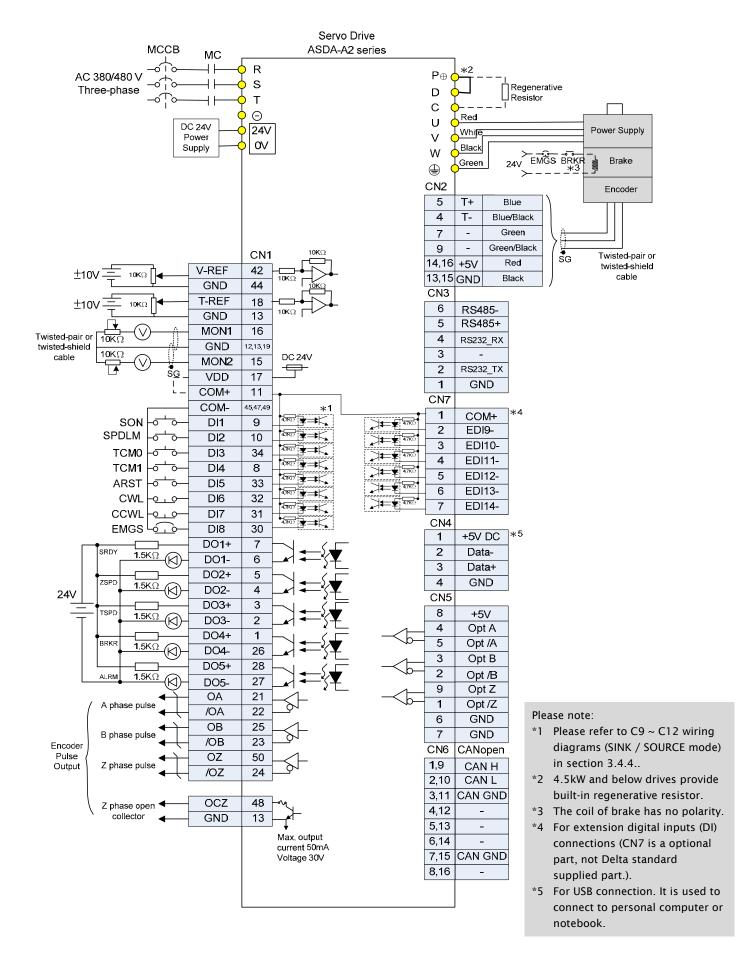

3-74 Revision September 2012

3.12 Standard Connection Example - 400V series

3.12.1 Position (PT) Control Mode

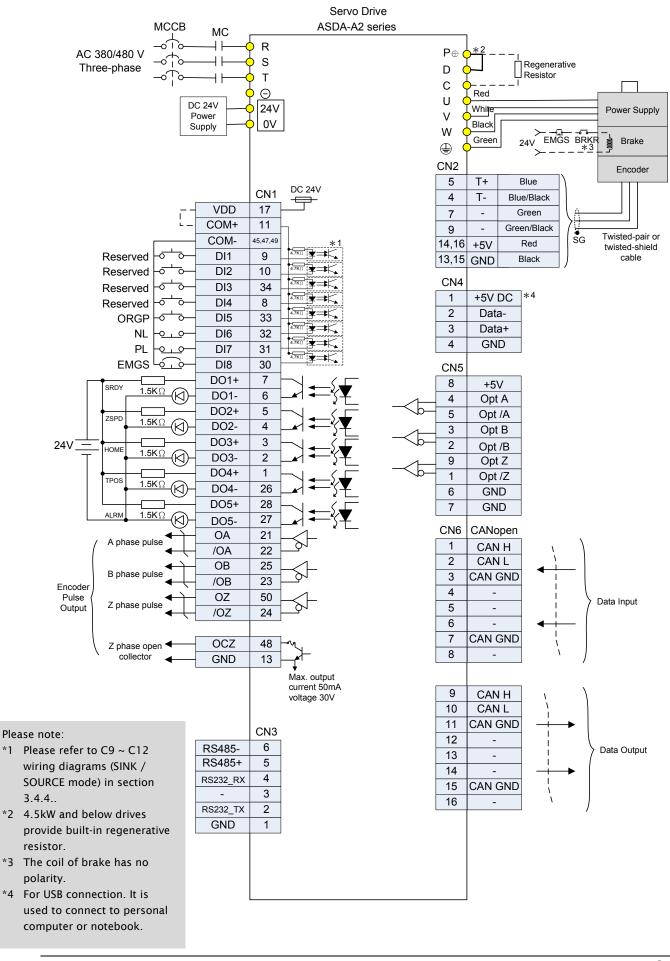


3.12.2 Position (PR) Control Mode



3-76 Revision September 2012

3.12.3 Speed Control Mode



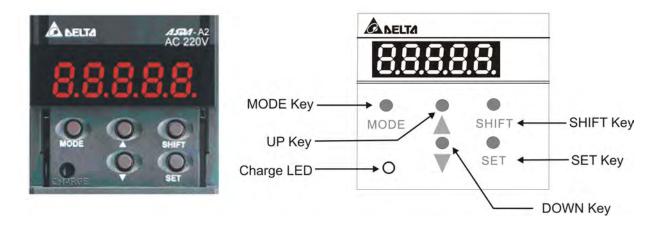
3.12.4 Torque Control Mode

3-78 Revision September 2012

3.12.5 CANopen Communication Mode

This page intentionally left blank.

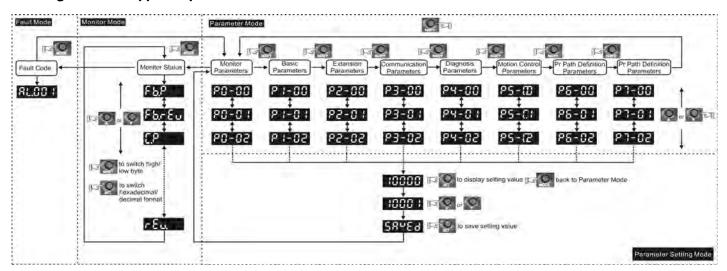
3-80 Revision September 2012


Chapter 4 Display and Operation

This chapter describes the basic operation of the digital keypad and the features it offers.

4.1 Description of the Digital Keypad

The digital keypad includes the display panel and function keys. The Figure 4.1 shows all of the features of the digital keypad and an overview of their functions.


Figure 4.1 Keypad Features

Name	Function
LCD Display	The LCD Display (5-digit, 7-step display panel) shows the monitor codes, parameter settings and operation values of the AC servo drive.
Charge LED	The Charge LED lights to indicate the power is applied to the circuit.
MODE Key	MODE Key. Pressing MODE key can enter or exit different parameter groups, and switch between Monitor mode and Parameter mode.
SHIFT Key	SHIFT Key. Pressing SHIFT key can scrolls through parameter groups. After a parameter is selected and its value displayed, pressing SHIFT key can move the cursor to the left and then change parameter settings (blinking digits) by using arrow keys.
UP and DOWN Key	UP and DOWN Key. Pressing the UP and DOWN key can scroll through and change monitor codes, parameter groups and various parameter settings.
SET Key	SET Key. Pressing the SET key can display and save the parameter groups, the various parameter settings. In monitor mode, pressing SET key can switch decimal or hexadecimal display. In parameter mode, pressing SET key can enter into parameter setting mode. During diagnosis operation, pressing SET key can execute the function in the last step. (The parameter settings changes are not effective until the SET key is pressed.)

4.2 Display Flowchart

Figure 4.2 Keypad Operation

- 1. When the power is applied to the AC servo drive, the LCD display will show the monitor function codes for approximately one second, then enter into the monitor mode.
- 2. In monitor mode, pressing MODE key can enter into parameter mode. In parameter mode, pressing MODE key can return to monitor mode.
- 3. No matter working in which mode, when an alarm occurs, the system will enter into fault mode immediately. In fault mode, pressing MODE key can switch to other modes. In other modes, if no key is pressed for over 20 seconds, the system will return to fault mode automatically.
- 4. In monitor mode, pressing UP or DOWN arrow key can switch monitor parameter code. At this time, monitor display symbol will display for approximately one second.
- 5. In monitor mode, pressing MODE key can enter into parameter mode. In parameter mode, pressing SHIFT key can switch parameter group and pressing UP or DOWN arrow key can change parameter group code.
- 6. In parameter mode, the system will enter into the setting mode immediately after the Set key is pressed. The LCD display will display the corresponding setting value of this parameter simultaneously. Then, users can use UP or DOWN arrow key to change parameter value or press MODE key to exit and return back to the parameter mode.
- 7. In parameter setting mode, the users can move the cursor to left by pressing SHIFT key and change the parameter settings (blinking digits) by pressing the UP or DOWN arrow key.
- 8. After the setting value change is completed, press SET key to save parameter settings or execute command.
- 9. When the parameter setting is completed, LCD display will show the end code "SAVED" and automatically return back to parameter mode.

4-2 Revision September 2012

4.3 Status Display

4.3.1 Save Setting Display

After the SET key is pressed, LCD display will show the following display messages for approx. one second according to different status.

Display Message	Description
58488	The setting value is saved correctly. [Saved)
r-013	This parameter is read only. Write-protected. (Read-Only)
Locke	Invalid password or no password was input. (Locked)
806-6	The setting value is error or invalid. (Out of Range)
5u-on	The servo system is running and it is unable to accept this setting value to be changed. (Servo On)
Po-0n	This parameter is valid after restarting the drive. (Power On)

4.3.2 Decimal Point Display

Display Message	Description
0.0.0.0.0.	High/Low byte display. When the data is a decimal 32-bit data, these two digits are used to show if the display is high byte or low byte.
►Low Byte ►High Byte ►No Function ►Negative Sign	Negative value display. When the data is displayed in decimal format, the most left two digits represent negative sign no matter it is a 16-bit or 32-bit data. If the data is displayed in hexadecimal format, it is a positive value always and no negative sign is displayed.

4.3.3 Fault Message Display

Display Message	Description
86,000	When the AC servo drive has a fault, LCD display will display "ALnnn". "AL" indicates the alarm and "nnn" indicates the drive fault code. For the list of drive fault code, please refer to parameter P0-01 in Chapter 8 (Servo Parameters) or refer to Chapter 11 (Troubleshooting).

4.3.4 Polarity Setting Display

Display Message	Description
88250	Positive value display. When entering into parameter setting mode, pressing UP or DOWN arrow key can increase or decrease the display value. SHIFT key is used to change the selected digit (The selected digit will blink).

Display Message	Description
2.4.880	Negative value display. Continuously press SHIFT key for two seconds and then the positive(+) or negative(-) sign can be switched. When the setting value exceeds its setting range, the positive(+) and negative(-) sign can not be switched. (The negative value display is for a decimal negative value only. There is no negative value display for a hexadecimal negative value.)

4.3.5 Monitor Setting Display

When the AC servo drive is applied to power, the LCD display will show the monitor function codes for approximately one second and then enter into the monitor mode. In monitor mode, in order to change the monitor status, the users can press UP or DOWN arrow key or change parameter P0-02 directly to specify the monitor status. When the power is applied, the monitor status depends on the setting value of P0-02. For example, if the setting value of P0-02 is 4 when the power is applied, the monitor function will be input pulse number of pulse command, the C-PLS monitor codes will first display and then the pulse number will display after.

P0-02 Setting	Display Message	Description	Unit
0	FBPUU	Motor feedback pulse number (after electronic gear ratio is set)	[user unit]
1	<u>[-PUU</u>	Input pulse number of pulse command (after electronic gear ratio is set)	[user unit]
2	E-,200	Position error counts between control command pulse and feedback pulse	[user unit]
3	FBPLS	Motor feedback pulse number (encoder unit, 1280000 pulse/rev)	[pulse]
4	[-PLS	Input pulse number of pulse command (before electronic gear ratio is set)	[pulse]
5	Er.PLS	Position error counts	[pulse]
6	[2-5-	Input frequency of pulse command	[Kpps]
7	SPEEd	Motor rotation speed	[r/min]
8	ESP8:	Speed input command	[Volt]
9	CSP82	Speed input command	[r/min]
10	183-3	Torque input command	[Volt]

Revision September 2012

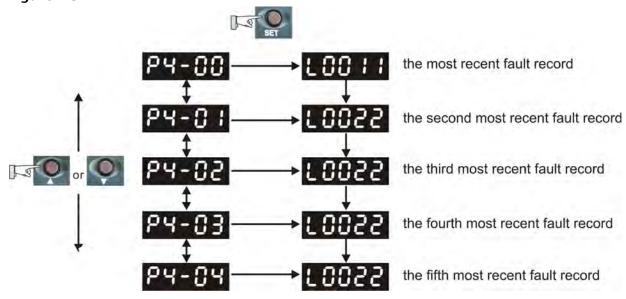
P0-02 Setting	Display Message	Description	Unit
11	583-3	Torque input command	[%]
12	8-6-6	Average load	[%]
13	PE-L	Peak load	[%]
14	ც გიგ	Main circuit voltage	[Volt]
15	3-6	Ratio of load inertia to Motor inertia (Please note that if the display is 13.0, it indicates that the actual inertia is 13)	[1times]
16	1668.8	IGBT temperature	[°C]
17	r5n.Fr	Resonance frequency (The low byte is the first resonance point and the high byte is the second resonance point.)	[Hz]
18	0 +5000 -4999	Absolute pulse number relative to encoder (use Z phase as home). The value of Z phase home point is 0, and it can be the value from -5000 to +5000 pulses.	-
19	nnae i	Mapping Parameter 1: Display the content of parameter P0-25 (mapping target is specified by parameter P0-35)	-
20	29800	Mapping Parameter 2: Display the content of parameter P0-26 (mapping target is specified by parameter P0-36)	-
21	กกลค3	Mapping Parameter 3: Display the content of parameter P0-27 (mapping target is specified by parameter P0-37)	-
22	กกลอง	Mapping Parameter 4: Display the content of parameter P0-28 (mapping target is specified by parameter P0-38)	-
23	U8r- 1	Status Monitor 1: Display the content of parameter P0-09 (the monitor status is specified by parameter P0-17)	-
24	U82	Status Monitor 2: Display the content of parameter P0-10 (the monitor status is specified by parameter P0-18)	-

P0-02 Setting	Display Message	Description	Unit
25	U83	Status Monitor 3: Display the content of parameter P0-11 (the monitor status is specified by parameter P0-19)	-
26	U84	Status Monitor 4: Display the content of parameter P0-12 (the monitor status is specified by parameter P0-20)	-

The following table lists the display examples of monitor value:

Display Message	Description	
0:234 _(Dec.)	16-bit Data	Decimal display. When the actual value is 1234, the display is 01234.
1234 _(Hex.)		Hexadecimal display. When the actual value is 0x1234, the display is 1234.
12345 (Dec. High Byte) 67890 (Dec. Low Byte)	32-bit Data	Decimal display. When the actual value is 1234567890, the display of high byte is 1234.5 and the display of low byte is 67890.
HIZBY (Hex. High Byte) (Hex. Low Byte)		Hexadecimal display. When the actual value is 0x12345678, the display of high byte is h1234 and the display of low byte is L5678.
12.3.45.	Negative value display. When the actual value is - 12345, the display is 1.2.345. (The negative value display is displayed to indicate a decimal negative value. There is no negative value display for a hexadecimal negative value.)	

- 1) Dec. represents Decimal display and Hex. represents Hexadecimal display.
- 2) The above display methods are both available in monitor mode and parameter setting mode.
- 3) All monitor variables are 32-bit data. The users can switch to high byte or low byte and display format (Dec. or Hex.) freely. Regarding the parameters listed in Chapter 8, for each parameter, only one kind of display format is available and cannot be changed.


4-6 Revision September 2012

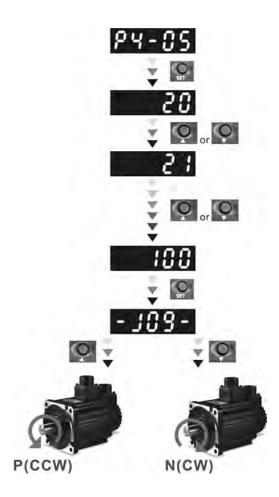
4.4 General Function Operation

4.4.1 Fault Code Display Operation

After entering the parameter mode P4-00 to P4-04 (Fault Record), press SET key to display the corresponding fault code history for the parameter. Please refer to the Figure 4.3.

Figure 4.3

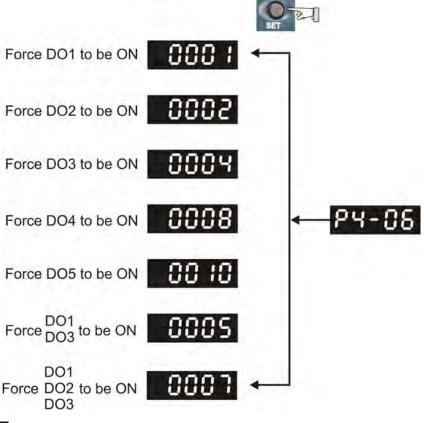
4.4.2 JOG Operation


After entering parameter mode P4-05, the users can follow the following steps to perform JOG operation. (Please also refer to Figure 4.4).

- Step1. Press the SET key to display the JOG r/min speed. (The default value is 20 r/min).
- Step2. Press the UP or DOWN arrow keys to increase or decrease the desired JOG speed. (This also can be undertaken by using the SHIFT key to move the cursor to the desired unit column (the effected number will blink) then changed using the UP and DOWN arrow keys. The example display in Figure 4.4 is adjusted as 100 r/min.)
- Step3. Press the SET key when the desired JOG speed is set. The Servo Drive will display "JOG".
- Step4. Press the UP or DOWN arrow keys to jog the motor either N(CW) and P(CCW) direction. The motor will only rotate while the arrow key is activated.
- Step5. To change JOG speed again, press the MODE key. The servo Drive will display "P4 05". Press the SET key and the JOG r/min speed will displayed again. Refer back to #2 and #3 to change speed.

1) JOG operation is effective only when Servo On (when the servo drive is enabled).

Figure 4.4


4.4.3 Force Output Control Operation

For testing, the digital outputs can be forced to be activated (ON) or inactivated (OFF) by using parameter P2-08 and P4-06. First, set P2-08 to 406 to enable the force output control function and then using P4-06 to force the digital outputs to be activated. Follow the setting method in Figure 4.6 to enter into Force Output Control operation mode. When P4-06 is set to 2, the digital output, DO2 is activated. When P4-06 is set to 5, the digital outputs, DO1 and DO3 are both activated. The parameter setting value of P4-06 is not retained when power is off. After re-power the servo drive, all digital outputs will return to the normal status. If P2-08 is set to 400, it also can switch the Force Output Control operation mode to normal Digital Output (DO) Control operation mode.

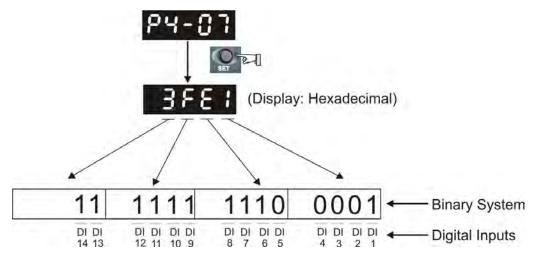
1The DO function and status is determined by P2-18 to P2-22. This function is enabled only when Servo Off (the servo drive is disabled).

4-8 Revision September 2012

Figure 4.6

1) As the display of P4-06 is hexadecimal, O(zero) of the fifth digit will not show on the LED display.

4.4.4 DI Diagnosis Operation


Following the setting method in Figure 4.7 can perform DI diagnosis operation (parameter P4-07, Input Status). According to the ON and OFF status of the digital inputs DI1 to DI8, the corresponding status will display on the servo drive LED display. When the Bit is set to "1", it means that the corresponding digital input signal is ON. (Please also refer to Figure 4.7)

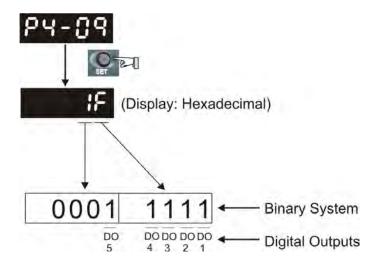
For example:

Suppose that the servo drive LED display is "3FE1".

"E" is hexadecimal, which is equal to "1110" in binary system, and it means that the digital inputs DI6 \sim DI8 are ON.

Figure 4.7

4.4.5 DO Diagnosis Operation


Following the setting method in Figure 4.8 can perform DO diagnosis operation (parameter P4-09, Output Status Display). According to the ON and OFF status of the digital outputs DO1 to DO5, the corresponding status will display on the servo drive LED display. When the Bit is set to "1", it means that the corresponding digital output signal is ON. (Please also refer to Figure 4.8)

For example:

Suppose that the servo drive LED display is "1F".

"F" is hexadecimal, which is equal to "1111" in binary system, and it means that the digital outputs DO1 \sim DO4 are ON.

Figure 4.8

4-10 Revision September 2012

Chapter 5 Trial Run and Tuning Procedure

This chapter, which is divided into two parts, describes trial run for servo drive and motor. One part is to introduce the trial run without load, and the other part is to introduce trial run with load. Ensure to complete the trial run without load first before performing the trial run with load.

5.1 Inspection without Load

In order to prevent accidents and avoid damaging the servo drive and mechanical system, the trial run should be performed under no load condition (no load connected, including disconnecting all couplings and belts). Do not run servo motor while it is connected to load or mechanical system because the unassembled parts on motor shaft may easily disassemble during running and it may damage mechanical system or even result in personnel injury. After removing the load or mechanical system from the servo motor, if the servo motor can runs normally following up the normal operation procedure (when trial run without load is completed), then the users can connect to the load and mechanical system to run the servo motor.

- In order to prevent accidents, the initial trial run for servo motor should be conducted under no load conditions (separate the motor from its couplings and belts).
- > Caution: Please perform trial run without load first and then perform trial run with load connected. After the servo motor is running normally and regularly without load, then run servo motor with load connected. Ensure to perform trial run in this order to prevent unnecessary danger.

After power in connected to AC servo drive, the charge LED will light and it indicates that AC servo drive is ready. Please check the followings before trial run:

- 1. Inspection before operation (Control power is not applied)
 - Inspect the servo drive and servo motor to insure they were not damaged.
 - Ensure that all wiring terminals are correctly insulated.
 - Ensure that all wiring is correct or damage and or malfunction may result.
 - Visually check to ensure that there are not any unused screws, metal strips, or any conductive or inflammable materials inside the drive.
 - Make sure control switch is OFF.
 - Never put inflammable objects on servo drive or close to the external regenerative resistor.
 - If the electromagnetic brake is being used, ensure that it is correctly wired.
 - If required, use an appropriate electrical filter to eliminate noise to the servo drive.

Revision June 2012 5-1

- Ensure that the external applied voltage to the drive is correct and matched to the controller.
- 2. Inspection during operation (Control power is applied)
 - Ensure that the cables are not damaged, stressed excessively or loaded heavily. When the motor is running, pay close attention on the connection of the cables and notice that if they are damaged, frayed or over extended.
 - Check for abnormal vibrations and sounds during operation. If the servo motor is vibrating or there are unusual noises while the motor is running, please contact the dealer or manufacturer for assistance.
 - Ensure that all user-defined parameters are set correctly. Since the characteristics of different machinery equipment are not the same, in order to avoid accident or cause damage, do not adjust the parameter abnormally and ensure the parameter setting is not an excessive value.
 - Ensure to reset some parameters when the servo drive is off (Please refer to Chapter 8). Otherwise, it may result in malfunction.
 - If there is no contact sound or there be any unusual noises when the relay of the servo drive is operating, please contact your distributor for assistance or contact with Delta.
 - Check for abnormal conditions of the power indicators and LED display. If there is any abnormal condition of the power indicators and LED display, please contact your distributor for assistance or contact with Delta.

5-2 Revision September 2012

5.2 Applying Power to the Drive

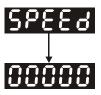
The users please observe the following steps when applying power supply to the servo drive.

- 1. Please check and confirm the wiring connection between the drive and motor is correct.
 - 1) Terminal U, V, W and FG (frame ground) must connect to Red, White, Black and Green cables separately (U: Red, V: White, W: Black, FG: Green). If not connect to the specified cable and terminal, then the drive cannot control motor. The motor grounding lead, FG must connect to grounding terminal. For more information of cables, please refer to section 3.1.
 - 2) Ensure to connect encoder cable to CN2 connector correctly. If the users only desire to execute JOG operation, it is not necessary to make any connection to CN1 and CN3 connector. For more information of the connection of CN2 connector, please refer to Section 3.1 and 3.4.

> Do not connect the AC input power (R, S, T) to the (U, V, W) output terminals. This will damage the AC servo drive.

2. Main circuit wiring

Connect power to the AC servo. For three-phase input power connection and single-phase input power connection, please refer to Section 3.1.3.


3. Turn the Power On

The Power includes control circuit power (L1c, L2c) and main circuit power (R, S, T). When the power is on, the normal display should be shown as the following figure:

As the default settings of digital input signal, DI6, DI7 and DI8 are Reverse Inhibit Limit (NL), Forward Inhibit Limit (PL) and Emergency Stop (EMGS) respectively, if the users do not want to use the default settings of DI6 ~ DI8, the users can change their settings by using parameters P2-15 to P2-17 freely. When the setting value of parameters P2-15 to P2-17 is 0, it indicates the function of this DI signal is disabled. For more information of parameters P2-15 to P2-17, please refer to Chapter 8 "Parameters".

If the parameter P0-02 is set as motor speed (06), the normal display should be shown as the following figure:

If there is no text or character displayed on the LED display, please check if the voltage of the control circuit terminal ((L1c, L2c) is over low.

1) When display shows:

Overvoltage:

The main circuit voltage has exceeded its maximum allowable value or input power is error (Incorrect power input).

Corrective Actions:

- Use voltmeter to check whether the main circuit input voltage falls within the rated input voltage.
- Use voltmeter to check whether the input voltage is within the specified limit.
- 2) When display shows:

Encoder error:

Check if the wiring is correct. Check if the encoder wiring (CN2) of servo motor is loose or incorrect.

Corrective Actions:

- Check if the users perform wiring recommended in the user manual.
- Examine the encoder connector and cable.
- Inspect whether wire is loose or not.
- Check if the encoder is damaged.
- 3) When display shows:

Emergency stop activated:

Please check if any of digital inputs DI1 ~ DI8 signal is set to "Emergency Stop" (EMGS).

Corrective Actions:

■ If it does not need to use "Emergency Stop (EMGS)" as input signal, the users only need to confirm that if all of the digital inputs DI1 ~ DI8 are not set to "Emergency Stop (EMGS)". (The setting value of parameter P2-10 to P2-17 is not set to 21.)

■ If it is necessary to use "Emergency Stop (EMGS)" as input signal, the users only need to confirm that which of digital inputs DI1 ~ DI8 is set to "Emergency Stop (EMGS)" and check if the digital input signal is ON (It should be activated).

4) When display shows:

Reverse limit switch error:

Please check if any of digital inputs DI1 ~ DI8 signal is set to "Reverse inhibit limit (NL)" and check if the signal is ON or not.

Corrective Actions:

- If it does not need to use "Reverse inhibit limit (NL)" as input signal, the users only need to confirm that if all of the digital inputs DI1 ~ DI8 are not set to "Reverse inhibit limit (NL)". (The setting value of parameter P2-10 to P2-17 is not set to 22.)
- If it is necessary to use "Reverse inhibit limit (NL)" as input signal, the users only need to confirm that which of digital inputs DI1 ~ DI8 is set to "Reverse inhibit limit (NL)" and check if the digital input signal is ON (It should be activated).

5) When display shows:

Forward limit switch error:

Please check if any of digital inputs DI1 ~ DI8 signal is set to "Forward inhibit limit (PL)" and check if the signal is ON or not.

Corrective Actions:

- If it is no need to use "Forward inhibit limit (PL)" as input signal, the users only need to confirm that if all of the digital inputs DI1 ~ DI8 are not set to "Forward inhibit limit (PL)". (The setting value of parameter P2-10 to P2-17 is not set to 23.)
- If it is necessary to use "Forward inhibit limit (PL)" as input signal, the users only need to confirm that which of digital inputs DI1 ~ DI8 is set to "Forward inhibit limit (PL)" and check if the digital input signal is ON (It should be activated).

When "Digital Input 1 (DI1)" is set to Servo On (SON), if DI1 is set to ON (it indicates that Servo On (SON) function is enabled) and the following fault message shows on the display:

6) When display shows:

Overcurrent:

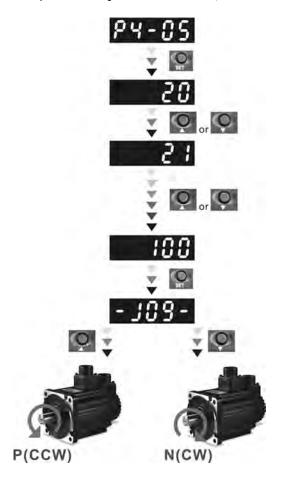
Corrective Actions:

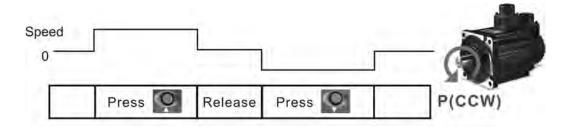
- Check the wiring connections between the servo drive and motor.
- Check if the circuit of the wiring is closed.
- Remove the short-circuited condition and avoid metal conductor being exposed.
- 7) When display shows:

Undervoltage:

Corrective Actions:

- Check whether the wiring of main circuit input voltage is normal.
- Use voltmeter to check whether input voltage of main circuit is normal.
- Use voltmeter to check whether the input voltage is within the specified limit.


1) If there are any unknown fault codes and abnormal display when applying power to the drive or servo on is activated (without giving any command), please inform the distributor or contact with Delta for assistance.


5.3 JOG Trial Run without Load

It is very convenient to use JOG trial run without load to test the servo drive and motor as it can save the wiring. The external wiring is not necessary and the users only need to connect the digital keypad to the servo drive. For safety, it is recommended to set JOG speed at low speed. Please refer to the following steps to perform JOG trial run without load.

- STEP 1: Turn the drive ON through software. Ensure that the setting value of parameter P2-30 should be set to 1 (Servo On).
- STEP 2: Set parameter P4-05 as JOG speed (unit: r/min). After the desired JOG speed is set, and then press SET key, the drive will enter into JOG operation mode automatically
- STEP 3: The users can press UP and DOWN key to change JOG speed and press SHIFT key to adjust the digit number of the displayed value.
- STEP 4: Pressing SET key can determine the speed of JOG operation.
- STEP 5: Pressing UP key and the servo motor will run in P(CCW) direction. After releasing UP key, the motor will stop running.
- STEP 6: Pressing DOWN key and the servo motor will run in N(CW) direction. After releasing DOWN key, the motor will stop running.
 - N(CW) and P(CCW) Definition:
 - P(CCW, Counterclockwise): when facing the servo motor shaft, P is running in counterclockwise direction.
 - N(CW, Clockwise): when facing the servo motor shaft, N is running in clockwise direction.
- STEP 7: When pressing MODE key, it can exit JOG operation mode.

In the example below, the JOG speed is adjusted from 20r/min (Default setting) to 100r/min.

If the servo motor does not rotate, please check if the wiring of $U,\,V,\,W$ terminals and encoder is correct or not.

If the servo motor does not rotate properly, please check if the phase of U, V, W cables is connected correctly.

5.4 Speed Trial Run without Load

Before speed trial run, fix and secure the motor as possible to avoid the danger from the reacting force when motor speed changes.

STEP 1:

Set the value of parameter P1-01 to 02 and it is speed (S) control mode. After selecting the operation mode as speed (S) control mode, please restart the drive as P1-01 is effective only after the servo drive is restarted (after switching power off and on).

STEP 2: In speed control mode, the necessary Digital Inputs are listed as follows:

Digital Input	Parameter Setting Value	Sign	Function Description	CN1 PIN No.
DI1	P2-10=101	SON	Servo On	DI1-=9
DI2	P2-11=109	TRQLM	Torque limit enabled	DI2-=10
DI3	P2-12=114	SPD0	Speed command selection	DI3-=34
DI4	P2-13=115	SPD1	Speed command selection	DI4-=8
DI5	P2-14=102	ARST	Reset	DI5-=33
DI6	P2-15=0	Disabled	This DI function is disabled	-
DI7	P2-16=0	Disabled	This DI function is disabled	-
DI8	P2-17=0	Disabled	This DI function is disabled	-
EDI9	P2-36=0	Disabled	This DI function is disabled	CN7=2
EDI10	P2-37=0	Disabled	This DI function is disabled	CN7=3
EDI11	P2-38=0	Disabled	This DI function is disabled	CN7=4
EDI12	P2-39=0	Disabled	This DI function is disabled	CN7=5
EDI13	P2-40=0	Disabled	This DI function is disabled	CN7=6
EDI14	P2-41=0	Disabled	This DI function is disabled	CN7=7

By default, DI6 is the function of reverse inhibit limit, DI7 is the function of forward inhibit limit and DI6 is the function of emergency stop (DI8), if the users do not set the setting value of parameters P2-15 to P2-17 and P2-36 to P2-41 to 0 (Disabled), the faults (AL013, 14 and 15) will occur (For the information of fault messages, please refer to Chapter 11). Therefore, if the users do not need to use these three digit inputs, please set the setting value of parameters P2-15 to P2-17 and P2-36 to P2-41 to 0 (Disabled) in advance.

All the digital inputs of Delta ASDA-A2 series are user-defined, and the users can set the DI signals freely. Ensure to refer to the definitions of DI signals before defining them (For the description of DI signals, please refer to Table 8.A in Chapter 8). If any alarm code displays after the setting is completed, the users can restart the drive or set DI5 to be activated to clear the fault. Please refer to section 5.2.

The speed	command is	selected by	SPD0 SPD1	Please refe	r to the f	following table:
THE SPECE	Communana is	3CICCLCG DY	יו שוכ, טשוכ	i icasc icic		ionowing table.

Speed	DI signa	l of CN1	Command Source	Content	Range	
Command No.	SPD1	SPD0			90	
S 1	0	0	External analog command	Voltage between V-REF and GND	-10V ~ +10V	
S2	0	1		P1-09	-60000 ~ 60000	
S3	1	0	Internal parameter	P1-10	-60000 ~ 60000	
S4	1	1		P1-11	-60000 ~ 60000	

0: indicates OFF (Normally Open); 1: indicates ON (Normally Closed)

The range of internal parameter is from -60000 to 60000.

Setting value of speed command = Setting range x unit (0.1 r/min).

For example:

If P1-09 is set to +30000, the setting value of speed command = $+30000 \times 0.1 \text{ r/min} = +3000 \text{ r/min}$.

The settings of speed command:

P1-09 is set to +30000	Input value command	Rotation direction	
P1-10 is set to +1000	+	N(CW)	
P1-11 is set to -30000	-	P(CCW)	

STEP 3:

- 1. The users can use DI1 to enable the servo drive (Servo On).
- 2. If DI3 (SPD0) and DI4 (SPD1) are OFF both, it indicates S1 command is selected. At this time, the motor is operating according to external analog command.
- 3. If only DI3 is ON (SPD0), it indicates S2 command (P1-09 is set to +30000) is selected, and the motor speed is 3000r/min at this time.
- 4. If only DI4 is ON (SPD1), it indicates S3 command (P1-10 is set to +1000) is selected, and the motor speed is 100r/min at this time.
- 5. If DI3 (SPD0) and DI4 (SPD1) are ON both, it indicates S4 command (P1-11 is set to 30000) is selected, and the motor speed is -3000r/min at this time.
- 6. Repeat the action of (3), (4), (5) freely.
- 7. When the users want to stop the speed trial run, use DI1 to disable the servo drive (Servo Off).

5-10 Revision September 2012

5.5 Position Trial Run without Load

Before position trial run, fix and secure the motor as possible to avoid the danger from the reacting force when the motor speed changes.

STEP 1:

Set the value of parameter P1-01 to 01 and it is position (PR) control mode. After selecting the operation mode as position (PR) control mode, please restart the drive and the setting would be valid.

STEP 2: In position control mode, the necessary DI setting is listed as follows:

Digital Input	Parameter Setting Value	Sign	Function Description	CN1 PIN No.
DI1	P2-10=101	SON	Servo On	DI1-=9
DI2	P2-11=108	CTRG	Command trigged	DI2-=10
DI3	P2-12=111	POS0	Position command selection	DI3-=34
DI4	P2-13=112	POS1	Position command selection	DI4-=8
DI5	P2-14=102	ARST	Reset	DI5-=33
DI6	P2-15=0	Disabled	This DI function is disabled	-
DI7	P2-16=0	Disabled	This DI function is disabled	-
DI8	P2-17=0	Disabled	This DI function is disabled	-
EDI9	P2-36=0	Disabled	This DI function is disabled	CN7=2
EDI10	P2-37=0	Disabled	This DI function is disabled	CN7=3
EDI11	P2-38=0	Disabled	This DI function is disabled	CN7=4
EDI12	P2-39=0	Disabled	This DI function is disabled	CN7=5
EDI13	P2-40=0	Disabled	This DI function is disabled	CN7=6
EDI14	P2-41=0	Disabled	This DI function is disabled	CN7=7

By default, DI6 is the function of reverse inhibit limit, DI7 is the function of forward inhibit limit and DI6 is the function of emergency stop (DI8), if the users do not set the setting value of parameters P2-15 to P2-17 and P2-36 to P2-41 to 0 (Disabled), the faults (AL013, 14 and 15) will occur (For the information of fault messages, please refer to Chapter 11). Therefore, if the users do not need to use these three digit inputs, please set the setting value of parameters P2-15 to P2-17 and P2-36 to P2-41 to 0 (Disabled) in advance.

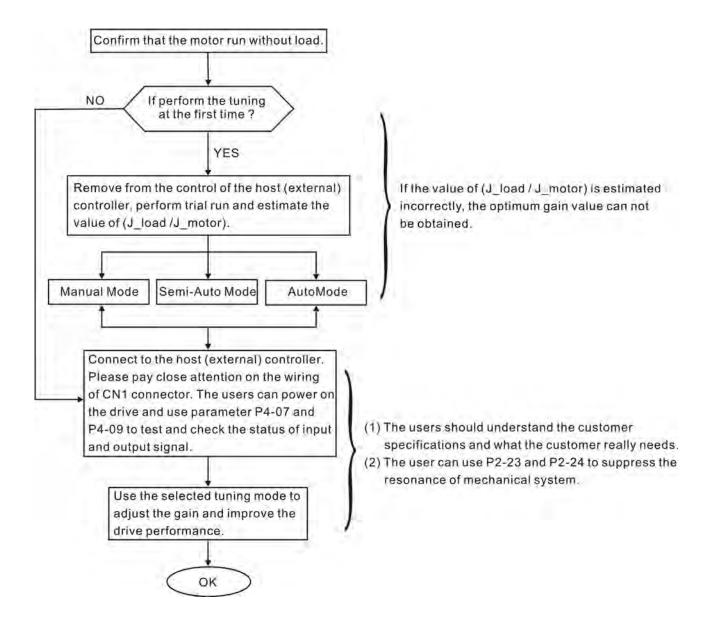
All the digital inputs of Delta ASDA-A2 series are user-defined, and the users can set the DI signals freely. Ensure to refer to the definitions of DI signals before defining them (For the description of DI signals, please refer to Table 8.A in Chapter 8). If any alarm code displays after the setting is completed, the users can restart the drive or set DI5 to be activated to clear the fault. Please refer to section 5.2. For the information of wiring diagrams, please refer to Section 3.10.2 (Wiring of position (PR) control mode). Because POS2 is not the default DI, the users need to change the value of parameter P2-14 to 113.

Please refer to the following table for 64 groups of position commands and position command selection from POS0 to POS5.

Position Command	POS5	POS4	POS3	POS2	POS1	POS0	CTRG	Parameters
P1	0	0	0	0	0	0	†	P6-00
PI	U	U	U	0	U	0		P6-01
כח	0	0	0	0	0	1	†	P6-02
P2	0	0	0	0	0	1		P6-03
~								~
DEO	1	1	0	0	1	0	†	P6-98
P50	1	1	0	0	1	0		P6-99
DE 1	-	-	0	0	-	-	†	P7-00
P51	1	1	0	0	1	1		P7-01
~								~
P64	1	1	1	1	1	1	†	P7-26
70 4	ı	l	I	l	l	1		P7-27

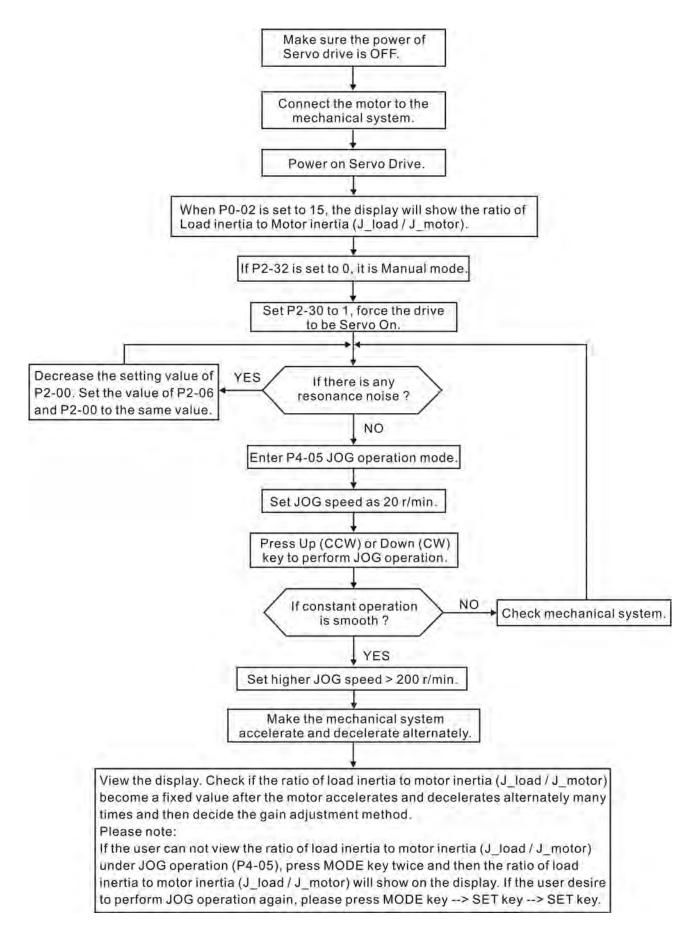
0: indicates OFF (Normally Open); 1: indicates ON (Normally Closed)

The users can set the value of these 64 groups of commands (P6-00 \sim P7-27) freely. The command can be absolute position command as well.


5-12 Revision September 2012

5.6 Tuning Procedure

Table 5.A Estimate the ratio of Load Inertia to Servo Motor Inertia (J_load /J_motor): JOG Mode


	Tuning Procedure	Display
1.	After wiring is completed, when power in connected to the AC servo drive, the right side display will show on the LCD display.	860 14
2.	Press MODE key to enter into parameter mode.	PO-00
3.	Press SHIFT key twice to select parameter group.	00-59
4.	Press UP key to view each parameter and select parameter P2-17.	P2- :7
5.	Press SET key to display the parameter value as shown on the right side.	: 5
6.	Press SHIFT key twice to change the parameter values. Use UP key to cycle through the available settings and then press SET key to determine the parameter settings.	18 1
7.	Press UP key to view each parameter and select parameter P2-30.	65-30
8.	Press SET key to display the parameter value as shown on the right side.	0
9.	Select parameter value 1. Use UP key to cycle through the available settings.	:
10.	At this time, the servo drive is ON and the right side display will appear next.	0
11.	Press DOWN key three times to select the ratio of Load Inertia to Servo Motor Inertia (J_load /J_motor).	JL
12.	Display the current ratio of Load Inertia to Servo Motor Inertia (J_load /J_motor). (5.0 is default setting.)	5.0
13.	Press MODE key to select parameter mode.	P2-30
14.	Press SHIFT key twice to select parameter group.	P4-00
15.	Press UP key to select user parameter P4-05.	P4-05
16.	Press SET key and JOG speed 20 r/min will be displayed. Press UP and DOWN key to increase and decrease JOG speed. To press SHIFT key one time can add one digit number.	200
17.	Select desired JOG speed, press SET key and it will show the right side display.	- 200
18.	Pressing UP key is forward rotation and pressing DOWN key is reverse rotation.	ition.
	Execute JOG operation in low speed first. After the machine is running sme execute JOG operation in high speed.	
20.		e continuously and I /J_motor). Then, twice to view the I to a fixed value

5.6.1 Tuning Flowchart

5-14 Revision September 2012

5.6.2 Load Inertia Estimation Flowchart

5.6.3 Auto Mode Tuning Flowchart

Set P2-32 to 1 (1: Auto Mode [Continuous adjustment])

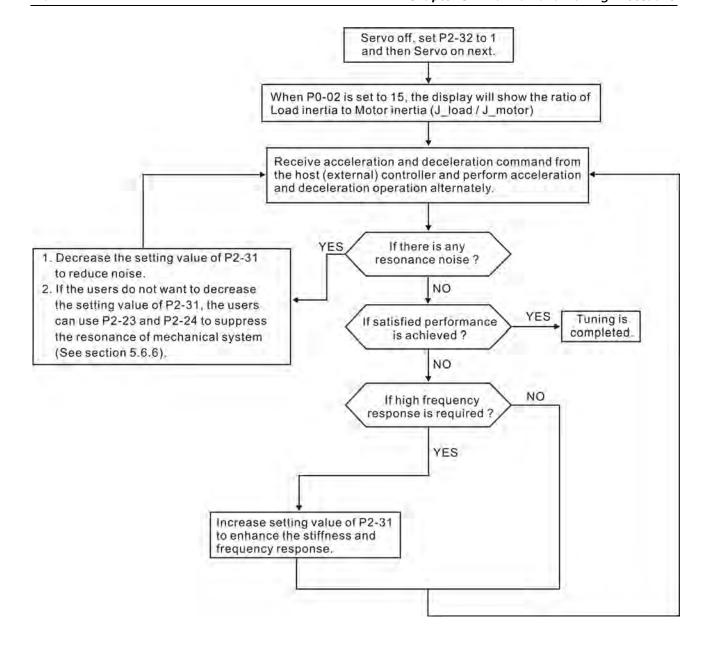
The servo drive will continuously estimate the system inertia, save the measured load inertia value automatically and memorized in P1-37 every 30 minutes by referring to the frequency response settings of P2-31.

P2-31: Auto Mode Stiffness Setting (Default setting: 80)

In Auto mode and Semi-Auto mode, the speed loop frequency response settings are as follows:

1 ~ 50Hz : Low stiffness and low frequency response

51 ~ 250Hz : Medium stiffness and medium frequency response


251 ~ 850Hz : High stiffness and high frequency response

851 ~ 1000Hz : Extremely high stiffness and extremely high frequency response

Adjust P2-31: Increase the setting value of P2-31 to enhance the stiffness or reduce the noise.

Continuously perform the adjustment until the satisfactory performance is achieved.

5-16 Revision September 2012

5.6.4 Semi-Auto Mode Tuning Flowchart

Set P2-32 to 2 (2: Semi-Auto Mode [Non-continuous adjustment])

The servo drive will continuously perform the adjustment for a period of time. After the system inertia becomes stable, it will stop estimating the system inertia, save the measured load inertia value automatically, and memorized in P1-37. When switching from other modes, such as Manual Mode or Auto Mode, to Semi-Auto Mode, the servo drive will perform continuous adjustment for estimating the load inertia (P1-37) again. The servo drive will refer to the frequency response settings of P2-31 when estimating the system inertia.

P2-31: Auto Mode Stiffness Setting (Default setting: 80)

In Auto mode and Semi-Auto mode, the speed loop frequency response settings are as follows:

1 ~ 50Hz : Low stiffness and low frequency response

51 ~ 250Hz : Medium stiffness and medium frequency response

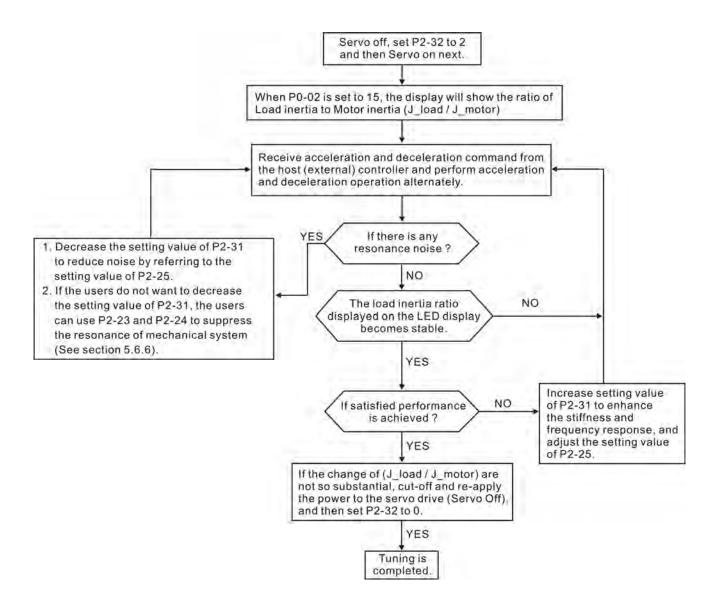
251 ~ 850Hz : High stiffness and high frequency response

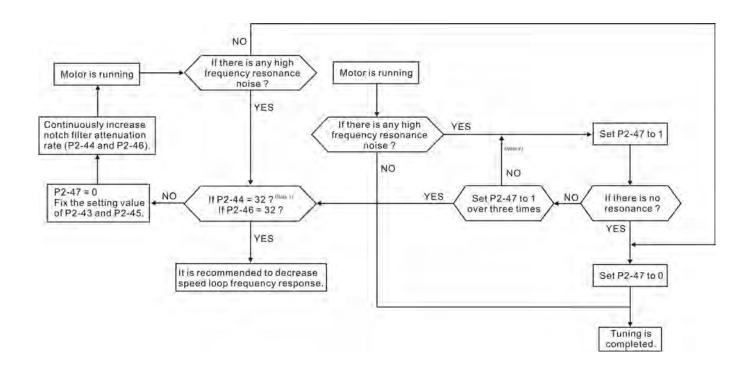
851 ~ 1000Hz: Extremely high stiffness and extremely high frequency response

Adjust P2-31: Increase the setting value of P2-31 to enhance the frequency response or reduce the noise.

Continuously perform the adjustment until the satisfactory performance is achieved.

5-18 Revision September 2012

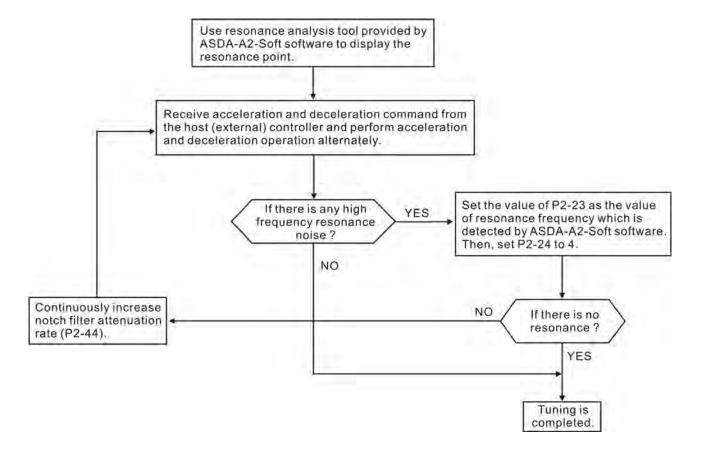



- 1) When bit0 of P2-33 is set to 1, it indicates that the system inertia estimation of semi-auto mode has been completed and the measured load inertia value is saved and memorized in P1-37 automatically.
- 2) If reset bit0 of P2-33 to 0, it will start estimating the system inertia again.

5.6.5 Limit of Load Inertia Estimation

The accel. / decel. time for reaching 2000r/min must be below 1 second. The rotation speed must be above 200 r/min. The load inertia must be 100 multiple or less of motor inertia. The change of external force and the inertia ratio can not be too much. In Auto Mode (P2-32 is set to 1), the measured load inertia value will be saved automatically and memorized in P1-37 every 30 minutes. In Semi-Auto Mode, it will stop estimating the load inertia after a period of continuous adjustment time when the system inertia becomes stable. The measured load inertia value will be saved automatically and memorized in P1-37 when load inertia estimation is stopped.

5-20 Revision September 2012



- 1) Parameters P2-44 and P2-46 are used to set notch filter attenuation rate. If the resonance can not be suppressed when the setting values of P2-44 and P2-46 are set to 32bB (the maximum value), please decrease the speed loop frequency response. After setting P2-47, the users can check the setting values of P2-44 and P2-46. If the setting value of P2-44 is not 0, it indicates that one resonance frequency exists in the system and then the users can read P2-43, i.e. the frequency (unit is Hz) of the resonance point. When there is any resonance point in the system, its information will be shown in P2-45 and P2-46 as P2-43 and P2-44.
- 2) If the resonance conditions are not improved when P2-47 is set to 1 for over three times, please adjust notch filters (resonance suppression parameters) manually to or eliminate the resonance.

5.6.6 Mechanical Resonance Suppression Method

In order to suppress the high frequency resonance of the mechanical system, ASDA-A2 series servo drive provides three notch filters (resonance suppression parameters) for resonance suppression. Two notch filters can be set to suppress the resonance automatically. If the users do not want to suppress the resonance automatically, these two notch filter can also be set to or eliminate the resonance manually.

Please refer to the following flowchart for manual adjustment.

5-22 Revision September 2012

5.6.7 Relationship between Tuning Modes and Parameters

Tuning Mode	P2-32	AutoSet Parameter	User-defined Parameter	Gain Value
Manual Mode	0 (Default setting)	None	P1-37 (Ratio of Load Inertia to Servo Motor Inertia [J_load / J_motor]) P2-00 (Proportional Position Loop Gain) P2-04 (Proportional Speed Loop Gain) P2-06 (Speed Integral Compensation) P2-25 (Low-pass Filter Time Constant of Resonance Suppression) P2-26 (External Anti-Interference Gain)	Fixed
Auto Mode [Continuous Adjustment]	1	P1-37 P2-00 P2-02 P2-04 P2-06 P2-25 P2-26 P2-49	P2-31 (Auto Stiffness and Frequency response Level)	Continuous Adjusting (every 30 minutes)
Semi-Auto Mode [Non-continuous Adjustment]	2	P1-37 P2-00 P2-02 P2-04 P2-06 P2-25 P2-26 P2-49	P2-31 (Auto Stiffness and Frequency response Level)	Non- continuous Adjusting (stop after a period of time)

When switching mode #1 to #0, the setting value of P2-00, P2-02, P2-04, P2-06, P2-25, P2-26 and P2-49 will change to the value that measured in #1 auto-tuning mode.

When switching mode #2 to #0, the setting value of P2-00, P2-02, P2-04, P2-06, P2-25, P2-26 and P2-49 will change to the value that measured in #2 semi-auto tuning mode.

5.6.8 Gain Adjustment in Manual Mode

The position and speed frequency response selection is depending on and determined by the the control stiffness of machinery and conditions of applications. Generally, high reponsiveness is essential for the high frequency positioning control of mechanical facilities and the applications of high precision process system. However, the higher frequency response may easily result in the resonance of machinery system. Therefore, for the applications of high frequency response, the machinery system with control stiffness is needed to avoid the resonance. Especially when adjusting the frequency response of unfamiliar machinery system, the users can gradually increase the gain setting value to improve frequency response untill the resonance occurs, and then decrease the gain setting value. The relevant parameters and gain adjusting methods are described as follows:

■ KPP, Parameter P2-00 Proportional Position Loop Gain

This parameter is used to determine the frequency response of position loop (position loop gain). It could be used to increase stiffness, expedite position loop response and reduce position error. When the setting value of KPP is higher, the response to the position command is quicker, the position error is less and the settling time is also shorter. However, if the setting value is over high, the machinery system may generate vibration or noise, or even overshoot during positioning. The position loop frequency response is calculated as follows:

Position Loop Frequency Response (Hz) =
$$\frac{\text{KPP}}{2\pi}$$

■ KVP, Parameter P2-04 Proportional Speed Loop Gain

This parameter is used to determine the frequency response of speed loop (speed loop gain). It could be used to expedite speed loop response. When the setting value of KVP is higher, the response to the speed command is quicker. However, if the setting value is over high, it may result in the resonance of machinery system. The frequency response of speed loop must be higher than the 4~6 times of the frequency response of position loop. If frequency response of position loop is higher than the frequency response of speed loop, the machinery system may generate vibration or noise, or even overshoot during positioning. The speed loop frequency response is calculated as follows:

Speed Loop Frequency Response $f_V = (\frac{KVP}{2\pi})X[\frac{(1+P1-37/10)}{(1+JL/JM)}]Hz$ P1-37: 0.1 times

5-24 Revision September 2012

When the value of P1-37 (no matter it is the measured load inertia value or the set load inertia value) is equal to the actual load inertia value, the actual speed loop frequency response will be:

$$f_V = \frac{KVP}{2\pi} Hz$$

■ KVI, Parameter P2-06 Speed Integral Compensation

If the setting value of KVI is higher, the capability of decreasing the speed control deviation is better. However, if the setting value is over high, it may easily result in the vibration of machinery system. The recommended setting value is as follows:

KVI (Parameter P2-06) ≤ 1.5 x Speed Loop Frequency Response

■ NLP, Parameter P2-25 Low-pass Filter Time Constant of Resonance Suppression

When the value of (J_load / J_motor) is high, the frequency response of speed loop may decrease. At this time, the users can increase the setting value of KVP (P2-04) to keep the frequency response of speed loop. However, when increasing the setting value of KVP (P2-04), it may easily result in the vibration of machinery system. Please use this parameter to suppress or eliminate the noise of resonance. If the setting value of NLP is higher, the capability of improving the noise of resonance is better. However, if the setting value is over high, it may easily lead to the instability of speed loop and overshoot of machinery system.

The recommended setting value is as follows:

NLP (Parameter P2-25)
$$\leq \frac{1000}{6 \times \text{Speed Loop Frequency Response (Hz)}}$$

■ DST, Parameter P2-26 External Anti-Interference Gain

This parameter is used to enhance the anti-interference capability and reduce the occurrence of overshoot. The default setting is 0 (Disabled). It is not recommended to use it in manual mode only when performing a few tuning on the value gotten through P2-32 Auto Mode.

■ PFG, Parameter P2-02 Position Feed Forward Gain

This parameter is used to reduce position error and shorten the positioning settling time. However, if the setting value is over high, it may easily lead to the overshoot of machinery system. If the value of electronic gear ratio (1-44/1-45) is over than 10, the machinery system may also easily generate vibration or noise.

This page intentionally left blank.

5-26 Revision September 2012

Chapter 6 Control Modes of Operation

6.1 Control Modes of Operation

The Delta ASDA-A2 series can be programmed to provide six single, eight dual modes and two multiple modes of operation. Their operation and description is listed in the following table.

	Mode		Code	Description
	External Position Control	PT	00	Position control for the servo motor is achieved via an external pulse command.
	Internal Position Control	PR	01	Position control for the servo motor is achieved via by internal position commands stored within the servo controller. Execution of the 64 positions is via Digital Input (DI) signals.
	Speed Control	S	02	Speed control for the servo motor can be achieved via parameters set within the controller or from an external analog -10 ~ +10 Vdc command. Control of the internal speed parameters is via the Digital Inputs (DI). (A maximum of three speeds can be stored internally).
Single Mode	Internal Speed Control	Sz	04	Speed control for the servo motor is only achieved via parameters set within the controller. Control of the internal speed parameters is via the Digital Inputs (DI). (A maximum of three speeds can be stored internally).
	Torque Control	Т	03	Torque control for the servo motor can be achieved via parameters set within the controller or from an external analog -10 ~ +10 Vdc command. Control of the internal torque parameters is via the Digital Inputs (DI). (A maximum of three torque levels can be stored internally).
	Internal Torque Control	Tz	05	Torque control for the servo motor is only achieved via parameters set within the controller. Control of the internal torque parameters is via the Digital Inputs (DI). (A maximum of three torque levels can be stored internally).

Mode	Mode	Code	Description
	PT-S	06	Either PT or S control mode can be selected via the Digital Inputs (DI)
	PT-T	07	Either PT or T control mode can be selected via the Digital Inputs (DI).
	PR-S	08	Either PR or S control mode can be selected via the Digital Inputs (DI).
Dual Mode	PR-T	09	Either PR or T control mode can be selected via the Digital Inputs (DI).
	S-T	0A	Either S or T control mode can be selected via the Digital Inputs (DI).
	CANopen	ОВ	CANopen communication control is achieved via the commands from the host (external) controller.
	Reserved	0C	Reserved
	PT-PR	0D	Either PT or PR control mode can be selected via the Digital Inputs (DI).
Multiple Mode	PT-PR-S	0E	Either PT or PR or S control mode can be selected via the Digital Inputs (DI).
	PT-PR-T	0F	Either PT or PR or T control mode can be selected via the Digital Inputs (DI).

The steps of changing mode:

- (1) Switching the servo drive to Servo Off status. Turning SON signal of digit input to be off can complete this action.
- (2) Using parameter P1-01. (Refer to chapter 8).
- (3) After the setting is completed, cut the power off and restart the drive again.

The following sections describe the operation of each control mode, including control structure, command source and loop gain adjustment, etc.

6-2 Revision September 2012

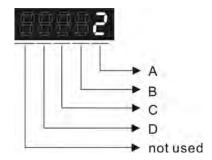
6.2 Position Control Mode

The position control mode (PT or PR mode) is usually used for the applications requiring precision positioning, such as industry positioning machine, indexing table etc. Delta ASDA-A2 series servo drives support two kinds of command sources in position control mode. One is an external pulse train (PT: Position Terminals, External Position Control) and the other is internal parameter (PR: Position Register, i.e. internal parameters P6-00 to P7-27, Internal Position Control). The external pulse train with direction which can control the rotation angle of servo motor. The max. input frequency for the external pulse command is 4MKpps. In order to provide a convenient position control function, Delta servo drive provides 64 internal preset parameters for position control. There are two setting methods of internal parameters, one is to set different position command into these 64 internal parameters before operation and then use POS0~POS5 of DI signals of CN1 to perform positioning control. The other setting method is to use serial communication to change the setting value of these eight internal parameters.

To make the servo motor and load operate more smoothly, Delta servo drive also provide complete Position Spine Line (P-curve) profile for position control mode. For the closed-loop positioning, speed control loop is the principal part and the auxiliary parameters are position loop gain and feed forward compensation. The users can also select two kinds of tuning mode (Manual/Auto modes) to perform gain adjustment. This Section 6.2 mainly describes the applicability of loop gain adjustment and feed forward compensation of Delta servo system.

6.2.1 Command Source of Position (PT) Control Mode

The command source of P mode is external pulse train input form terminals.


There are three types of pulse input and each pulse type is with logic type (positive (+), negative (-)). They all can be set in parameter P1-00. Please refer to the following relevant parameters:

Relevant Parameter:

_				
ΡП		n	n	\mathbf{A}
П	_	v	v	,

PTT	External Pulse Input T	ernal Pulse Input Type					
Operat	ion keypad/Software	Communication	Related Section:				
Interfa	ice:	:	Section 6.2.1				
Defa	ult: 0x2		: : :				
Con Mo	trol de: PT						
U	nit: -						
Ran	ge: 0 ~ 1132		- 1 - 1 - 1				
Data Si	ize: 16-bit						
Disp Form	olay nat::Hexadecimal						

Settings:

A: Input pulse type

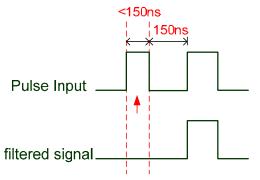
0: AB phase pulse (4x) (Quadrature Input)

1: Clockwise (CW) + Counterclockwise(CCW) pulse

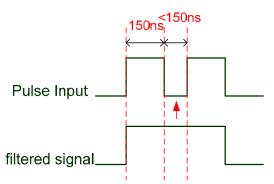
2: Pulse + Direction

3: Other settings: Reserved

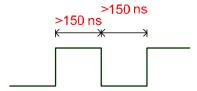
B: Input pulse filter


This setting is used to suppress or reduce the chatter caused by the noise, etc. However, if the instant input pulse filter frequency is over high, the frequency that exceeds the setting value will be regarded as noise and filtered.

Setting Value	Low-speed Filter Frequency (Min. Filter Frequency (see note 1))	Setting Value	High-speed Filter Frequency (Min. Filter Frequency (See note 1))
0	0.83Mpps (600ns)	0	3.33Mpps (150ns)
1	208Kpps (2.4us)	1	0.83Mpps (600ns)
2	104Kpps (4.8us)	2	416Kpps (1.2us)
3	52Kpps (9.6us)	3	208Kpps (2.4us)
4	No Filter Function	4	No Filter Function

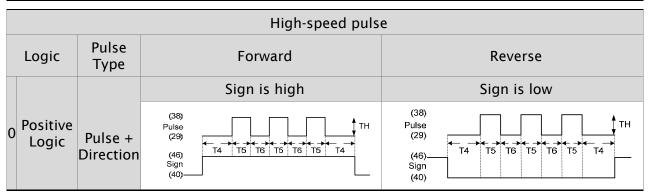

Revision September 2012

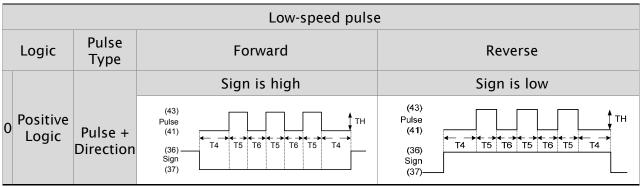
Please note:


1. When the source of pulse command is the high-speed linear driver signal and the setting value B is set to 0 (High-speed Filter Frequency is 3.33Mpps):

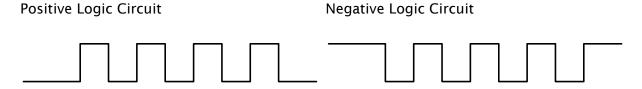
When this pulse frequency is less than 150 ns, this signal will be regarded as a low-level pulse and two input pulses will be regarded as one input pulse.

When this pulse frequency is less than 150 ns, this signal will be regarded as a high-level pulse and two input pulses will be regarded as one input pulse.


When the pulse frequencies of high-level duty and low-level duty both are greater than 150 ns, the signal will not be filtered (that is, the pulse command will pass through).


If an input pulse of 2~4MHz is used, it is recommended to change the setting value B (Input pulse filter) and set this setting value to 4. Please note that this function is available for DSP version V1.036 sub05, CPLD version V10 and later models only.

Note: If the signal is a 4Mpps high input pulse, setting the value B to 4 is able to ensure that the signal will not be filtered and will be certainly delivered.


C: Input polarity

	High-speed pulse and Low-speed pulse					
Logic	Pulse Type	Forward	Reverse			
		Pulse Phase-Lead	Pulse Phase-Lag			
O Positive	AB phase pulse	(38) Pulse (29) (46) Sign (40)	(38) Pulse (29) (46) Sign (40)			
Logic	CW + CCW pulse	(38) Pulse (29) (46) Sign (40)	T3 T2 T2 T2 T2 T2 T2 TT			

In digital electronics, logic circuits are generally divided into two classes according to their polarity - positive logic and negative logic. With reference to positive logic, logical 1 state represents the high voltage level and logic 0 represents the low voltage level. With reference to negative logic, logical 1 state represents the low voltage level and logic 0 state represents the high voltage level.

Revision September 2012

Pulse specification		Max.	Min. time width					
		input pulse frequency	TI	T2	Т3	T4	T5	Т6
High-speed pulse	Line driver	4Mpps	62.5ns	125ns	250ns	200ns	125ns	125ns
Line Low-speed driver		500Kpps	0.5µs	1µs	2µs	2µs	1µs	1µs
pulse	Open collector	200Kpps	1.25µs	2.5µs	5µs	5µs	2.5µs	2.5µs

Pulse specification		Max. input pulse frequency	Voltage specification	Forward specification
High-speed pulse	High-speed pulse Line driver		5V	< 25mA
Low speed pulse	Line driver	500Kpps	2.8V ~ 3.7V	< 25mA
Low-speed pulse	Open collector	200Kpps	24V (Max.)	< 25mA

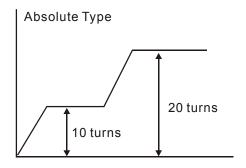
D: Source of pulse command

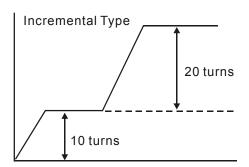
Setting value	Input pulse interface	Remark
0	Open collector for low-speed pulse	CN1 Terminal Identification: PULSE, SIGN
1	l line driver for high-speed pulse	CN1 Terminal Identification: HPULSE, HSIGN

Position pulse can be input from these terminals, /PULSE (41), PULSE (43), HPULSE (38), /HPULSE (29), /SIGN (37), SIGN (36) and HSIGN (46), /HSIGN (40). It can be an open-collector circuit or line driver circuit. For the detail wiring, please refer to 3.10.1.

6.2.2 Command Source of Position (PR) Control Mode

The command sources of PR mode are (P6-00, P6-01) ~ (P7-26, P7-27) these 64 built-in parameters. Using with external I/O signals (CN1, POS 0 to POS 5 and CTRG) can select one of the 64 built-in parameters to be position command. Please refer to the table below:

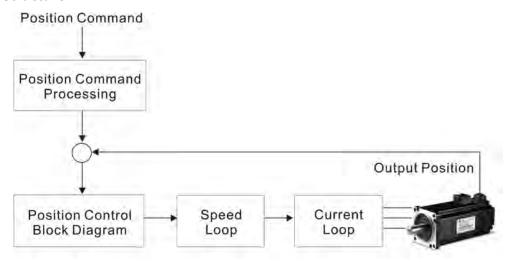

Position Command	POS5	POS4	POS3	POS2	POS1	POS0	CTRG	Parameters										
D1	ON	ON	ON	ON	ON	ON	†	P6-00										
P1	ON	ON	ON	ON	UN	ON	l	P6-01										
D2	ON	ON	ON	ON	ON	OFF	†	P6-02										
P2	ON	ON	ON	ON	ON	OFF	l	P6-03										
~								~										
DEO	OFF	OFF	ON	ON	OFF ON	ON	†	P6-98										
P50	OFF	OFF	ON	ON	OFF	ON	l	P6-99										
DE 1	OFF	OFF	ON	ON	OFF	OFF	†	P7-00										
P51	OFF	OFF	ON	ON	OFF OFF		OFF OFF	OFF OFF	JN OFF O	OFF	OFF OFF			OH	TT OFF	OFF OFF	l	P7-01
~								~										
D6.4	OFF	OFF	OFF	OFF	- OFF OFF †	†	P7-26											
P64	OFF	OFF	OFF	UFF	OFF	OFF	1	P7-27										


State of POS0~5: 0 indicates the contact is OFF (Normally Open)

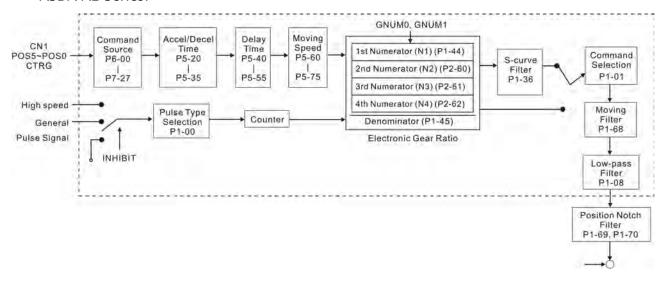
1 indicates the contact is ON (Normally Closed)

CTRG[†]: the instant time when the contact changes from 0 (open) to 1 (closed).

The application of absolute and incremental position control is various and multiple. This kind of position control is equal to a simple sequence control. Users can easily complete the cycle running by using the above table. For example, the position command, P1 is 10 turns and P2 is 20 turns. Give the position command P1 first and then give the position command P2. The difference between absolute and incremental position control is shown as the figure below:

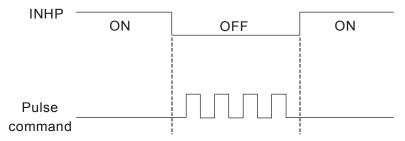


Revision September 2012

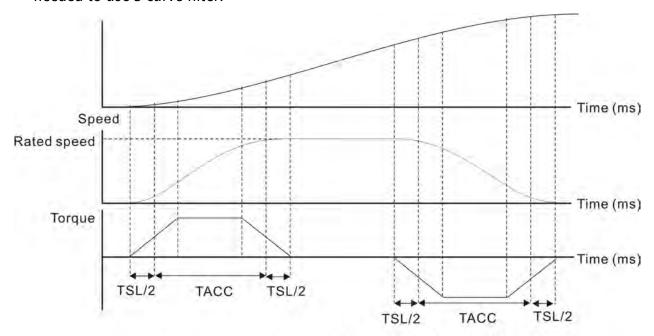

6.2.3 Structure of Position Control Mode

Basic Structure:

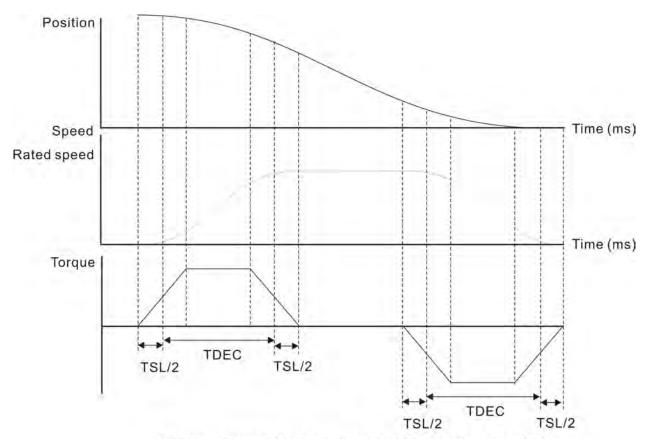
In order to pursue the goal of perfection in position control, the pulse signal should be modified through position command processing and the structure is shown as the figure below:


ASDA-A2 Series:

Using parameter can select PR mode and PT mode. Electronic gear ratio can be set in both two modes to set proper position revolution. ASDA-A2 series servo drives also provide Scurve and low-pass filter, which are used whenever the motor and load need to be operated more smoothly. As for the information of electronic gear ratio, S-curve and low-pass filter, please refer to the following sections 6.2.4, 6.2.5 and 6.2.6.


Pulse Inhibit Input Function (INHIBIT)

This function is activated via digital inputs (Please refer to parameter P2-10 \sim P2-17 and DI INHP in Table 8.A). When the drive is in position mode, if INHP is activated, the external pulse input command is not valid and the motor will stop (Please note that only DI8 supports this function).


6.2.4 S-curve Filter for Position Control

The S-curve filter is for the position smoothing of motion command. Using S-curve filter can run the servo motor more smoothly in response to a sudden position command. Since the speed and acceleration curve are both continuous and the time for the servo motor to accelerate is short, using S-curve filter not only can improve the performance when servo motor accelerate or decelerate but also can make motor to operate more smoothly (from mechanical view). When the load is change, the motor usually run not smoothly when starts to run and stop due to the friction and inertia change. At this moment, users can increase Accel/Decel S-curve constant (TSL), Accel time constant (TACC) and Decel time constant (TDEC) to improve the performance. Because the speed and angle acceleration are continuous when position command is changed to pulse signal input, so it is not needed to use S-curve filter.

S-curve characteristics and Time relationship (Acceleration)

6-10 Revision September 2012

S-curve characteristics and Time relationship (Deceleration)

Relevant Parameters:

34	TACC	Acceleration Time		Address: 0144H 0145H
	Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: Section 6.3.3
	Defa	ult: 200		: :
	Con Mo	trol ode: S		
	U	nit: ms		
	Ran	ige: 1 ~ 65500		
	Data S	ize: 16-bit		· · · · · · · · · · · · · · · · · · ·
	Disp Forn	olay:		

Settings:

This parameter is used to determine the acceleration time to accelerate from 0 to its rated motor speed. The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Please note:

1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.

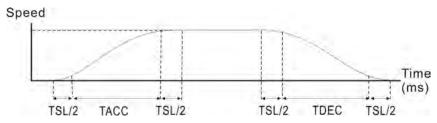
2. When the source of speed command is analog command, the maximum setting value of P1-34 is limited to 20000 automatically.

TDEC	Deceleration Time		Address: 0146H 0147H
Opera Interf	tion ace: Keypad/Software	Related Section: Section 6.3.3	
Defa	ult: 200		
Con Mo	itrol ode: S		
L	Jnit: ms		
Rar	nge::1 ~ 65500		•
Data S	ize: 16-bit		
Dis _l Forr	play mat: Decimal		

Settings:

This parameter is used to determine the acceleration time to accelerate from 0 to its rated motor speed. The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Please note:


- 1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.
- 2. When the source of speed command is analog command, the maximum setting value of P1-35 is limited to 20000 automatically.

P1-36	TSL	Accel /Decel S-curve		Address: 0148H 0149H
	Operat	tion ace: Keypad/Software	Communication	Related Section:
	Interfa	ace:	:	Section 6.3.3
	Defa	ıult: 0		:
	Con Mc	trol ode: S, PR		
	U	Init: ms		
	Ran	nge: 0 ~ 65500 (0: Disal	oled)	
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to make the motor run more smoothly when startup and windup. Using this parameter can improve the motor running stability.

Revision September 2012

TACC: P1-34, Acceleration time

TDEC: P1-35, Deceleration time

TSL: P1-36, Accel /Decel S-curve

Total acceleration time = TACC + TSL

Total deceleration time = TDEC + TSL

The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Tracking error compensation function:

This function is available in firmware version V1.036 sub00 and later models only.

Function	P1-36 = 0	P1-36 = 1	P1-36 > 1
Accel /Decel S-curve	Disabled	Disabled	Enabled
Track error compensation	Disabled	Enabled	Determined by P2-68 X settings

Please note:

- 1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.
- 2. When the source of speed command is analog command, the maximum setting value of P1-36 is limited to 10000 automatically.

6.2.5 Electronic Gear Ratio

Relevant parameters:

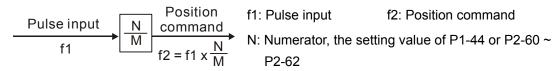
P1-44▲

GR1	Electronic Gear Ratio (Address: 0158H 0159H	
Operat Interfa	ion ce: Keypad/Software	Related Section: Section 6.2.5	
Defa	ult: 128		
Con Mo	trol de: PT, PR		
U	nit: pulse		
Ran	ge: 1 ~ (2 ²⁹ -1)		
Data Si	ize: 32-bit		
Disp Form	olay nat:		

Settings:

This parameter is used to set the numerator of the electronic gear ratio. The denominator of the electronic gear ratio is set by P1-45. P2-60 \sim P2-62 are used to set the additional numberators.

- 1) Please note:
- 1. In PT mode, the setting value of P1-44 can be changed only when the servo drive is enabled (Servo On).
- 2. In PR mode, the setting value of P1-44 can be changed only when the servo drive is disabled (Servo Off).


P1-4 5	GR2	Electronic Gear Ratio (Address: 015AH 015BH	
	Operation Interface: Keypad/Software		Communication	Related Section: Section 6.2.5
	Default: 10			
	Control Mode: PT, PR			
	Unit: pulse			
	Range: 1 ~ (2 ³¹ -1)			
	Data Size: 32-bit			
	Dis _l Forr	play nat: Decimal		

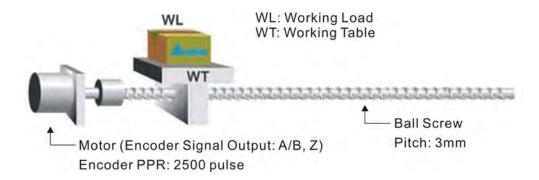
Settings:

This parameter is used to set the denominator of the electronic gear ratio. The numerator of the electronic gear ratio is set by P1-44. P2-60 \sim P2-62 are used to set the additional numberators.

As the wrong setting may cause motor to run chaotically (out of control) and it may lead to personnel injury, therefore, ensure to observe the following rule when setting P1-44, P1-45.

The electronic gear ratio setting (Please also see P1-44, P2-60 ~ P2-62):

M: Denominator, the setting value of P1-45


The electronic gear ratio setting range must be within: 1/50<N/M<25600.

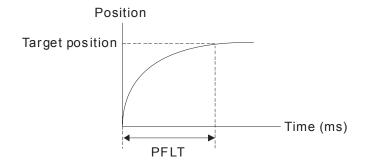
- 2) Please note:
- 1. In PT and PR mode, the setting value of P1-45 can not be changed when the servo drive is enabled (Servo On).

Revision September 2012

The electronic gear function provides easy travel distance ratio change. However, the over high electronic gear ratio will command the motor to move not smoothly. At this time, the users can use low-pass filter parameter to improve this kind of situation. For example, assume that the electronic gear ratio is equal to 1 and the encoder pulse per revolution is 10000ppr, if the electronic gear ratio is changed to 0.5, then the motor will rotate one pulse when the command from external controller is two pulses.

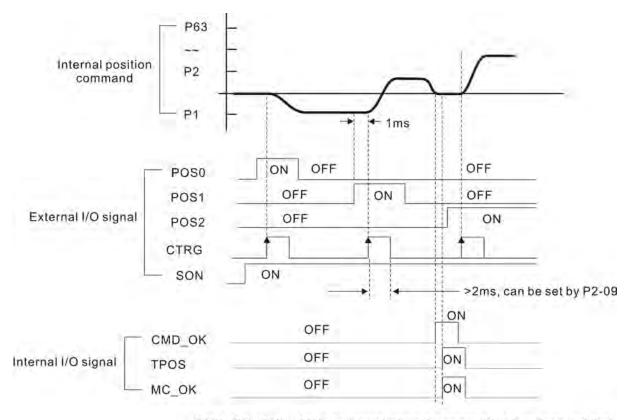
For example, after the proper electronic gear ratio is set, the reference travel distance is 1 μ m/pulse, the machinery will become easier to be used.

	Electronic Gear Ratio	Corresponding travel distance per pulse
When the electronic gear ratio is not used	= 1/1	$=\frac{3x1000}{4x2500}=\frac{3000}{10000} \mu m$
When the electronic gear ratio is not used	$=\frac{10000}{3000}$	=1 μm


6.2.6 Low-pass Filter

Relevant parameters:

P1-08	PFLT	PFLT Smooth Constant of Position Command (Low-pass Filter)		Address: 0110H 0111H
	Opera Interf	tion ace: Keypad/Software	Communication	Related Section: Section 6.2.6
	Defa	ault: 0		
	Con Mo	ntrol pt, PR pde:		
	[Jnit: 10ms		
	Rar	nge: 0 ~ 1000		
	Data S	Size: 16-bit		-
	Dis Forr	play nat: Decimal		
	Sattings	0. Disabled		-


Settings: 0: Disabled

For example: 11=110 msec

6.2.7 Timing Chart of Position (PR) Control Mode

In PR mode, position command source is DI signal from CN1, i.e. selected by POS0~POS5 and CTRG. Please refer to 6-2-2 to see the relationship between DI signals and parameters. The following figure is shown the timing chart of PR mode:

 ${\sf CMD_OK}: {\sf CMD_OK}$ is activated when the servo drive has detected that ${\sf Pr}$ command has been completed

TPOS: TPOS will be activated when the drive detects that the position of the motor is in a -P1-54 to +P1-54 band of the target position.

MC_OK: MC_OK is activated when CMD_OK and TPOS are both ON.

6-16 Revision September 2012

6.2.8 Position Loop Gain Adjustment

Before performing position control (setting position control block diagram), the users should complete the speed control setting by using Manual mode (parameter P-32) since the position loop contains speed loop. Then, adjust the Proportional Position Loop Gain, KPP (parameter P2-00) and Position Feed Forward Gain, PFG (parameter P2-02). Or use Auto mode to adjust the gain of speed and position control block diagram automatically.

- 1) Proportional Position Loop Gain: To increase this gain can enhance the position loop responsiveness.
- 2) Position Feed Forward Gain: To increase this gain can reduce the position track error during operation.

The position loop responsiveness cannot exceed the speed loop responsiveness, and it is recommended that the speed loop responsiveness should be at least four times faster than the position loop responsiveness. This also means that the setting value of Proportional Speed Loop Gain, KVP should be at least four times faster than Proportional Position Loop Gain, KPP.

The equation is shown as follows:

$$fp \le \frac{fv}{4}$$
, fv : Speed Loop Responsiveness (Hz), fp : Position Loop Responsiveness (Hz)
 $KPP = 2 \times \pi \times fp$.

For example, the desired position loop responsiveness is equal to 20 Hz.

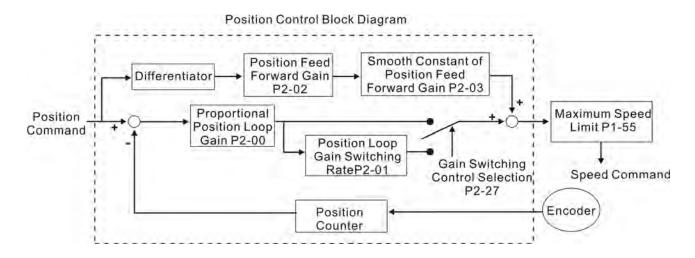
Then, KPP = $2 \times \pi \times 20 = 125$ rad/s.

Relevant parameters:

P2-

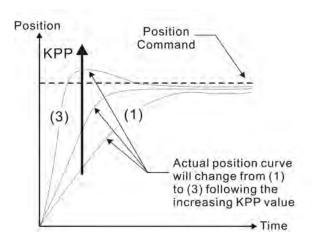
00	KPP	Proportional Position	Address: 0200H 0201H	
		ttion face: Keypad/Software ault: 35	Communication	Related Section: Section 6.2.8
		ntrol ode: PT, PR		
:		Unit: rad/s		
:	Ra	nge: 0 ~ 2047		:
:	Data :	Size: 16-bit		 : :
:	Dis For	play mat: Decimal		

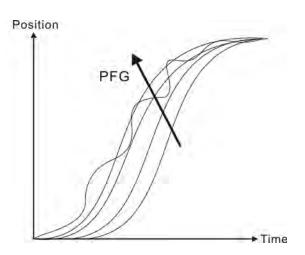
Settings:


This parameter is used to set the position loop gain. It can increase stiffness, expedite position loop response and reduce position error. However, if the setting value is over high, it may generate vibration or noise.

P2-02

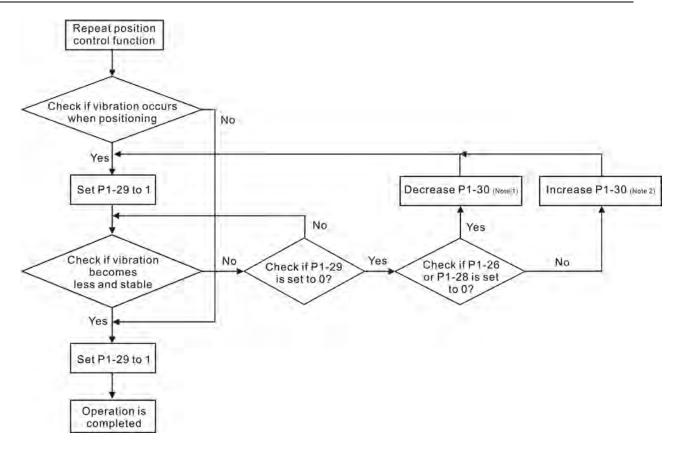
PFG	Position Feed Forward	Address: 0204H 0205H	
Operat Interfa	ion Ace: Keypad/Software	Communication	Related Section: Section 6.2.8
Defa	ult: 50		
Con Mo	trol de: PT, PR		
U	nit: %		
Ran	ge: 0 ~ 100		
Data S	ize: 16-bit		
Disp Forn	olay nat: Decimal		


Settings:


This parameter is used to set the feed forward gain when executing position control command. When using position smooth command, increase gain can improve position track deviation. When not using position smooth command, decrease gain can improve the resonance condition of mechanical system.

When the value of Proportional Position Loop Gain, KPP is too great, the position loop responsiveness will be increased and it will result in small phase margin. If this happens, the rotor of motor will oscillate. At this time, the users have to decrease the value of KPP until the rotor of motor stop oscillating. When there is an external torque command interrupted, over low KPP value will let the motor cannot overcome the external strength and fail to meet the requirement of reasonable position track error demand. Adjust feed forward gain, PFG (P2-02) to efficiently reduce the dynamic position track error.

6-18 Revision September 2012



6.2.9 Low-frequency Vibration Suppression

If the stiffness of the mechanical system is not sufficient, after the positioning command has completed, continuous vibration of the mechanical system may occur still even when the motor has almost stopped. At this time, using low-frequency vibration suppression function can suppress the low-frequency vibration of mechanical system. The range of frequency setting is from 1.0 to 100.0Hz. Besides, two modes (Manual/Auto) of low-frequency vibration suppression function are available for the users to select.

Auto Mode

If the users know the point where the low-frequency occurs, we recommend the users can use this mode to find the low-frequency of the mechanical vibration automatically. When P1-29 is set to 1, the system will disable the filter function and find the vibration frequency of low-frequency automatically. After the detected frequency becomes fixed and stable, the system will set P1-29 to 0, save the first measured low-frequency value automatically into P1-25 and set P1-26 to 1; then save the second measured low-frequency value automatically into P1-27 and set P1-28 to 1. If any low-frequency vibration occurs after P1-29 is set to 0 automatically, please examine if the function of P1-26 or P1-28 is enabled or not. When the setting value of P1-26 or P1-28 is 0, it indicates that there is no frequency is detected. Please decrease the setting value of P1-30 (Low-frequency Vibration Detection Level) and set P1-29 to 1 to find the low-frequency again. Please pay close attention on the setting value of P1-30 as if the setting value of P1-30 is too low, it is easy to regard the interference as the low-frequency and results in erroneous measurement.

Please note:

- 1. When P1-26 and P1-28 are both set to 0, it indicates that the system could not find the frequency. Please check the setting value of P1-30 because when the setting value of P1-30 is too high, it may causes that the frequency becomes difficult to be found.
- 2. When P1-26 and P1-28 are both set to a non-zero value, if the vibration condition can not be improved, please check the setting value of P1-30 as the low setting value of P1-30 may result in erroneous measurement. The system may regard the interference as a low-frequency.
- 3. When the vibration still exists and can not be suppressed after using auto low-frequency vibration suppression function, if the users know the vibration frequency, please set P1-25 and P1-27 manually to improve the vibration condition.

6-20 Revision September 2012

Relevant parameters:

P1-29

	Auto Low-frequency Vi Mode Selection	bration Suppression	Address: 013AH 013BH
Operat Interfa	ion Ice: Keypad/Software	Related Section: Section 6.2.9	
Defa	ult: 0		
Con Mo	trol de: PT, PR		
U	nit: -		
Ran	ge: 0 ~ 1		
Data Si	ize: 16-bit		
Disp Form	olay nat: Decimal		**

Settings:

0: Normal mode (Disable Auto Low-frequency Vibration Suppression Mode).

1: Auto mode (Enable Auto Low-frequency Vibration Suppression Mode).

Explanation:

If P1-29 is set to 0, the setting of low-frequency vibration suppression is fixed and will not change automatically.

If P1-29 is set to 1, when there is no low-frequency vibration or the low-frequency vibration becomes less and stable, the system will set P1-29 to 0, save the measured low-frequency value automatically and memorize it in P1-25.

	-	Λ
-	81	u

Low-frequency Vibration	v-frequency Vibration Detection Level		
on Keypad/Software	Communication	Related Section:	
;		Section 6.2.9	
ılt: 500		:	
rol le: PT, PR			
nit: pulse			
ge: 0 ~ 8000			
	on Keypad/Software ce: Keypad/Software ult: 500 rol PT, PR de: Pt, PR nit: pulse ge: 0 ~ 8000 ze: 16-bit	ult: 500 rol PT, PR de: pulse ge: 0 ~ 8000 ze: 16-bit	

Settings:

When P1-29 is set to 1, the system will find this detection level automatically. If the setting value of P1-30 is too low, the detection of frequency will become sensitive and result in erroneous measurement. If the setting value of P1-30 is too high, although the probability of erroneous measurement will decrease, the frequency will become difficult to be found especially when the vibration of mechanical system is less.

■ Manual Mode

There area two groups of low-frequency vibration suppression parameters. The first group is P1-25 and P1-26 and the second group is P1-27 and P1-28. Using these two groups of parameters can improve the vibration condition of two different low frequencies. P1-25 and P1-26 are used to set the occurred vibration frequency and P1-26 and P1-28 are used to set the frequency response after filter function is used. When the setting values of P1-26 and P1-28 are higher, the performance of frequency response will be better. However, if the setting value is over high, it may affect the motor operation. The default setting of P1-26 and P1-28 are both 0, and it indicates that the low-frequency vibration suppression function is disabled.

Relevant parameters:

P1-25

VSF1	Low-frequency Vibration	on Suppression (1)	Address: 0132H 0133H
Operat Interfa	ion Keypad/Software	Communication	Related Section: Section 6.2.9
;	:- ult::0		_Section 0.2.5
Con Mo	trol pt, PR		
U	nit: 0.1Hz		7 1 2
Ran	ge: 10 ~ 100] :
Data Si	ize∷16-bit] :
Disp Form	olay nat: Decimal		
Input Val Exam	ue ple 150 = 15Hz		

Settings:

This parameter is used to set the first group of the low-frequency of mechanical system. It can be used to suppress the low-frequency vibration of mechanical system. If P1-26 is set to 0, this parameter is disabled.

P1-26	VSG1	Low-frequency Vibratio	Address: 0134H 0135H	
	Operat	Operation Interface: Keypad/Software Communication		Related Section:
	Interfa	ace: The past sorting of		Section 6.2.9
	Defa	ult: 0		1
	Control PT, PR			
	Unit:-			
	Rar	nge: 0 ~ 9 (0: Disable th	e function of P1-25)	
	Data S	ize: 16-bit		
	Disp Forn	play mat: Decimal		

6-22 Revision September 2012

Settings:

This parameter is used to set the vibration suppression gain for P1-25. When the setting value is higher, the position response is quicker. However, if the setting value is over high, it may affect the normal operation of servo motor. It is recommended to set P1-26 as 1.

P1-27	VSF2	Low-frequency Vibration Suppression (2)		Address: 0136H 0137H
	Operat	ion Ace: Keypad/Software	Communication	Related Section:
	Interfa	ice:		Section 6.2.9
	Defa	ult: 1000		
	Con Mo	trol ode: PT, PR		
	U	nit: 0.1Hz		
	Ran	ge: 10 ~ 1000		
	Data S	ize: 16-bit		
	Disp Form	olay nat: Decimal		
	Input Val Exam	lue 150 = 15Hz		

Settings:

This parameter is used to set the second group of the low-frequency of mechanical system. It can be used to suppress the low-frequency vibration of mechanical system. If P1-28 is set to 0, this parameter is disabled.

P1-28	VSG2	ow-frequency Vibratio	on Suppression Gain (2)	Address: 0138H 0139H
	Operation of the contract of t	on ce: Keypad/Software	Communication	Related Section: Section 6.2.9
	Defau	lt: 0		•
	Conti Mod	ol le: PT, PR		
	Un	it:[-		·
	Rang	je: 0 ~ 9 (0: Disable th	e function of P1-27)	- - - -
	Data Siz	ze: 16-bit		72 2 2 2
	Displ Form	ay at: Decimal		

Settings:

This parameter is used to set the vibration suppression gain for P1-27. When the setting value is higher, the position response is quicker. However, if the setting value is over high, it may affect the normal operation of servo motor. It is recommended to set P1-28 as 1.

Please note:

- 1. After the low-frequency vibration is suppressed, the changes of the response may become excessive. Therefore, please ensure that the machine is able to stop any time and ensure the safety of personnel working with the machine when execute low-frequency vibration suppression function.
- 2. The low-frequency vibration suppression function can be enabled only in position control mode (PT, PR or PR-PT mode).
- 3. When the users use resonance suppression function, the resonance condition can be improved immediately after the correct resonance frequency is found. However, when the users use low-frequency vibration suppression function, the vibration of the mechanical system will not be eliminated immediately. The vibration condition is improved gradually after the correct frequency is found. This is because the low-frequency vibration suppression function is not effective for the vibration caused by external force and the vibration occurred before using suppression function.
- 4. After the low-frequency vibration suppression function is enabled, it will certainly affect the original response performance. When the value of the low-frequency is lower, the effect upon the response performance is greater. At this time, the users can adjust the setting value of P1-26 to increase the position response. But, please do not set P1-26 to a higher value. If the setting value of P1-26 is too high, it will affect the motor operation.
- 5. In order to avoid that the vibration frequency may not easily to be found when the commanding time is too fast in Auto mode, we recommend the users can set a longer command delay time. The command can be given after the vibration frequency is found.

6-24 Revision September 2012

6.3 Speed Control Mode

The speed control mode (S or Sz) is usually used on the applications of precision speed control, such as CNC machine, etc. ASDA-A2 series servo drives support two kinds of command sources in speed control mode. One is external analog signal and the other is internal parameter. The external analog signal is from external voltage input and it can control the speed of servo motor. There are two usage of internal parameter, one is set different speed command in three speed control parameters before operation and then using SPD0 and SPD1 of CN1 DI signal perform switching. The other usage is using serial communication to change the setting value of parameter.

Beside, in order to make the speed command switch more smoothly, ASDA-A2 series servo drives also provide complete S-curve profile for speed control mode. For the closed-loop speed control, ASDA-A2 series servo drives provide gain adjustment function and an integrated PI or PDFF controller. Besides, two modes of tuning technology (Manual/Auto) are also provided for the users to select (parameter P2-32).

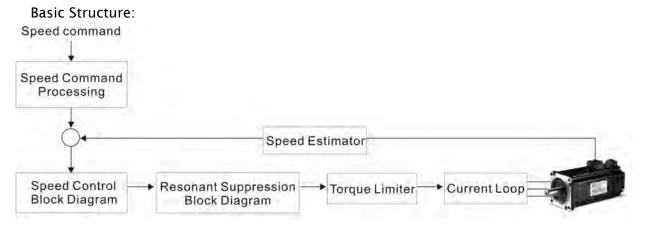
There are two turning modes for gain adjustment: Manual and Auto modes.

- Manual Mode: User-defined loop gain adjustment. When using this mode, all auto and auxiliary function will be disabled.
- Auto Mode: Continuous adjustment of loop gains according to measured inertia, with ten levels of system bandwidth. The parameter set by user is default value.

6.3.1 Command Source of Speed Control Mode

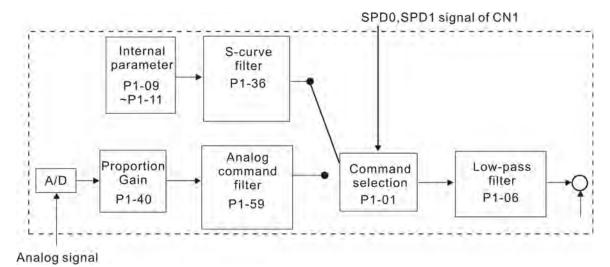
Speed command Sources:

1) External analog signal: External analog voltage input, -10V to +10V


2) Internal parameter: P1-09 to P1-11

Speed Command	CN1 DI	signal SPD0	Command Source		and Source	Content	Range
S1	0	0	0 Mode		External analog signal	Voltage between V-REF- GND	-10 V ~ +10V
				Sz	N/A	Speed command is 0	0
S2	0	1		Internal parameter		P1-09	
S3	1	0	Intern			P1-10	-60000 ~ +60000 r/min
S4	1	1				P1-11	. 33333 17111111

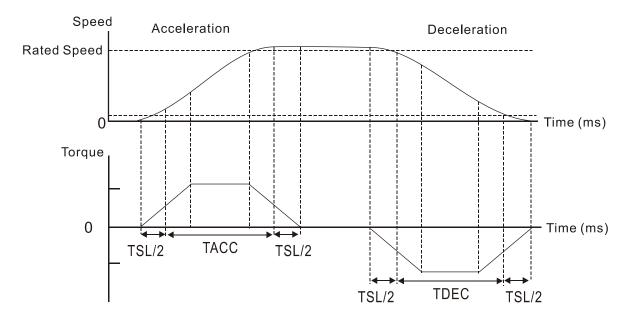
- State of SPD0~1: 0: indicates OFF (Normally Open); 1: indicates ON (Normally Closed)
- When SPD0 and SPD1 are both = 0 (OFF), if the control mode of operation is Sz, then the speed command is 0. Therefore, if the users do not use analog voltage as speed command, the users can choose Sz mode and avoid the zero point drift problem of analog voltage signal. If the speed control mode is S mode, then the command is the analog voltage between V-REF and GND. The setting range of the input voltage is from -10V to +10V and the corresponding motor speed is adjustable (Please see parameter P1-40).
- When at least one of SPD0 and SPD1 is not 0 (OFF), the speed command is internal parameter (P1-09 to P1-11). The command is valid (enabled) after either SPD0 or SPD1 is changed.
- The range of internal parameters is within -60000 \sim +60000 r/min. Setting value = Range x Unit (0.1 r/min). For example, if P1-09 is set to +30000, the setting value = +30000 x 0.1 r/min = +3000 r/min.


The speed command that is described in this section not only can be taken as speed command in speed control mode (S or Sz mode) but also can be the speed limit input command in torque control mode (T or Tz mode).

6.3.2 Structure of Speed Control Mode

In the figure above, the speed command processing is used to select the command source of speed control according to chapter 6.3.1, including proportional gain (P1-40) and S-curve filter smoothing strategy of speed control. The speed control block diagram is used to manage the gain parameters of the servo drive and calculate the current input provided to motor instantaneously. The resonance suppression block diagram is used to suppress the resonance of mechanical system.

6-26 Revision September 2012


The function and structure of speed command processing is shown as the figure below:

The command source is selected according to the state of SPD0, SPD1 and parameter P1-01 (S or Sz). Whenever the command signal needs to be more smoothly, we recommend the users to use S-curve and low-pass filter.

6.3.3 Smoothing Strategy of Speed Control Mode

S-curve Filter

The S-curve filter is a speed smoothing command which provides 3 steps accel / decel S-curve to smooth the speed command change of the motor during acceleration and deceleration. Using S-curve filter can let the servo motor run more smoothly in response to a sudden speed command change. Since the speed and acceleration curve are both continuous, in order to avoid the mechanical resonance and noise may occur due to a sudden speed command (differentiation of acceleration), using S-curve filter not only can improve the performance when servo motor accelerate or decelerate but also can make the motor run more smoothly. S-curve filter parameters include P1-34 Acceleration Time (TACC), P1-35 Deceleration Time (TDEC) and Accel /Decel S-curve (TSL), and the users can use these three parameters to improve the motor performance during acceleration, deceleration and operation. ASDA-A2 series servo drives also support the time calculation of completing speed command. T (ms) is the operation (running) time. S (r/min) is absolute speed command, i.e. the absolute value (the result) after starting speed subtracts the final speed.

S-curve characteristics and Time relationship

Relevant parameters:

P1-34

TACC	Acceleration Time		Address: 0144H 0145H
Operat Interfa	Operation Interface: Keypad/Software Communication		Related Section: Section 6.3.3
Defa	ult: 200		
	trol ode: S		
U	nit: ms		:
Ran	ige: 1 ~ 65500		; : :
Data S	ize: 16-bit		
Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to determine the acceleration time to accelerate from 0 to its rated motor speed. The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Please note:

- 1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.
- 2. When the source of speed command is analog command, the maximum setting value of P1-34 is limited to 20000 automatically.

6-28 Revision September 2012

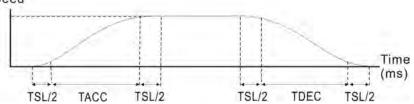
P1-35	TDEC	Deceleration Time		Address: 0146H 0147H
	Operat	ion Reypad/Software	Communication	Related Section:
	Interfa	ice::		Section 6.3.3
	Defa	ult: 200		:
	Con Mo	trol de: S		
	U	nit::ms		
	Ran	ge::1 ~ 65500		- - -
	Data Si	ize: 16-bit		7 : :

Settings:

Display Decimal

This parameter is used to determine the acceleration time to accelerate from 0 to its rated motor speed. The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Please note:


- 1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.
- 2. When the source of speed command is analog command, the maximum setting value of P1-35 is limited to 20000 automatically.

21-36	TSL Accel /Decel S-curve	Address: 0148H 0149H
	Operation Interface: Keypad/Software Communication	Related Section:
	Interface: Keypuay sortware Communication	Section 6.3.3
	Default::0	
	Control Mode: S, PR	
	Unit: ms	
	Range: 0 ~ 65500 (0: Disabled)	
	Data Size: 16-bit	
	Display Format: Decimal	

Settings:

This parameter is used to make the motor run more smoothly when startup and windup. Using this parameter can improve the motor running stability.

Speed

TACC: P1-34, Acceleration time TDEC: P1-35, Deceleration time TSL: P1-36, Accel /Decel S-curve

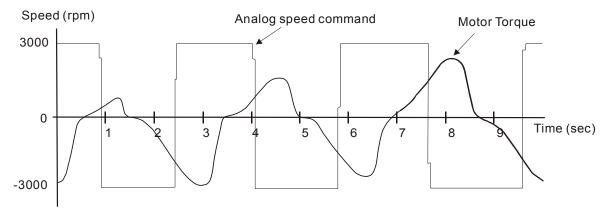
Total acceleration time = TACC + TSL

Total deceleration time = TDEC + TSL

The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Tracking error compensation function:

This function is available in firmware version V1.036 sub00 and later models only.


Function	P1-36 = 0	P1-36 = 1	P1-36 > 1
Accel /Decel S-curve	Disabled	Disabled	Enabled
Track error compensation	Disabled	Enabled	Determined by P2-68 X settings

Please note:

- 1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.
- 2. When the source of speed command is analog command, the maximum setting value of P1-36 is limited to 10000 automatically.

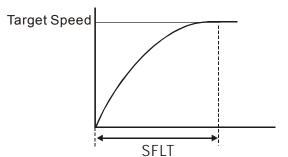
Analog Speed Command S-curve Filter

ASDA-A2 series servo drives also provide Analog Speed Command S-curve Filter for the smoothing in response to a sudden analog input signal.

The analog speed command S-curve filter is for the smoothing of analog input signal and its function is the same as the S-curve filter. The speed and acceleration curve of analog speed command S-curve filter are both continuous. The above figure shows the curve of analog speed command S-curve filter and the users can see the ramp of speed command is different during acceleration and deceleration. Also, the users can see the difference of input command tracking and can adjust time setting by using parameter P1-34, P1-35, P1-36 to improve the actual motor performance according to actual condition.

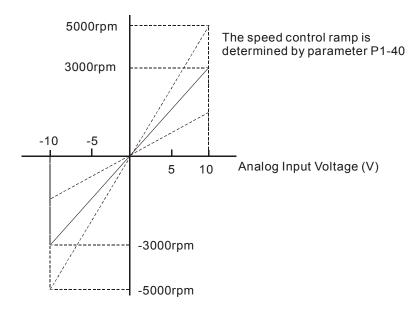
Revision September 2012

Analog Speed Command Low-pass Filter


Analog Speed Command Low-pass Filter is used to eliminate high frequency response and electrical interference from an analog speed command and it is also with smoothing function.

Relevant parameters:

P1-06


SFLT	Accel / Decel Smooth Speed Command (Lov		Address: 010CH 010DH
Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: Section 6.3.3
Defa	ult: 0		:
	trol ode: S		
U	nit: ms		
Ran	ige: 0 ~ 1000 (0: Disabl	ed)	:
Data S	ize: 16-bit		 : :
Disp Forn	olay nat: Decimal		

Settings: 0: Disabled

6.3.4 Analog Speed Input Scaling

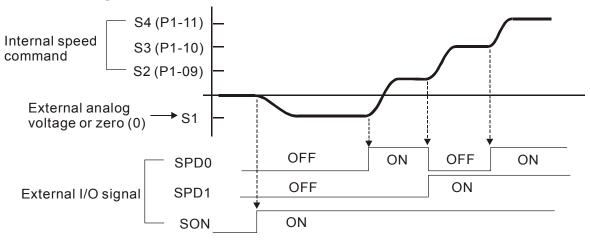
The analog voltage between **V_REF** and **GND** determines the motor speed command. Using with parameter P1-40 (Max. Analog Speed Command) can adjust the speed control ramp and its range.

Relevant parameters:

1-40▲	VCM	Max. Analog Speed Co	mmand or Limit 1	Address: 0150H 0151H
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Section 6.3.4
	Defa	ult: rated speed of con	nected model	:
	Con Mo	trol ode: S, T		
	U	nit: r/min		
	Ran	nge: 0 ~ 50000		
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

Settings:

In **Speed mode**, this parameter is used to set the maximum analog speed command based on the maximum input voltage (10V).

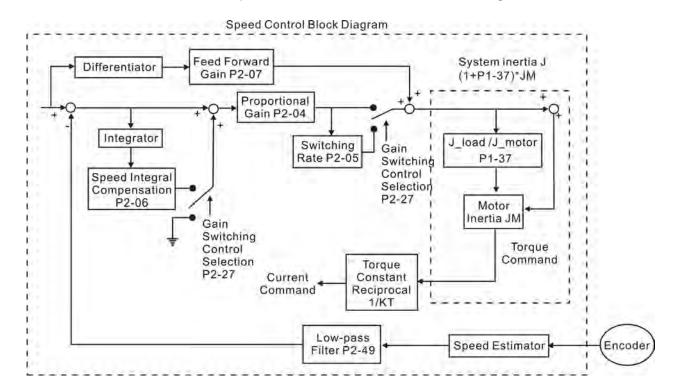

In **Torque mode**, this parameter is used to set the maximum analog speed limit based on the maximum input voltage (10V).

For example, in speed mode, if P1-40 is set to 3000 and the input voltage is 10V, it indicates that the speed command is 3000r/min. If P1-40 is set to 3000, but the input voltage is changed to 5V, then the speed command is changed to 1500r/min.

Speed Command / Limit = Input Voltage Value x Setting value of P1-40 / 10

6-32

6.3.5 Timing Chart of Speed Control Mode



NOTE

- 1) OFF indicates normally open and ON indicates normally closed.
- 2) When speed control mode is Sz, the speed command S1=0; when speed control mode is S, the speed command S1 is external analog voltage input (Please refer to P1-01).
- 3) After Servo ON, the users can select command according to the state of SPD0~1.

6.3.6 Speed Loop Gain Adjustment

The function and structure of **speed control mode** is shown as the figure below:

There are two turning modes of gain adjustment: Manual and Auto modes. The gain of ASDA-A2 series servo drives can be adjusted by using any one of two tuning modes.

- Manual Mode: User-defined loop gain adjustment. When using this mode, all auto and auxiliary function will be disabled.
- Auto Mode: Continuous adjustment of loop gains according to measured inertia, with ten levels of system bandwidth. The parameter set by user is default value.

The mode of gain adjustment can be selected by parameter P2-32:

Relevant Parameter:

	AUT2	Tuning Mode Selectio	n	Address: 0240H 0241H
	Operation Interface: Keypad/Software Co		Communication	Related Section: Section 5.6,
:	Defa	ult: 0		Section 6.3.6
	Con Mo	trol de: ALL		
:	U	nit: N/A		
:	Ran	ge: 0 ~ 2		
:-	Data Si	ize∷16-bit		
	Disp Form	olay nat: Hexadecimal		

Settings:

- 0: Manual mode
- 1: Auto Mode [Continuous adjustment]
- 2: Semi-Auto Mode [Non-continuous adjustment]

Explanation of manual mode:

1. When P2-32 is set to mode#0, the setting value of P2-00, P2-02, P2-04, P2-06, P2-07, P2-25 and P2-26 can be user-defined. When switching mode #1 or #2 to #0, the setting value of P2-00, P2-02, P2-04, P2-06, P2-07, P2-25 and P2-26 will change to the value that measured in #1 auto-tuning mode or #2 semi-auto tuning mode.

Explanation of auto-tuning mode:

The servo drive will continuously estimate the system inertia, save the measured load inertia value automatically and memorized in P1-37 every 30 minutes by referring to the frequency response settings of P2-31.

- 1. When switching mode #1 or #2 to #0, the servo drive will continuously estimate the system inertia, save the measured load inertia value automatically and memorized in P1-37. Then, set the corresponding parameters according to this measured load inertia value.
- 2. When switching mode#0 or #1 to #2, enter the appropriate load inertia value in P1-37.
- 3. When switching mode#1 to #0, the setting value of P2-00, P2-04 and P2-06 will change to the value that measured in #1 auto-tuning mode.

Revision September 2012

Explanation of semi-auto tuning mode:

- 1. When switching mode #2 to #0, the setting value of P2-00, P2-04, P2-06, P2-25 and P2-26 will change to the value that measured in #1 auto-tuning mode.
- 2. After the system inertia becomes stable (The displau of P2-33 will show 1), it will stop estimating the system inertia, save the measured load inertia value automatically, and memorized in P1-37. However, when P2-32 is set to mode#1 or #2, the servo drive will continuously perform the adjustment for a period of time.
- 3. When the value of the system inertia becomes over high, the display of P2-33 will show 0 and the servo drive will start to adjust the load inertia value continuously.

Manual Mode

When Tuning Mode Settings of P2-32 is set to 0, the users can define the proportional speed loop gain (P2-04), speed integral gain (P2-06) feed forward gain (P2-07) and ratio of load inertia to servo motor Inertia (1-37). Please refer to the following description:

- Proportional gain: Adjust this gain can increase the position loop responsiveness.
- Integral gain: Adjust this gain can enhance the low-frequency stiffness of speed loop and eliminate the steady error. Also, reduce the value of phase margin. Over high integral gain will result in the unstable servo system.
- Feed forward gain: Adjust this gain can decrease the phase delay error

Relevant parameters:

P2-04	KVP	Proportional Speed Lo	Address: 0208H 0209H	
	Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: Section 6.3.6
	Defa	ult: 500		
	Cont Mo	trol de: ALL		
	U	nit: rad/s		
	Ran	ge: 0 ~ 8191		:
	Data Si	ze: 16-bit		 : :
	Disp Form	olay nat: Decimal		

Settings:

This parameter is used to set the speed loop gain. When the value of proportional speed loop gain is increased, it can expedite speed loop response. However, if the setting value is over high, it may generate vibration or noise.

P2-06

KVI	Speed Integral Compe	ensation	Address: 020CH 020DH
Operat	ion ace: Keypad/Software	Related Section:	
	;		Section 6.3.6
Defa	ult: 100		:
Con Mo	trol ode: ALL		
U	nit: rad/s		
Ran	ige: 0 ~ 1023		
Data S	ize: 16-bit		
Disp Forn	olay nat: Decimal		

Settings:

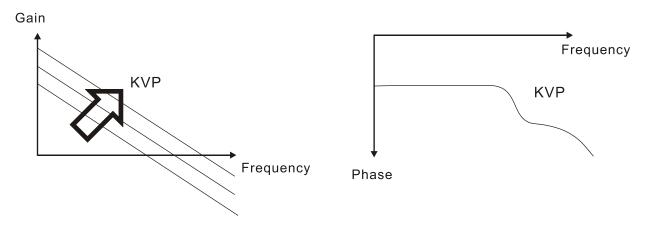
This parameter is used to set the integral time of speed loop. When the value of speed integral compensation is increased, it can improve the speed response ability and decrease the speed control deviation. However, if the setting value is over high, it may generate vibration or noise.

P2-07	KVF	Speed Feed Forward (Address: 020EH 020FH	
	Operation Interface: Keypad/Software		Communication	Related Section: Section 6.3.6
	Def	ault: 0		
	Coi M	ntrol ode: ^{ALL}		
		Unit: 🖔		
	Ra	nge: 0 ~ 100		
	Data 9	Size: 16-bit		
	Dis For	play mat: Decimal		

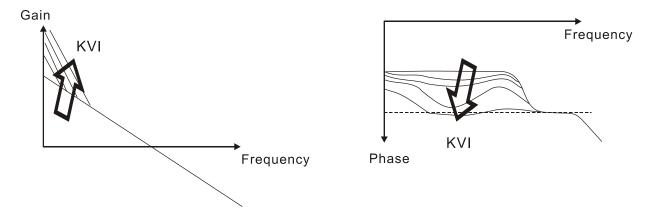
Settings:

This parameter is used to set the feed forward gain when executing speed control command.

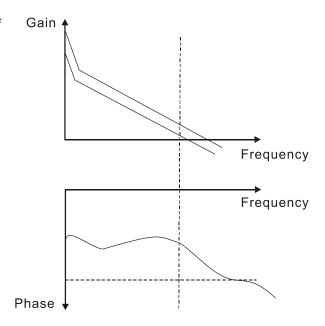
When using speed smooth command, increase gain can improve speed track deviation.


When not using speed smooth command, decrease gain can improve the resonance condition of mechanical system.

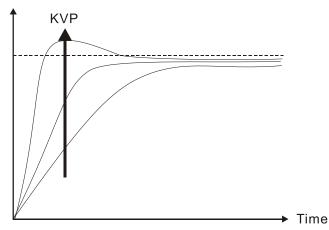
6-36 Revision September 2012


In theory, stepping response can be used to explain proportional gain (KVP), integral gain (KVI) and feed forward gain (KVF). Now we use frequency area and time area respectively to explain the logic.

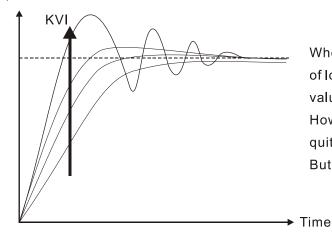
Frequency Domain

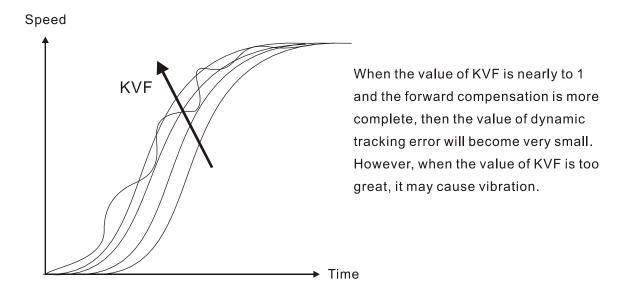

STEP 1: Set the value of KVI=0, the value of KVF=0 and adjust the value of KVP.

STEP 2: Fix the value of KVP and adjust the value of KVI.



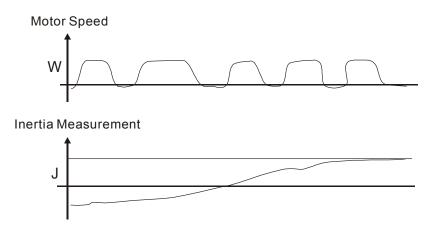
STEP 3: Select the value of KVI, if the value of phase margin is too small, re-adjust the value of KVP again to obtain the value, 45deg of phase margin.


Time Domain


When the value of KVP is greater, the value of the responsiveness is also greater and the raising time is shorter. However, when the value of phase margin is over low, it is not helpful to steady error. But it is helpful to dynamic tracking error.

Speed

When the value of KVI is greater, the value of low-frequency gain is also greater and the value of steady error is nearly zero (0). However, the value of phase margin will reduce quite substantially. It is helpful to steady error. But it is not helpful to dynamic tracking error.


6-38 Revision September 2012

In general, the equipment, such as spectrum analyzer is needed and used to analyze when using frequency domain method and the users also should have this kind of analysis technology. However, when using time domain method, the users only need to prepare an oscilloscope. Therefore, the general users usually use time domain method with the analog DI/DO terminal provided by the servo drive to adjust what is called as PI (Proportional and Integral) type controller. As for the performance of torque shaft load, input command tracking and torque shaft load have the same responsiveness when using frequency domain method and time domain method. The users can reduce the responsiveness of input command tracking by using input command low-pass filter.

Auto Mode (Continuous adjustment))

This Auto Mode provides continuous adjustment of loop gains according to measured inertia automatically. It is suitable when the load inertia is fixed or the load inertia change is small and is not suitable for wide range of load inertia change. The period of adjustment time is different depending on the acceleration and deceleration of servo motor. To change the stiffness and responsiveness, please use parameter P2-31.

6.3.7 Resonance Suppression

The resonance of mechanical system may occur due to excessive system stiffness or frequency response. However, this kind of resonance condition can be improved, suppressed, even can be eliminated by using low-pass filter (parameter P2-25) and notch filter (parameter P2-23, P2-24) without changing control parameter.

Relevant parameters:

P2-23

	NCF1	Notch Filter 1 (Resona	ance Suppression)	Address: 022EH 022FH
	Operat Interfa	Operation Interface: Keypad/Software Commu		Related Section: Section 6.3.7
	Defa	ult: 1000		
:	Con Mo	trol de: ALL		
:	U	nit: Hz		
	Ran	ge: 50 ~ 1000		
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to set first resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system and reduce the vibration of mechanical system.

If P2-24 is set to 0, this parameter is disabled.

The parameters P2-23 and P2-24 are the first group of notch filter parameters and the parameters P2-43 and P2-44 are the second group of notch filter parameters.

P2	Б	2	ı

DPH1	Notch Filter Attenuation Rate 1 (Resonance Suppression)	Address: 0230H 0231H
Operat Interfa	ion Ice: Keypad/Software Communication	Related Section: Section 6.3.7
Defa	ult: 0	· · ·
Con Mo	trol de: ^{ALL}	
U	nit: dB	· · ·
Ran	ge: 0 ~ 32 (0: Disabled)	: : :
Data Si	ze: 16-bit	
Disp Form	play nat: Decimal	

Settings:

This parameter is used to set magnitude of the resonance suppression that is set by parameter P2-23. If P2-24 is set to 0, the parameters P2-23 and P2-24 are both disabled.

6-40

The parameters P2-23 and P2-24 are the first group of notch filter parameters and the parameters P2-43 and P2-44 are the second group of notch filter parameters.

P2-43	NCF2 Notch Fi	Address: 0256H 0257H		
	Operation Interface: Keypa	Related Section: Section 6.3.7		
	Default: 1000			
	Control Mode:			
	Unit: Hz			
	Range∷50 ~			
	Data Size: 16-bi	t		
	Display Format: Decin	nal		

Settings:

This parameter is used to set second resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system and reduce the vibration of mechanical system.

If P2-44 is set to 0, this parameter is disabled.

The parameters P2-23 and P2-24 are the first group of notch filter parameters and the parameters P2-43 and P2-44 are the second group of notch filter parameters.

P2-44	DPH2 Notch Filter Attenuation Rate 2 (Resonance Suppression)	Address: 0258H 0259H
	Operation Interface: Keypad/Software Communication	Related Section: Section 6.3.7
	Default: 0	
	Control Mode: ALL	
	Unit: dB	
	Range: 0 ~ 32	
	Data Size: 16-bit	
	Display Format:	

Settings:

This parameter is used to set magnitude of the resonance suppression that is set by parameter P2-43. If P2-44 is set to 0, the parameters P2-43 and P2-44 are both disabled.

NCF3	Notch Filter 3 (Resona	Address: 025AH 025BH	
Operat Interfa	ion Ice: Keypad/Software	Related Section: Section 6.3.7	
	ult: 1000		
Con Mo	trol de: ALL		
U	nit: Hz		
Ran	ge: 50 ~ 2000		
Data Si	ze: 16-bit		- ¬; :
Disp Form	olay nat: Decimal		

Settings:

This parameter is used to set third resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system and reduce the vibration of mechanical system.

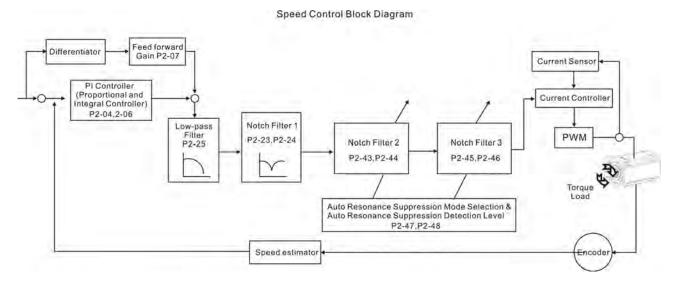
If P2-46 is set to 0, this parameter is disabled.

P2-46

DPH3	Notch Filter Attenuati (Resonance Suppress	Address: 025CH 025DH	
Operat Interfa	ion .ce: Keypad/Software	Communication	Related Section: Section 6.3.7
Defa	ult: 0		: :
Cont Mo	trol de: ALL		
U	nit: dB		
Ran	ge: 0 ~ 32		1 : :
Data Si	ze: 16-bit		
Disp Form	llay nat: Decimal		

Settings:

This parameter is used to set magnitude of the resonance suppression that is set by parameter P2-45. If P2-46 is set to 0, the parameters P2-45 and P2-46 are both disabled.


6-42 Revision September 2012

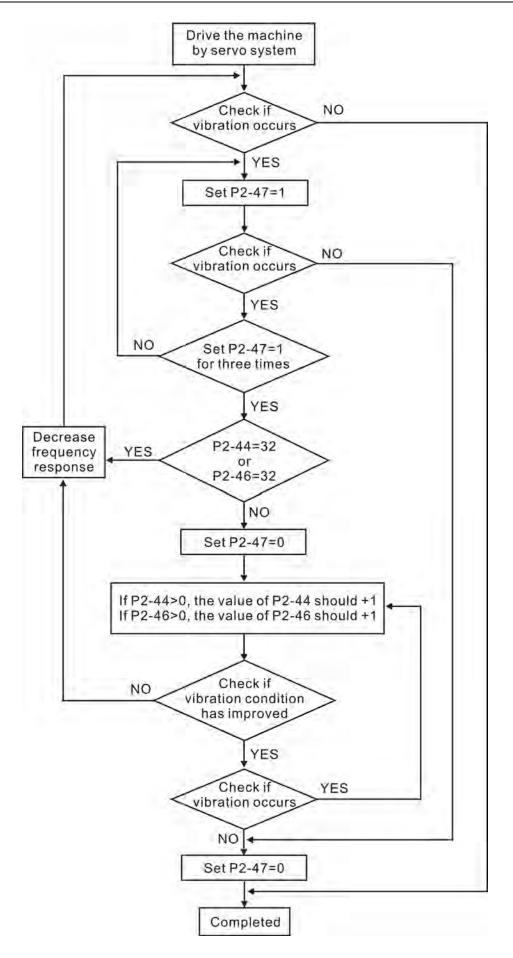
P2-25	NIP	Low-pass Filter Time Co (Resonance Suppression	Address: 0232H 0233H	
	Operat Interfa	ion ce: Keypad/Software	Communication	Related Section: Section 6.3.7
			•	
	Cont Mo	rol de: ALL		
	Uı	nit: 1 ms	0.1 ms	
	Ran	ge: 0.0 ~ 100.0	0 ~ 1000	; ; ;
	Data Si	ze: 16-bit		
		lay One-digit	Decimal	4
	Input Va Examp	lue 1.5 = 1.5 ms	15 = 1.5 ms	

Settings:

This parameter is used to set low-pass filter time constant of resonance suppression.

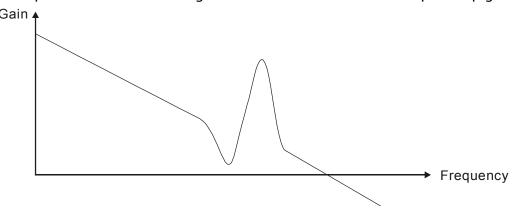
If P2-25 is set to 0, this parameter is disabled.

There are two groups of notch filters provided by ASDA-A2 series. The first group of notch filter is P2-43 and P2-44, and the second group of notch filter is P2-45 and P2-46. When there is resonance, please set P2-47 to 1 or 2 (Auto mode), and then the servo drive will find resonance frequency and suppress the resonance automatically. After suppressing the resonance point, the system will memorize the notch filter frequency into P2-43 and P-45, and memorize the notch filter attenuation rate into P2-44 and P2-46.

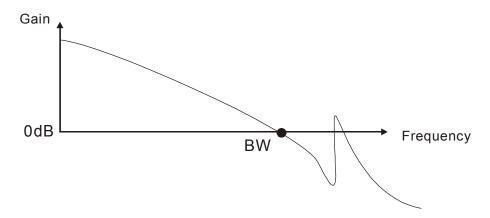

When P2-47 is set to 1, the resonance suppression will be enabled automatically. After the mechanical system becomes stable (approximate 20 minutes), the setting value of P2-47 will return to 0 (Disable auto resonance suppression function). When P2-47 is set to 2, the system will find the resonance point continuously even after the mechanical system becomes stable.

When P2-47 is set to 1 or 2, if the resonance conditions can not be eliminated, we recommend the users to check the settings of P2-44 and P2-46. If either of the setting value of P2-44 and P2-46 is set to 32, please decrease the speed frequency response and estimate the resonance point again. If the resonance conditions can not be eliminated when the setting values of P2-44 and P2-46 are both less than 32, please set P2-47 to 0 first, and increase the setting value of P2-44 and P2-46 manually. If the resonance exists still after increasing the setting value of P2-44 and P2-46, please decrease the value of speed frequency response again and then use the resonance suppression function again.

When increasing the setting value of P2-44 and P2-46 manually, ensure to pay close attention on the setting value of P2-44 and P2-46. If the value of P2-44 and P2-46 is greater than 0, it indicates that the corresponding resonance frequency of P2-43 and P2-45 is found through auto resonance suppression function. If the value of P2-44 and P2-46 is equal to 0, it indicates that the value of P2-43 and P2-45 will be the default value 1000 and this is not the frequency found by auto resonance suppression function. At this time, if the users increase the value of notch filter attenuation rate which does not exist, the performance of the current mechanical system may deteriorate.


Settings of P2-47				
Current Value	Desired Value	Function		
0	1	Clear the setting value of P2-43 ~ P2-46 and enable auto resonance suppression function.		
0	2	Clear the setting value of P2-43 ~ P2-46 and enable auto resonance suppression function.		
1	0	Save the setting value of P2-43 ~ P2-46 and disable auto resonance suppression function.		
1	1	Clear the setting value of P2-43 ~ P2-46 and enable auto resonance suppression function.		
1	2	Do not clear the setting value of P2-43 ~ P2-46 and enable auto resonance suppression function continuously.		
2	0	Save the setting value of P2-43 ~ P2-46 and disable auto resonance suppression function.		
2	1	Clear the setting value of P2-43 ~ P2-46 and enable auto resonance suppression function.		
2	2	Do not clear the setting value of P2-43 ~ P2-46 and enable auto resonance suppression function continuously.		

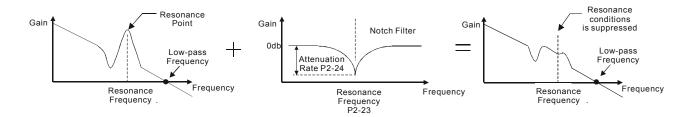
6-44 Revision September 2012



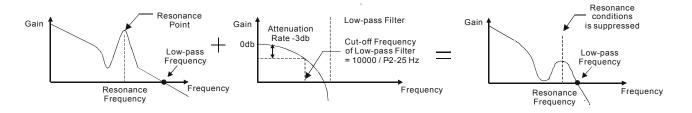
Low-pass filter

Please use parameter P2-25. The figure below shows the resonant open-loop gain.

When the low-pass filter (parameter P2-25) is adjusted from 0 to high value, the value of Low-pass frequency (BW) will become smaller (see the figure below). The resonant condition is improved and the frequency response and phase margin will also decrease.


Notch Filter

Usually, if the users know the resonance frequency, we recommend the users can eliminate the resonance conditions directly by using notch filter (parameter P2-23, P2-24). However, the range of frequency setting is from 50 to 1000Hz only and the range of resonant attenuation is 0~32 dB only. Therefore, if the resonant frequency is out of this range, we recommend the users to use low-pass filter (parameter P2-25) to improve resonant condition.


Please refer to the following figures and explanation to know how to use notch filter and low-pass filter to improve resonant condition.

Revision September 2012

Use Notch Filter to suppress resonance

Use Low-pass Filter to suppress resonance

When the low-pass filter (parameter P2-25) is adjusted from 0 to high value, the value of Low-pass frequency will become smaller (see the figure on page 6-26). The resonant condition is improved but the frequency response and phase margin will also decrease and the system may become unstable. Therefore, if the users know the resonance frequency, the users can eliminate the resonance conditions directly by using notch filter (parameter P2-23, P2-24). Usually, if the resonant frequency can be recognized, we recommend the users can directly use notch filter (parameter P2-23, P2-24) to eliminate the resonance. However, if the resonant frequency will drift or drift out of the notch filter range, we recommend the users not to use notch filter and use low-pass filter to improve resonant conditions.

6.4 Torque Control Mode

The torque control mode (T or Tz) is usually used on the applications of torque control, such as printing machine, spinning machine, twister, etc. Delta ASDA-A2 series servo drives support two kinds of command sources in torque control mode. One is external analog signal and the other is internal parameter. The external analog signal is from external voltage input and it can control the torque of servo motor. The internal parameters are from P1-12 to P1-14 which are used to be the torque command in torque control mode.

6.4.1 Command Source of Torque Control Mode

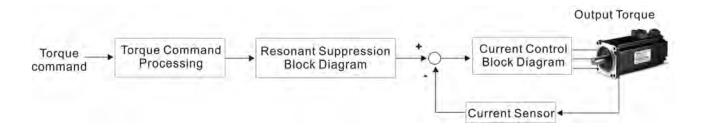
Torque command Sources:

1) External analog signal: External analog voltage input, -10V to +10V

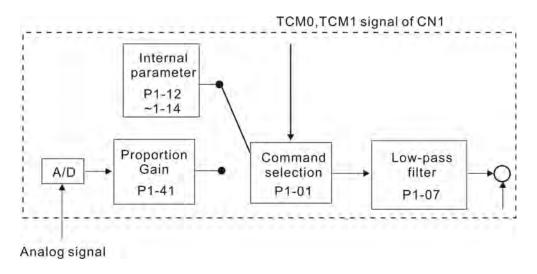
2) Internal parameter: P1-12 to P1-14

The command source selection is determined by the DI signal of CN1 connector.

Torque Command	DI signal of CN1		Command Source		Content	Range	
Command	TCM1	TCM0					
T1	0	0	Mode	Т	External analog signal	Voltage between T-REF-GND	-10V ~ +10V
		Tz	None	Torque command is 0	0		
T2	0	1				P1-12	
Т3	1	0	Internal parameter			P1-13	-300% ~ 300%
T4	1	1		•		P1-14	300%


- State of TCM0~1: 0: indicates OFF (Normally Open); 1: indicates ON (Normally Closed)
- When TCM0 and TCM1 are both 0 (OFF), if the control mode of operation is Tz, then the command is 0. Therefore, if the users do not use analog voltage as torque command, the users can choose Tz mode to operation torque control to avoid the zero point drift problem of analog voltage. If the control mode of operation is T, then the command is the analog voltage between T-REF and GND. The setting range of the input voltage is from -10V to +10V and the corresponding torque is adjustable (see parameter P1-41).
- When at least one of TCM0 and TCM1 is not 0 (OFF), the torque command is internal parameter. The command is valid (enabled) after either TCM0 or TCM1 is changed.

The torque command that is described in this section not only can be taken as torque command in torque control mode (T or Tz mode) but also can be the torque limit input command in position mode (P mode) and speed control mode (S or Sz mode).


Revision September 2012

6.4.2 Structure of Torque Control Mode

Basic Structure:

The toque command processing is used to select the command source of torque control according to chapter 6.4.1, including max. analog torque command (parameter P1-41) and smoothing strategy of torque control mode. The current control block diagram is used to manage the gain parameters of the servo drive and calculate the current input provided to motor instantaneously. As the current control block diagram is too complicated, setting the parameters of current control block diagram is not allowed. The function and structure of torque command processing is shown as the figure below:

The command source is selected according to the state of TCM0, TCM1 and parameter P1-01 (T or Tz). Whenever the command signal needs to be more smoothly, we recommend the users to use proportional gain (scalar) and low-pass filter to adjust torque.

6.4.3 Smoothing Strategy of Torque Control Mode

Relevant parameters:

P1-07

TFLT

Smooth Constant of Analog Torque
Command (Low-pass Filter)

Operation
Interface:

Default: 0

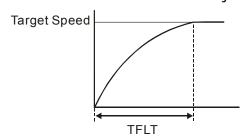
Address: 010EH
010FH

Related Section:
Section 6.4.3

Control T Mode: Unit: ms

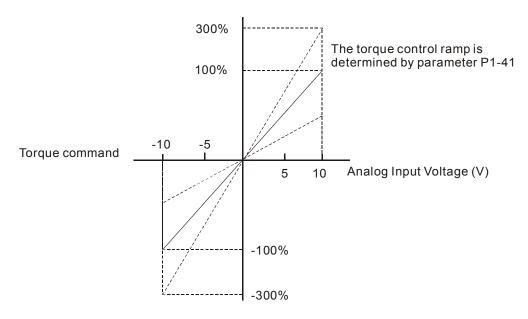
Range:: 0 ~ 1000 (0: Disabled)

Data Size: 16-bit


Display Decimal

Settings:

0: Disabled



1) If the setting value of parameter P1-07 is set to 0, it indicates the function of this parameter is disabled and the command is just By-Pass.

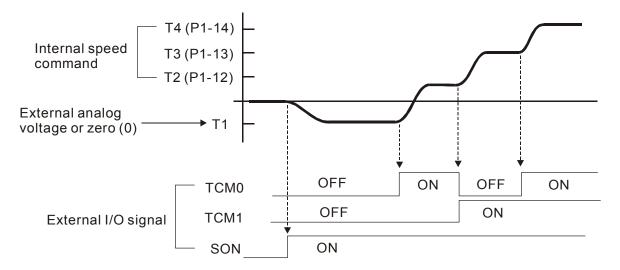
6.4.4 Analog Torque Input Scaling

The analog voltage between T_REF and GND controls the motor torque command. Using with parameter P1-41 can adjust the torque control ramp and its range.

Relevant parameters:

P1-41▲	ТСМ	TCM Max. Analog Torque Command or Limit		Address: 0152H 0153H
	Opera Interf	tion ace: Keypad/Software	Communication	Related Section: Section 6.4.4
	Defa	ault: 100		:
	Cor Mo	ntrol ode: ALL		
	ι	Jnit: %		
	Rar	nge: 0 ~ 1000		
	Data S	Size: 16-bit		:
	Dis Forr	play nat: Decimal		

Settings:


In **Torque mode**, this parameter is used to set the maximum analog torque command based on the maximum input voltage (10V).

In **Position (PT, PR)** and **Speed mode**, this parameter is used to set the maximum analog torque limit based on the maximum input voltage (10V).

For example, in torque mode, if P1-41 is set to 100 and the input voltage is 10V, it indicates that the torque command is 100% rated torque. If P1-41 is set to 100, but the input voltage is changed to 5V, then the torque command is changed to 50% rated torque.

Torque Command / Limit = Input Voltage Value x Setting value of P1-41 / 10

6.4.5 Timing Chart of Torque Control Mode

NOTE

- 1) OFF indicates normally open and ON indicates normally closed.
- 2) When torque control mode is Tz, the torque command T1=0; when torque control mode is T, the speed command T1 is external analog voltage input (Please refer to P1-01).
- 3) After Servo ON, the users can select command according to the state of TCM0~1.

6-52

6.5 Control Modes Selection

Except signal control mode operation, ASDA-A2 series servo drives also provide many dual and multiple modes for the users to select.

1) Speed / Position mode selection: PT-S, PR-S, PT-PR

2) Speed / Torque mode selection: S-T

3) Torque / Position mode selection: PT-T, PR-T

4) Position / Speed multiple mode selection: PT-PR-S

5) Position / Torque multiple mode selection: PT-PR-T

Mode	Name	Code	Description
	PT-S	06	Either PT or S control mode can be selected via the Digital Inputs (DI)
	PT-T	07	Either PT or T control mode can be selected via the Digital Inputs (DI)
Dual Mode	PR-S	08	Either PR or S control mode can be selected via the Digital Inputs (DI)
Dual Mode	PR-T	09	Either PR or T control mode can be selected via the Digital Inputs (DI)
	S-T	0A	Either S or T control mode can be selected via the Digital Inputs (DI)
	PT-PR	0D	Either PT or PR control mode can be selected via the Digital Inputs (DI).
Multiple Mode	PT-PR-S	0E	Either PT or PR or S control mode can be selected via the Digital Inputs (DI).
	PT-PR-T	0F	Either PT or PR or T control mode can be selected via the Digital Inputs (DI).

Sz and Tz mode selection is not provided. In order to avoid using too much DI inputs, we recommend that the users can use external analog signal as input command in speed and torque mode to reduce the use of DI inputs (SPD0~1 or TCM0~1). In position mode, we recommend that the users can use PT mode to input pulse to reduce the use of DI inputs (POS0~5).

Please refer to table 3.B and table 3.C in section 3.3.2 to see the default pin number of DI/DO signal.

6.5.1 Speed / Position Control Mode Selection

PT-S Mode / PR-S Mode:

The command source of PT-S mode is from external input pulse. The command source of PR-S mode is from internal parameters (P6-00 to P7-27). The speed command can be the external analog voltage or internal parameters (P1-09 to P1-11). The speed and position mode switching is controlled by the S-P signal. The selection will be more complicated when the position of PR-S mode and speed command are both selected through DI signal.

The timing chart of speed / position control mode selection is shown as the figure below:

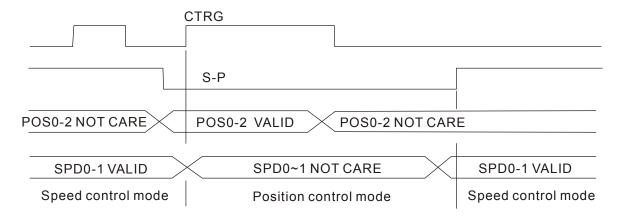


Figure 1.: Speed / Position Control Mode Selection

In speed mode (when S-P is ON), speed command is selected by SPD0~1 and CTRG is disabled at this time. When switching to the position mode (when S-P is OFF), the position command is not determined (it needs to wait that CTRG is on the rising edge), so the motor stop running. Once CTRG is on the rising edge, position command will be selected according to POS0~5 and the motor will immediately move to the determined position. After S-P is ON, it will immediately return to speed mode.

For the relationship between DI signal and selected command in each mode, please refer to the introduction of single mode.

Revision September 2012

6.5.2 Speed / Torque Control Mode Selection

S-T Mode:

The speed command can be the external analog voltage or internal parameters (P1-09 to P1-11) and SPD0~1 is used to select speed command. The same as speed command, the torque command can be the external analog voltage or internal parameters (P1-12 to P1-14) and TCM0~1 is used to select torque command. The speed and torque mode switching is controlled by the S-T signal.

The timing chart of speed / torque control mode selection is shown as the figure below:

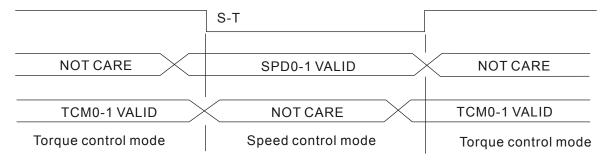


Figure 2.: Speed / Torque Control Mode Selection

In torque mode (when S-T is ON), torque command is selected by TCM0~1. When switching to the speed mode (when S-T is OFF), the speed command is selected by SPD0~1, and then the motor will immediately rotate following the command. After S-T is ON again, it will immediately return to torque mode.

6.5.3 Torque / Position Control Mode Selection

PT-T Mode / PR-T Mode:

The command source of PT-T mode is from external input pulse. The command source of PR-T mode is from internal parameters (P6-00 to P7-27). The torque command can be the external input pulse or internal parameters (P1-12 to P1-14). The torque and position mode switching is controlled by T-P signal. The selection will be more complicated when the position of PR-T mode and torque command are both selected through DI signal.

The timing chart of speed / position control mode selection is shown as the figure below:

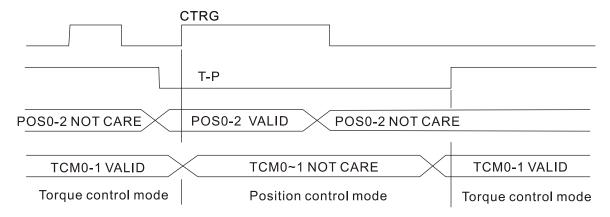


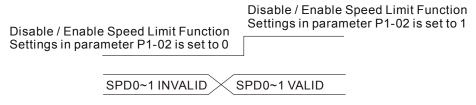
Figure 3.: Torque / Position Control Mode Selection

In torque mode (when T-P is ON), torque command is selected by TCM0~1 and CTRG is disabled at this time. When switching to the position mode (when T-P is OFF), the position command is not determined (it needs to wait that CTRG is on the rising edge), so the motor stop running. Once CTRG is on the rising edge, position command will be selected according to POS0~5 and the motor will immediately move to the determined position. After T-P is ON, it will immediately return to torque mode.

For the relationship between DI signal and selected command in each mode, please refer to the introduction of single mode.

Revision September 2012

6.6 Others

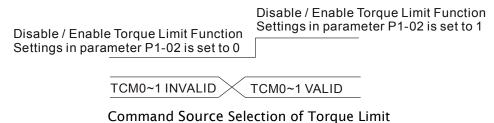

6.6.1 Speed Limit

The max. servo motor speed can be limited by using parameter P1-55 no matter in position, speed or torque control mode.

The command source of speed limit command is the same as speed command. It can be the external analog voltage but also can be internal parameters (P1-09 to P1-11). For more information of speed command source, please refer to chapter 6.3.1.

The speed limit only can be used in torque mode (T mode) to limit the servo motor speed. When the torque command is the external analog voltage, there should be surplus DI signal that can be treated as SPD0~1 and be used to select speed limit command (internal parameter). If there is not enough DI signal, the external voltage input can be used as speed limit command. When the Disable / Enable Speed Limit Function Settings in parameter P1-02 is set to 1, the speed limit function is activated.

The timing chart of speed limit is shown as the figure below:


Command Source Selection of Speed Limit

6.6.2 Torque Limit

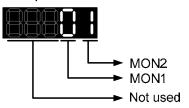
The command source of torque limit command is the same as torque command. It can be the external analog voltage but also can be internal parameters (P1-12 to P1-14). For more information of torque command source, please refer to chapter 6.4.1.

The torque limit only can be used in position mode (PT and PR mode) and speed mode (S mode) to limit the output torque of servo motor. When the position command is the external pulse and speed command is the external analog voltage, there should be surplus DI signal that can be treated as TCM0~1 used to select torque limit command (internal parameter). If there is not enough DI signal, the external voltage input can be used as torque limit command. When the Disable / Enable Torque Limit Function Settings in parameter P1-02 is set to 1, the torque limit function is activated.

The timing chart of torque limit is shown as the figure below:

6.6.3 Analog Monitor

Users can use analog monitor to observe the required analog voltage signals. ASDA-A2 series servo drives provide two analog channels, they are PIN No. 15 and 16 of CN1 connector. The parameters relative to analog monitor are shown below.


Relevant parameters:

D	∩_	Λ	כ
г	U-	v	Э

MON	Analog Monitor Outp	Address: 0006H 0007H	
Operat	ion Keypad/Software	Communication	Related Section:
interra	ice:;	: 	Section 6.6.4
Defa	ult: 00		:
Con Mo	trol de: ALL		
U	nit: -	•	
Ran	ge: 00 ~ 77		
Data Si	ze: 16-bit		
Disp Form	olay nat: Hexadecimal		T

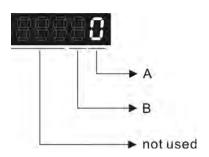
Settings:

This parameter determines the functions of the analog monitor outputs.

MON1, MON2 Settings:

- 0: Motor speed (+/-8V / maximum motor speed)
- 1: Motor torque (+/-8V / maximum torque)
- 2: Pulse command frequency (+8Volts / 4.5Mpps)
- 3: Speed command (+/-8Volts / maximum speed command)
- 4: Torque command (+/-8Volts / maximum torque command)
- 5: V_BUS voltage (+/-8Volts / 450V)
- 6: Reserved
- 7: Reserved

Please note:


For the setting of analog output voltage proportion, refer to the P1-04 and P1-05. Example: P0-03 = 01 (MON1 is motor speed analog output, MON2 is motor torque analog output)

MON1 output voltage=
$$8 \times \frac{\text{Motor speed}}{(\text{Max. motor speed} \times \frac{\text{P1-04}}{100})}$$
 (unit: Volts)

MON2 output voltage=
$$8 \times \frac{\text{Motor toque}}{(\text{Max. motor torque} \times \frac{\text{P1-05}}{100})}$$
 (unit: Volts)

AC	DUT	Pulse Output Polarity	Setting	Address: 0106H 0107H
O lı	perati nterfac	on ce: Keypad/Software	Communication	Related Section: Section 3.3.3
:	Defau	lt: 0		
	Conti Mod	ol le: ALL		
	Un	it:[-		
:	Rang	je: 0 ~ 13		
D	ata Siz	ze: 16-bit		
	Displ Form	ay at: Hexadecimal		

Settings:

A: Analog monitor outputs polarity

0: MON1(+), MON2(+)

1: MON1(+), MON2(-)

2: MON1(-), MON2(+)

3: MON1(-), MON2(-)

B: Position pulse outputs polarity

0: Forward output

1: Reverse output

P1-04	MON1	Analog Monitor Outp	ut Proportion 1 (MON1)	Address: 0108H 0109H
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Section 6.4.4
	Defa	ıult: 100		
	Con Mo	trol ode: ALL		
	U	Init::% (full scale)		
	Rar	nge: 0 ~ 100		
	Data S	ize: 16-bit		7 : :
	Disp Forn	olay nat:: Decimal		
				•

Settings:

Please note: For the settings of analog monitor output, refer to the P0-03.

Example: P0-03 = 01 (MON1 is motor speed analog output, MON2 is motor torque analog output)

MON1 output voltage=
$$8 \times \frac{\text{Motor speed}}{\text{(Max. motor speed} \times \frac{\text{P1-04}}{100})}$$
 (unit: Volts)

Motor toque

MON2 output voltage=
$$8 \times \frac{P1-05}{100}$$
 (unit: Volts)

P1-05	MON2	Analog Monitor Outpo	ut Proportion 2 (MON2)	Address: 010AH 010BH
	Opera	tion ace: Keypad/Software	Communication	Related Section:
	Interf	ace: The pady software		Section 6.4.4
	Defa	ıult: 100		· · ·
	Con Mo	trol ode: ALL		
	Ū	Init::% (full scale)		
	Rar	nge∷0 ~ 100		- - -
	Data S	ize: 16-bit		7 : : :
	Dis _l Forr	olay nat: Decimal		

Settings:

Please note:

For the settings of analog monitor output, refer to the P0-03.

Example: P0-03 = 01 (MON1 is motor speed analog output, MON2 is motor torque analog output)

MON1 output voltage=
$$8 \times \frac{\text{Motor speed}}{(\text{Max. motor speed} \times \frac{\text{P1-04}}{100})}$$
 (unit: Volts)

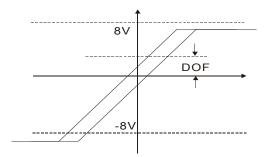
MON2 output voltage=
$$8 \times \frac{\text{Motor toque}}{(\text{Max. motor torque} \times \frac{\text{P1-05}}{100})}$$
 (unit: Volts)

P4-20	1)() - 1	Analog Monitor Outpu (MON1)	t Drift Adjustment	Address: 0428H 0429H
	Operati Interfa	ion ce: Keypad / Software	Communication	Related Section: Section 6.4.4
	Defai	ult: Factory setting		· ·
	Cont Mo	rol de: ALL		
	Uı	nit::mV		7 1 1
	Ran	ge: -800 ~ 800		•
	Data Si	ze∷16-bit		
	Displ Form	Decimal		7

Settings:

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

P4-21	DOF2 Anal	-	it Drift Adjustment	Address: 042AH 042BH
	Operation Interface: K	Related Section: Section 6.4.4		
	Default: 0			
	Control Mode:	.LL		
	Unit::mV			
	Range::-			
	Data Size: 1	6-bit		
	Display Format:	Pecimal		


Settings:

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

For example, when the users want to observe the analog voltage signal of channel 1, if the monitor output setting range is 8V per 325Kpps, then it is needed to change the setting value of parameter P1-04 (Analog Monitor Output Proportion 1) to 50 (=325Kpps/Max. input frequency). Other related parameters setting include parameter P0-03 (A=3) and P1-03 (A=0 \sim 3, output polarity setting). In general, when output voltage value of Ch1 is V1, the pulse command frequency is equal to (Max. input frequency × V1/8) × P1-04/100.

Because there is an offset value of analog monitor output voltage, the zero voltage level of analog monitor output does not match to the zero point of setting value. We recommend the users can use Analog Monitor Output Drift Adjustment, DOF1 (parameter P4-20) and DOF2 (parameter P4-21) to improve this condition. The maximum output voltage range of analog monitor output is ±8V. If the output voltage exceeds its limit, it is

still limited within the range of $\pm 8V$. The revolution provided by ASDA-A2 series servo drives is 10bit, approximated to 13mv/LSB.

6.6.4 Electromagnetic Brake

When the servo drive is operating, if the digital output BRKR is set to Off, it indicates the electromagnetic brake is disabled and motor is stop running and locked. If the digital output BRKR is set to ON, it indicates electromagnetic brake is enabled and motor can run freely.

There are two parameters that affect the electromagnetic brake. One is parameter P1-42 (MBT1) and the other is parameter P1-43 (MBT2). The users can use these two parameters to set the On and Off delay time of electromagnetic brake. The electromagnetic brake is usually used in perpendicular axis (Z-axis) direction to reduce the large energy generated from servo motor. Using electromagnetic brake can avoid the load may slip since there is no motor holding torque when power is off. Without using electromagnetic brake may reduce the life of servo motor. To avoid malfunction, the electromagnetic brake should be activated after servo system is off (Servo Off).

If the users desire to control electromagnetic brake via external controller, not by the servo drive, the users must execute the function of electromagnetic brake during the period of time when servo motor is braking. The braking strength of motor and electromagnetic brake must be in the same direction when servo motor is braking. Then, the servo drive will operate normally. However, the servo drive may generate larger current during acceleration or at constant speed and it may the cause of overload (servo fault).

Revision September 2012

SON (DI Input)

BRKR (DO Output)

MBT1(P1-42)

Motor Speed

ON

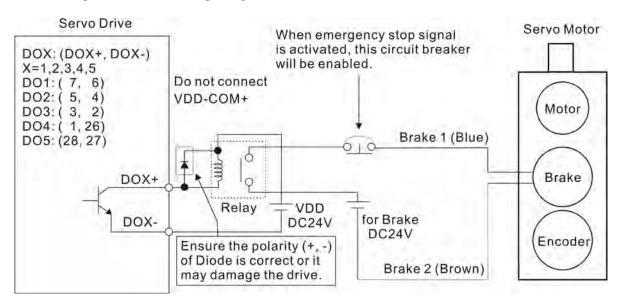
OFF

ON

OFF

ON

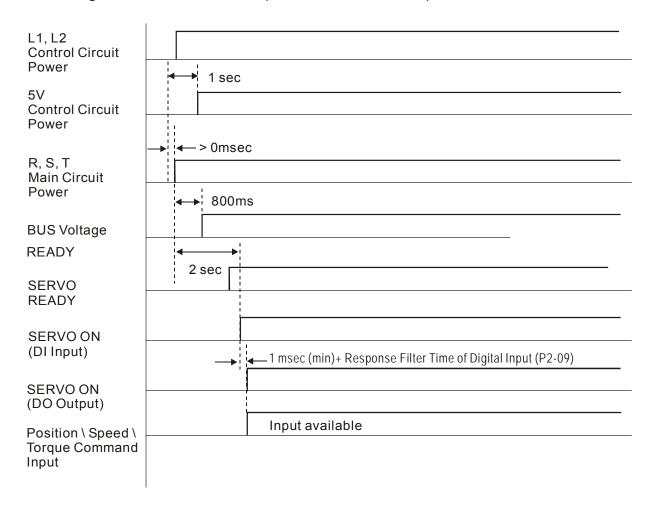
MBT2(P1-43)


ZSPD(P1-38)

Timing chart for using servo motor with electromagnetic brake:

BRKR output timing explanation:

- 1. When Servo Off (when DI SON is not activated), the BRKR output goes Off (electromagnetic brake is locked) after the delay time set by P1-43 is reached and the motor speed is still higher than the setting value of P1-38.
- 2. When Servo Off (when DI SON is not activated), the BRKR output goes Off (electromagnetic brake is locked) if the delay time set by P1-43 is not reached and the motor speed is still lower than the setting value of P1-38.


Electromagnetic Brake Wiring Diagram

- 1) Please refer to Chapter 3 Connections and Wiring for more wiring information.
- 2) The BRKR signal is used to control the brake operation. The VDD DC24V power supply of the servo drive can be used to power the relay coil (Relay). When BRKR signal is ON, the motor brake will be activated.
- 3) Please note that the coil of brake has no polarity.
- 4) The power supply for brake is DC24V. Never use it for VDD, the +24V source voltage.

The timing charts of control circuit power and main circuit power:

Chapter 7 Motion Control Functions

7.1 Motion Control Functions

ASDA-A2 series provides the following motion control functions:

- 1) Innovative PR mode
- 2) Capture (Position Latch) / Compare (Position Detection) functions
- 3) Electronic Cam (E-Cam) function (ASDA-A2 series L type models do not provide this function.)

7.2 System Information

The system information of the servo drive includes:

1. System Parameters; 2. Monitor Parameters; 3. Data Array

Please refer to the following table below.

	System Parameters	Monitor Parameters
Usage	Applied to function settings or commands, for example, position/speed/torque control modes, position/speed loop gain and other settings.	For monitoring status of servo operating, for example, speed, position, torque and other settings.
Display Method	LED Display: display PX-XX on the display for example P1-01. Press the SET key to display the setting value of parameters. For the operation of the digital keypad, please refer to Chapter 4.	Set P0-02 directly to enter into monitor mode and specify the monitor status. The monitor status depends on the setting value of P0-02. Press MODE key on the keypad is to enter into monitor mode directly. For the operation of the digital keypad, please refer to Chapter 4.
Access Method	There are 16-bit and 32-bit parameters which can be read/written via several ways.	Read only
Data Length	16-bit or 32-bit (depends on the settings of parameters)	32-bit integer
Communication	Support MODBUS/CANopen/USB Read & Write, each parameter occupies two MODBUS addresses.	 Monitoring is accomplished through USB (upon PC software) Do not support MODBUS/CANopen Read & Write directly unless users use mapping function to monitor the specified monitor parameters via the corresponding system parameters.
Mapping Parameters	P0-25 ~ P0-32, total 8 parameters (Determined by P0-35 ~ P0-42)	P0-09 ~ P0-13, total 5 parameters (Determined by P0-17 ~ P0-21)

	System Parameters	Monitor Parameters
Remark	-	In monitor mode, users can press UP or DOWN arrow key to change the monitoring variables (monitor item settings) in common use (code 0 ~ 26). Please note that not all monitoring variables can be displayed (total 150 kinds of monitor parameters).

7.2.1 Monitoring Variables

Please refer to the following table for the explanation of monitoring variables:

Item	Explanation			
Code	Each monitoring variable has one corresponding code. Using the parameter P0-02 is able to set this code and perform status monitoring.			
Format	Each monitoring variable is saved in 32-bit (long integer) in the servo drive.			
Type	 There are two types of monitoring variables, basic monitoring variables and extension monitoring variables: Basic monitoring variables: Enter into the monitor mode by pressing MODE key on the digital keypad. In monitor mode, press UP/DOWN arrow keys to find the available basic monitoring variables (P0-02=0~26). Extension monitoring variables: Other monitoring variables are called extension monitoring variables except basic monitoring variables (P0-02=27~127). 			
Monitor Method	 There are two methods for status monitoring. One is through LED display of the digital keypad and the other is via the mapping parameters: LED display of digital keypad: Status monitoring through the LED display of the digital keypad directly. Mapping parameters: The settings of the monitoring variables will be reflected on the setting value of the mapping parameters. Users can know the settings of the monitoring variables through the corresponding parameters. 			
Display	 Press MODE key to switch the monitor mode and then press UP/DOWN arrow keys to select the desired monitoring variables. Set P0-02 directly and then display the settings of the desired monitoring variables. Press SHIFT key to switch high/low byte display; Press SET key to switch decimal/hexadecimal display. 			
Mapping Function	 The parameters which support mapping function includes: P0-09 ~ P0-13. (Please refer to section 8.3 "Detailed Parameter Listings" of Chapter 8. Using mapping parameters and read & write monitor parameters through communication. The setting values of P0-09 ~ P0-13 (Status Monitor 1 ~ 5) are the content of basic monitoring variables (17h,18h,19h,1Ah). When users want to monitor P0-09, set P0-17 first to read the status value (see P0-02). When reading the drive status through Modbus communication, the system will read the monitor status which specified by P0-17. When reading the drive status through the keypad, if P0-02 is set to 23, VAR-1 will quickly show for about two seconds and then the value of P0-09 will display on the display. 			

7-2 Revision September 2012

Attribute of monitoring variables:

Attribute	Explanation
В	Basic monitoring variable. Pressing UP/DOWN keys can change the status shown on LED display.
Dn	Decimal place display. D1 indicates one decimal place, D2 indicates two decimal places.
Dec	Decimal display only. When pressing <u>SET</u> key on the keypad, the system can not switch to hexadecimal display.
Hex	Hexadecimal display only. When pressing SET key on the keypad, the system can not switch to decimal display.

Explanation of monitoring variables:

Code	Monitoring Variables / Attribute	Explanation				
000 (00h)	Feedback position (PUU)	Motor feedback - current position. Unit is user unit, PUU				
001 (01h)	Position command (PUU) B	Position command - current position. Unit is user unit, PUU. PT mode: it indicates the pulse command received by the servo drive. PR mode: it indicates the absolute position command. It is equal to the pulse number sent by the host (external) controller.				
002 (02h)	Position error (PUU) B	Position error counts between position command pulse and feedback pulse. Unit is user unit, PUU.				
003 (03h)	Feedback position (pulse)	Motor feedback - current position. Unit is encoder uni pulse.				
004 (04h)	Position command (pulse)	Position command – current position. Unit is encoder unit, pulse. It is also the position command after electronic gear ratio is set.				
005 (05h)	Position error (pulse)	Position error counts between position command pulse and feedback pulse. Unit is encoder unit, pulse.				
006 (06h)	Input frequency of pulse command B	Input frequency of pulse command received by the servo drive. Unit is Kpps. Applicable for PT and PR mode.				
007 (07h)	Feedback speed B D1 Dec	Actual motor speed. Unit is 0.1r/min. The low-pass filter function is used so the value is more stable.				
008 (08h)	Speed input command (Analog) B D2 Dec	Analog speed input command. Unit is 0.01Volt.				
009 (09h)	Speed command (Integrated) B	Integrated speed input command. Unit is 1r/min. The command source may be from analog command / internal parameter / position loop.				

Code	Monitoring Variables / Attribute	Explanation					
010 (0Ah)	Torque command (Analog) B D2 Dec	Analog torque input command. Unit is 0.01Volt.					
011 (0Bh)	Torque command (Integrated) B	Integrated torque input command. Unit is Percent (%). The command source may be from analog command / internal parameter / position loop.					
012 (0Ch)	Average load B	Average load output by the servo drive. Unit is Percent (%).					
013 (0Dh)	Peak load B	Peak load output by the servo drive. Unit is Percent (%) •					
014 (0Eh)	DC Bus voltage B	Main circuit voltage after rectification. Unit is Volt.					
015 (0Fh)	Ratio of load inertia to motor inertia B D1 Dec	Ratio of load inertia to motor inertia. Unit is 0.1times.					
016 (10h)	IGBT temperature B	IGBT temperature. Unit is °C.					
017 (11h)	Resonance frequency B Dec	Resonance frequency of the mechanical system. There are two groups of resonance frequency: F1 and F2 When reading the drive status through the keypad, pressing SHIFT key can switch the display of F1 and F2. F2: no decimal point; F1: display one decimal point When reading the drive status through the communication, Low 16-bit (Low Byte) will display frequency F2 High 16-bit (High Byte) will display frequency F1					
018 (12h)	Absolute pulse number relative to encoder (use Z phase as home) B Dec	Absolute pulse number relative to encoder (use Z phase as home). The value of Z phase home point is 0, and it can be the value from -5000 to +5000 pulses. When the value is higher, the deviation pulse number is higher too.					
019 (13h)	Mapping parameter #1 B	Display the content of parameter P0-25 (mapping target is specified by parameter P0-35).					
020 (14h)	Mapping parameter #2 B	Display the content of parameter P0-26 (mapping target is specified by parameter P0-36).					
021 (15h)	Mapping parameter #3 B	Display the content of parameter P0-27 (mapping target is specified by parameter P0-37).					
022 (16h)	Mapping parameter #4 B	Display the content of parameter P0-28 (mapping target is specified by parameter P0-38).					
023 (17h)	Status monitor #1 B	Display the content of parameter P0-09 (the monitor status is specified by parameter P0-17).					
024 (18h)	Status monitor #2 B	Display the content of parameter P0-10 (the monitor status is specified by parameter P0-18).					
025 (19h)	Status monitor #3 B	Display the content of parameter P0-11 (the monitor status is specified by parameter P0-19).					

7-4 Revision September 2012

Code	Monitoring Variables / Attribute	Explanation
026 (1Ah)	Status monitor #4 B	Display the content of parameter P0-12 (the monitor status is specified by parameter P0-20).
037 (25h)	Compare data offset	Display the compare data. This actual compare data is a compare value plus an offset value via P1-23 and P1-24. CMP_DATA = DATA_ARRAY[*] + P1-23 + P1-24
038 (26h)	Voltage level of battery	The voltage level of battery for an absolute encoder.
039 (27h)	DI status (Integrated) Hex	Integrated DI status. Each bit corresponds to one channel of digital input. The command source may be from DI signal or communication control (upon software). P3-06 can determine how digital inputs accept commands.
040 (28h)	DO status (Hardware) Hex	Actual DO output status. Each bit corresponds to one channel of digital output.
041 (29h)	Drive Status	The drive status will display via P0-46. Please refer to P0-46 for explanation.
043 (2Bh)	Capture data	The latest captured data by using Capture function. Note: Using Capture function is able to capture many positions.
048 (30h)	Auxiliary encoder CNT	Pulse counts input by auxiliary encoder (CN5).
049 (31h)	Pulse command CNT	Pulse counts input by pulse command (CN1).
050 (32h)	Speed command (Integrated) D1 Dec	Integrated speed input command. Unit is 0.1r/min. The command source may be from analog command / internal parameter / position loop.
051 (33h)	Feedback speed (Instant) D1 Dec	Actual motor speed. Unit is 0.1r/min.
052 (34h)	Feedback speed (Filter) D1 Dec	Actual motor speed. Unit is 0.1r/min. (The low-pass filter function is used.)
053 (35h)	Torque command (Integrated) D1 Dec	Integrated torque command. Unit is 0.1 Percent (%). The command source may be from analog command / internal parameter / speed loop.
054 (36h)	Feedback Torque D1 Dec	Actual motor torque. Unit is 0.1 Percent (%).
055 (37h)	Feedback current D2 Dec	Actual motor current. Unit is 0.01ampere (Amp).
056 (38h)	DC Bus voltage D1 Dec	Main circuit voltage after rectification. Unit is 0.1Volt.
059 (3Bh)	The accumulated pulse numbers of master axis of electronic cam. Please refer to P5-86. (ASDA-A2 series L type models do not provide this function.)	

Code	Monitoring Variables / Attribute	Explanation			
060 (3Ch)	Pulse number of E-Cam master axis (Incremental)	The incremental pulse numbers of master axis of electronic cam every 1msec. (ASDA-A2 series L type models do not provide this function.)			
061 (3Dh)	Pulse number of E-Cam master axis (Lead Pulse Number)	 Lead pulse number of E-Cam master axis which is used to decide the engage condition. Before the electronic gear engaged: Lead pulse number is determined by P5-87 or P5-92 The electronic cam engaged when the setting value is 0. After the electronic gear engaged: Lead pulse number is determined by P5-89. The electronic cam disengaged when the setting value is 0. (ASDA-A2 series L type models do not provide this function.) 			
062 (3Eh)	Position of E-Cam axis	The position of E-Cam axis. The input of E-Cam curve. Unit: It is the same as the pulse number of master axis. After receiving the pulse number P of master axis, E-Ca axis will operate M cycles. It indicates that there are M cycles of the E-Cam curve (P5-83=M, P5-84=P). (ASDA-A2 series L type models do not provide this function.)			
063 (3Fh)	Position of E-Cam slave axis	The position of slave axis of E-Cam. The output of E-Cam curve. Unit: It is the data unit of E-Cam curve. (ASDA-A2 series L type models do not provide this function.)			
064 (40h)	End register of PR command.	In PR mode, it is the end of the position command (Cmd_E).			
065 (41h)	Output register of PR command.	In PR mode, it is the accumulated outputs of position command.			
067 (43h)	Target speed of PR command.	It is target speed of PR path command. Unit is PPS (Pulse Per Second).			
068 (44h)	S-curve filter (Input)	Input data of S-curve filter which is used to create the effect of S-curve filter. In PR mode, it is valid for both E-Cam and internal speed command. (ASDA-A2 series L type models do not provide this function.)			
069 (45h)	S-curve filter (Output)	Output data of S-curve filter which is used to create the effect of S-curve filter. In PR mode, it is valid for both E-Cam and internal speed command. (ASDA-A2 series L type models do not provide this function.)			
076 (4Ch)	Speed command of PR mode	In PR mode, it is the terraced speed curve drawn up according to target speed / accel & decel time / position move (before using S-curve filter). Unit is PPS (Pulse Per Second).			

7-6 Revision September 2012

Code	Monitoring Variables / Attribute	Explanation				
081 (51h)	Synchronous Capture Axis - Pulse input increment When Synchronous Capture Axis is enabled, it is received pulses between two capture operation a can be used to measure the actual mark distance					
084 (54h)	Synchronous Capture Axis - Synchronous error pulse number	When Synchronous Capture Axis is enabled, it is the accumulated errors between actual output pulse and target pulse. After the synchronization operation is completed, this value will be near to zero (0).				
096 (60h)	Diace					
098 (62h)	PLC scan time	It is regarded as the refresh time of digital inputs and outputs. Unit is 0.5msec.				
109 (6Dh)	Data array capacity	Display the capacity of data array. Unit is DWORD (32-bit).				
111 (6Fh)	Servo fault code	Display servo fault code. But it only displays the servo drive fault code. The fault code for motion control will not be displayed.				
112 (70h)	CANopen synchronous time (Low-pass filter is not used)	Display the time when the servo drive receives synchronous signal (TimeStamp). Unit is usec.				
113 (71h)	CANopen synchronous time (Low-pass filter is used)	Display the time when the servo drive receives synchronous signal and low-pass filter is used. Unit is usec.				
114 (72h)	CANopen synchronous timing correction	When CANopen communication is enabled, display the timing correction value which is synchronized with the host (external) controller. Unit is usec.				
123 (7Bh)	Keypad monitor value	When reading the monitor value through the keypad, it is used to read the monitor value displayed on the keypad.				

7.2.2 Data Array

ASDA-A2 series provides many motion control functions, such as E-Cam (ASDA-A2 series L type models do not provide this function.), Capture function, and Compare function. The data array can keep data for E-Cam, Capture function, and Compare function with maximum to 800 records (all together to max. 800 records). Please refer to the following table for the introduction of data array.

	Data Array
Usage	 Save Capture data. Save Compare data. Save E-Cam curve. Note: The data array is user-defined and the system will not partition off the data array for Capture, Compare and E-Cam function respectively. Therefore, the memory blocks of the data array may be overlapped. Please pay close attention when defining the data array. ASDA-A2 series L type models do not provide this function.
Array Size	 32-bit integer x 800 records (the data address when reading and writing data array is determined by P5-10). Each data should have a corresponding address. This address should be specified when reading and writing data array. The address is within the range of 0 ~ 799.
Backup Data Into EEPROM	 Set P2-08 to 30 first and set to 35 next. Then, the content of the data array will be saved in EEPROM when power is off. Please save data when Servo Off. After re-power the servo drive, the content of the data array will be written automatically.
Read/Write Window	● Perform read and write operation through P5-10 ~ P5-13.

The content of the data array can not be read and written via external commands. It only can be read and written through the settings of P5-10 \sim P5-13. Please refer to the following table for explanation:

	Relevant Parameters for Data Array						
Parameter	arameter Name Explanation						
P5-10	Data Amount (N x 32 bits)	This parameter is used to set the data amount of data array (N \times 32 bits). N is the capacity of the data array (Read only).					
P5-11	Read / Write Address	This parameter is used to set the data address when reading and writing data array.					

7-8 Revision September 2012

	Rel	evant Parameters for Data Array
Parameter	Name	Explanation
	Read / Write Window #1	Panel Read: P5-11 unchanged Panel Write: P5-11=P5-11+1 When reading data through the panel (keypad): Read the content specified by P5-11. After read operation is completed, the address of P5-11 will not change. When writing data through the panel (keypad): Write the content specified by P5-11. After write operation is completed, the address of P5-11 will increase 1 automatically.
P5-12		Communication Read: P5-11=P5-11+1 Communication Write: P5-11=P5-11+1 When reading data through the communication: Read the content specified by P5-11. After read operation is completed, the address of P5-11 will increase 1 automatically. When writing data through the communication: Write the content specified by P5-11. After write operation is completed, the address of P5-11 will increase 1 automatically.
P5-13	Read / Write Window #2	Panel Read: P5-11=P5-11+1 Panel Write: Inhibition When reading data through the panel (keypad): Read the content specified by P5-11. After read operation is completed, the address of P5-11 will increase 1 automatically. When writing data through the panel (keypad): This parameter can not be written through the keypad. Communication Read: P5-11=P5-11+1 Communication Write: P5-11=P5-11+1 When reading data through the communication: Read the content specified by P5-11. After read operation is completed, the address of P5-11 will increase 1 automatically. When writing data through the communication: Write the content specified by P5-11. After write operation is completed, the address of P5-11 will increase 1 automatically.

Access to Data Array

There is one index working along with two read/write windows for accessing data array. For some hosts resending data several times while communication, it had better to put the index P5-11 every time before read/write.

In brief, users need to set the desired read & write address by using P5-11 and then read and write the data through P5-12 or P5-13.

For example, suppose that users want to write three consecutive numbers of data (100th, 200th, 300th), and save them into the address 11, 12, 13 of data array, the operation steps are described as follows:

1. When writing data through the keypad:

Use P5-12 because P5-13 does not provide this function.

1) Set first address:

Set P5-11=11 (the first address)

2) Write data:

Set P5-12=100. (This is the first written data, 100th data and it will be saved in address 11, i.e. P5-11. After write operation is completed, the address of P5-11 will increase 1 automatically, i.e. address 12.)

Set P5-12=200 (This is the secondary written data, 200th data and it will be saved in address 12, i.e. P5-11. After write operation is completed, the address of P5-11 will increase 1 automatically, i.e. address 13.)

Set P5-12=300 (This is the third written data, 300th data and it will be saved in address 13, i.e. P5-11. After write operation is completed, the address of P5-11 will increase 1 automatically, i.e. address 14.)

Then, users can read the address 11, 12, and 13 and check the written values.

2. When reading data through the keypad:

Use P5-13 to read consecutive data.

1) Set first address:

Set P5-11=11 (the first address)

2) Read data:

When display shows P5-13:

Press SET key at the first time, the display will show the 100th data saved in address 11. Pressing MODE key can exit P5-13.

Press SET key at the second time, the display will show the 200th data saved in address 12. Pressing MODE key can exit P5-13.

Press SET key at the first time, the display will show the 300th data saved in address 13. Pressing MODE key can exit P5-13.

Please note that when use P5-13 to read data every time, the address of P5-11 will increase 1 automatically so using P5-13 can read the consecutive data. However, if users use P5-12 to read the data, the address of P5-11 will remain the same, so using P5-12 can not read the consecutive data.

7-10 Revision September 2012

The operation steps for reading or writing data through the communication are similar to the steps when using keypad. The functions of P5-12 and P5-13 are also the same. For example, suppose that users want to write 6 consecutive data (100th, 200th, 300th, 400th, 500th, 600th data) through Modbus communication continuously, set the communication command by referring to the table below.

	Communication command: write data intro data array								
	No. Command Da	Starting	Starting	P5-11		P5-12		P5-13	
No.		Data Address	Data Amount	Low Word	High Word	Low Word	High Word	Low Word	High Word
1	0x10	0x10 P5-11	6 (Word)	11	0	100	0	200	0
'				First Address		First Data		Second Data	
2	0.410	DE 11 6 04	6 (Word)	13	0	300	0	400	0
2	0x10	P5-11		Third A	Address	Third	Data	Fourtl	n Data
2	0x10	0.10 PF.11	C ()4/ \)	15	0	500	0	600	0
3		0x10	P5-11	6 (Word)	Fifth A	ddress	Fifth	Data	Sixth

Please check if the above written data is correct when reading the data of data array. Users can use Modbus communication command 0×06 (write one data) to set P5-11 and write the desired read data. For the settings of the communication command, please refer to the table below.

C	Communication command: read data from data array						
No.	Command Starting Data Written Data						
4	0x06	P5-11	11				

Then, read the data of the specified address by using communication command 0x03. Please refer to the table below to set communication command.

Communication command: Read data array					Respon	se Data			
		Starting	Data	P5-	-11	P5-12		P5-	-13
No.	Command	Data Address	Data Amount	Low Word	High Word	Low Word	High Word	Low Word	High Word
	5 0x03 P5-1	0x03 P5-11		11	0	100	0	200	0
5			6 (Word)	Read Address		Data of address 11		Data of address 12	
				13	0	300	0	400	0
6	0x03	P5-11	6 (Word)	(Word) Read Address		Data of address 13			a of ss 14
			P5-11 6 (Word)	15	0	500	0	600	0
7	0x03 P:	P5-11 6		Read A	ddress	Dat addre	a of ss 15		a of ss 16

7.3 Motion Axes

Motion axis is a counter within the servo drive which is used to count the data of absolute position (32-bit integer). The available motion axes are introduced in the following table.

	Axis Name	Description	Read (R) / Write (W)	Attribute
1.	Motor Encoder Axis (P5-16)	It indicates the motor absolute feedback position and the user unit is PUU.	R	Physical Axis
2.	Auxiliary Encoder Axis (P5-17)	It is the pulse counts of the auxiliary encoder (linear scale) input by CN5. The pulse type is AB phase pulse only.	R/W	Physical Axis
3.	Pulse Command Axis (P5-18)	It is the pulse counts of the host (external) controller input from CN1. The pulse type can be defined by P1-00.	R/W	Physical Axis
4.	Capture Axis (P5-37)	It is the motion axis which is used to enable Capture function. The command source could be from motor encoder axis, auxiliary encoder axis and pulse command axis. Position offset exists between output axis and physical axis. After the first point is captured, the axis position can be defined again.	R/W	Output Axis
5.	Compare Axis (P5-57)	It is the motion axis which is used to enable Compare function. The command source could be from motor encoder axis, auxiliary encoder axis, pulse command axis and Capture axis. Position offset exists between output axis and physical axis.	R/W	Output Axis
6.	E-Cam Master Axis (P5-86)	It is the master axis of electronic cam. The command source could be from auxiliary encoder axis, pulse command axis, Capture axis and PR command axis. Position offset exists between output axis and physical axis. (ASDA-A2 series L type models do not provide this function.)	R/W	Output Axis
7.	PR Command Axis	Command position defined by PR.	R	Virtual Axis
8.	Internal Time Axis	Internal timer. The value will increase 1 every 1 msec.	R	Virtual Axis
9.	Synchronous Capture Axis (P5-77)	The function is similar to Capture axis (P5-37). But, it will correct the offset value of this synchronous axis (P5-78) when capture operation is activated every two times. (This function is available only in firmware version V1.009 and later models).	R/W	Virtual Axis

Please note:

- 1. Physical axis: Position value is obtained from the actual terminal signal counts.
- 2. Output axis: It is the axis output by the physical axis. The value will not be the same as the source of physical axis, but the increasing value will be the same as the increasing value of physical axis.

7-12 Revision September 2012

3. Virtual axis: It is the axis generated by the servo firmware, e.g. PR command axis. It is unable to command in real time so it could not be regarded as the command axis for Capture and Compare function. But it could be regarded as the command source of the master axis of electronic cam.

7.4 PR Mode

PR mode could be composed of one position command or multiple position commands, and triggered by DI signal, CTRG. DI signals, POS0 ~ POS5 are used to specify the desired trigger position.

In PR mode, electronic cam (E-Cam) is provided. Users can enable electronic cam function by PRs (Position Registers). After the electronic cam is disengaged, the system can command the motor to return to the specified position as well. The PR cannot be interpreted as "Point to Point" control. It does beyond that. The servo is capable to change its working profile under PR mode instantaneously. There are 64 PRs available.

7.5 Comparison

	Old PR mode	PR Mode of ASDA-A2		
Position settings	8 position settings	64 position registers (64PRs)		
Command Type	Position command	Homing mode, constant speed mode, position control mode, jump mode, write parameter mode are available.		
Parameters for Position Commands	 Either Absolute command or Incremental command Accel / Decel time x 1 Motion speed x 8 Delay time x 8 	 Absolute command / Incremental command can be set individually. Accel / Decel time x 16 Motion speed x 16 Delay time x 16 		
Command Trigger Timing	It is enabled when DO signal, ZSPD is On.	It can be enabled at any time. Users can specify the command connection method (sequential command / insertion command / overlap command).		
Trigger Method	DI signals: CTRG + POSn (n: number)	 DI signals: CTRG + POSn (n: number) Event trigger function: DI signals EV1 ~ 4 + CAP_OK P5-07 (Trigger Position Command) 		
Position Command Profile	 Accel / Decel S-curve (When S-curve function (P1-36) is disabled, the acceleration and deceleration function are also disable.) 	 Accel / Decel S-curve (When S-curve function (P1-36) is disabled, the acceleration and deceleration function can be enabled still.) 		
Format • Rotation or Pulse		• 32-bit data (user unit)		

	Old PR mode	PR Mode of ASDA-A2
	Execute homing function	 Execute homing function automatically when power is applied to the servo drive (Servo On at the first time)
Homing Function	 automatically when power is applied to the servo drive (Servo On at the first time) DI signal, SHOM 	 DI signal, SHOM When PR path is set to 0, it is homing mode. Users also can use DI signal, CTRG to trigger PR path 0.
		 After homing operation is completed, it can execute the specified PR path.
Software Limit Function	This function is not provided.	This function is provided.

7.6 Pulse of User Unit

The position command unit of PR mode is presented by PUU (Pulse of User Unit). It also indicates the ratio of position command unit of host (external) controller to internal position command unit of servo drive, i.e. electronic gear ratio of servo drive.

The PUU is a unit which is scaled by the electronic gear. This will bring out an advantage, and that is "YOU SEE WHAT YOU COMMAND". For example, if you send 10000 PUU for command and you can read from the feedback 10000 PUU and ignore the electronic gear ratio.

- 1) Position command unit of servo drive (pulse): encoder unit, 1280000pulses per revolution (pulse/rev).
- User unit (PUU): unit of host (external) controller. If the pulse number per revolution isP pulses (PUU/rev), then the electronic gear ratio should be set to:

 $GEAR_NUM(P1-44) / GEAR_DEN(P1-45) = 1280000 / P$

7.7 Position Registers

- 1) The unit of position register of PR mode: They are indicates as PUU (Pulse of User Unit).
- 2) Cmd_E (Monitoring Variable 064): The target position of command.
- 3) Cmd_O (Monitoring Variable 001): The intermediate command
- 4) Fb_PUU (Monitoring Variable 000): The current (feedback) position of motor.
- 5) Err_PUU (Monitoring Variable 002): The position error = (Cmd_O Fb_PUU).
- 6) In PR mode, at any time (no matter during operation or at stop): Err_PUU = Cmd_O Fb_PUU.

7-14 Revision September 2012

Position Commands and Position Registers:

Five different types of position commands: Absolute, Incremental, Stop, Homing and Speed commands.

Туре	After position command accepted =>	=>When position command being executed =>	=> When position command is completed
Absolute position command	Cmd_E = command data (absolute) Cmd_O: unchanged DO signal: CMD_OK is OFF	Cmd_E: unchanged Cmd_O continuously output	Cmd_E: unchanged Cmd_O = Cmd_E DO signal: CMD_OK is ON
Incremental position command	Cmd_E+= command data (incremental) Cmd_O: unchanged DO signal: CMD_OK is OFF	Cmd_E: unchanged Cmd_O continuously output	Cmd_E: unchanged Cmd_O = Cmd_E DO signal: CMD_OK is ON
Stop command DI signal, STP	Cmd_E: unchanged Cmd_O continuously output DO: CMD_OK output unchanged	Cmd_E: unchanged Cmd_O stop in accordance with deceleration curve	Cmd_E: unchanged Cmd_O = position at stop DO signal: CMD_OK is ON
Homing command	Cmd_E: unchanged Cmd_O: unchanged DO signal: CMD_OK is OFF DO signal: HOME is OFF	Cmd_E continuously output Cmd_O continuously output	Cmd_E = Z pulse (absolute position) Cmd_O = position at stop DO signal: CMD_OK is ON DO signal: HOME is ON
Speed command	Cmd_E continuously outpu Cmd_O continuously outpu that the speed reaches the DO signal: CMD_OK is OFF	ıt. After speed command is	
	e first time (Servo Off-> her mode for entering PR	Cmd_O = Cmd_E = currer position	nt motor feedback

Note: The incremental position command performs accumulation according to the end of the position command (Cmd_E). It is irrelevant to current motor position and command timing as well.

7.8 Homing Function

The homing function determines the homing characteristics of servo motors. The purpose of homing function is used to connect the position of Z pulse of motor encoder to the internal coordinate of the servo drive. The coordinate value corresponds to Z pulse can be specified.

After homing operation is completed, the stop position will not locate at the position of Z pulse. This is because the motor must accelerate to stop when Z pulse is found. Generally, the motor stop position will be a little ahead of the position of Z pulse. At this time, Z pulse is set correctly so it will not affect the position precision.

For example:

If the coordinate corresponds to Z pulse is set to 100, after homing operation is completed, Cmd=300. It indicates that the acceleration distance is equal to 300-100=200(PUU). Since Cmd_E=100 (absolute position of Z pulse), if users want to command the motor to return to the position of Z pulse, just set absolute position command to 100 or incremental position command to 0.

In PR mode of ASDA-A2 series, after homing operation, it can execute the specified path and command the motor to return to the position of Z pulse automatically.

When homing function is executed, the software limit function is disabled.

7-16 Revision September 2012

7.9 Triggering PRs

There are several methods to call a PR.

1. Standard

CTRG: Trigger the PR selected by DIs (POS0 ~ POS5).

2. Special

STP: Terminate the running PR.

SHOM: Start to run homing procedure (PR0).

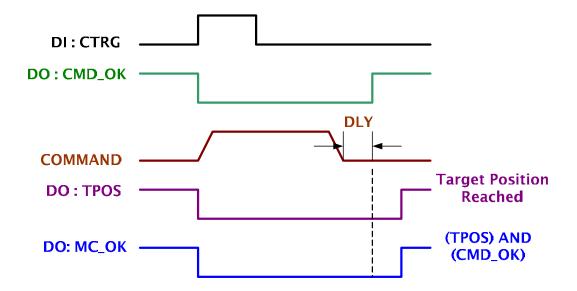
3. Event

EV1 ~ 4 (rising edge): Event can be used to call a PR.

EV1 ~ 4 (falling edge): Event can be used to call a PR.

4. Software

P5-07: Use PR identification to call a PR.


5. Others

PR#50 is called when Capture function finished, and a specific PR can be assigned after E-Cam disengaging.

DI signals: CTRG, SHOM, STP, POSO ~ POS5, ORG, PL(CCWL), NL(CWL), EV1~4

DO signals: CMD_OK, MC_OK, TPOS, ALRM, CAP_OK, CAM_AREA

Timing chart:

The Ways to Call a PR

There are 64 position settings in PR mode. PR 0 is homing mode and the others (PR 1 \sim 63) can be user-defined. For the ways to call a PR, please refer to the table below:

	Command Source	Explanation
Standard	DI signals: CTRG + POS0 ~ 5	Use DI signals, POSO ~ 5 to specify the desired trigger procedure number (PR), and then use the rising-edge of DI signal, CTRG to trigger a PR. Suitable application: PC or PLC commands the servo drive by using DI signals
Special	DI signals: STP, SHM	DI signal: Set STP from OFF to be ON, and the command will stop. DI signal: Set SHOM from OFF to be ON, and the servo drive will start to perform homing operation.
Event	DI signals: EV1 ~ 4	There are 4 events with rising and falling edges can be set to trigger a specific PR. DI signals: Trigger the command by changing the status of EV1 ~ 4 P5-98: Event Rising-edge Trigger Command (OFF → ON) P5-99: Event Falling-edge Trigger Command (ON → OFF) Suitable application: sensor, preset trigger procedure
Software	P5-07	Set P5-07 to the desired trigger procedure number (PR) and it will trigger the dedicated position command immediately. P5-07 can be set through the keypad / communication (RS-232/485 and CANopen. Suitable application: PC or PLC commands the servo drive by using the communication. The number from 0 to 63 can be put into P5-07 to call a PR respectively. PR#0 is defined as homing procedure. The P5-07 will reply appropriate message about the result of executing PR.
Others	Trigger the command after Capture operation. Trigger the command after E-Cam is disengaged.	After Capture operation is completed, it will trigger PR 50. This function is enabled by the Bit3 setting of P5-39. After the electronic cam is disengaged, it will return to PR mode and trigger the specified PR designated by BA setting of P5-88. (ASDA-A2 series L type models do not provide this function.)

7-18 Revision September 2012

7.10 Parameter Settings

1) Target speed: P5-60 ~ P5-75 (Moving Speed Setting of Position 0 ~ 15), total 16 groups

Bit	15 ~ 0
WO	TARGET_SPEED : 0.1 ~ 6000.0(r/min)

2) Accel / Decel time: P5-20 ~ P5-35 (Accel / Decel Time 0 ~ 15), total 16 parameters

Bit	15 ~ 0
WO	T_ACC / T_DEC : 1 ~ 65500(msec)

Note: The acceleration time is used for DO signals, STP/EMS/NL(CWL)/PL(CCWL) when users want to stop the motor. The function of P5-07 will refer to this setting when perform stop positioning as well.

3) Delay time: P5-40 \sim P5-55 (Delay Time 0 \sim 15), total 16 groups.

Bit	15 ~ 0
WO	IDLE: 0 ~ 32767(msec)

4) PR parameters: P5-00 ~ P5-09, P6-00 ~ P6-01, total 12 DWORD.

	32 BIT
P5-00	Reserved
P5-01	Reserved (for internal testing, do not use it)
P5-02	Reserved (for internal testing, do not use it)
P5-03	Deceleration Time of Protection Function
P5-04	Homing Mode
P5-05	1st Speed Setting of High Speed Homing
P5-06	2nd Speed Setting of Low Speed Homing
P5-07	Trigger Position Command (PR mode only)
P5-08	Forward Software Limit
P5-09	Reverse Software Limit
P6-00	Homing Definition
P6-01	Homing Definition Value (Z pulse position)

5) PR Definition: P6-02 ~ P7-27, (64 BIT), total 63 groups (2N)

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
DW0								TYPE
DW1	DATA (32 bit)							

Each PR occupies two parameters. TYPE determines the PR type or function. DATA indicates PR data and the others are auxiliary information.

6) Constant Speed Control: TYPE = 1

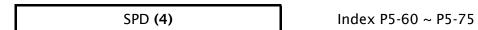
Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
DW0	-	-	DLY	-	DEC	ACC	OPT	1
DW1	DATA (32 bit): Target speed. Unit: Defined by OPT.UNIT							

When executing this command, the motor will accelerate or decelerate from current speed (the value does not necessarily have to be 0.). Once the motor reach the target speed, it indicates that this command is completed and the motor will continue running in this target speed and will not stop.

OPT:

OPT							
Bit 7 Bit 6 Bit 5 Bit 4							
-	UNIT	AUTO	INS				

% When the TYPE is set to 1 ~ 3, it can accept DO signals, STP (Motor Stop), SNL(SCWL, Reverse Software Limit), SPL(SCCWL, Forward Software Limit).


INS: Insertion command on PR

AUTO: When the motor speed reaches the constant speed area, the motor moves to the next dedicated PR automatically.

UNIT: 0 ~ 1. 0: Unit is 0.1r/min 1: Unit is PPS(Pulse Per Second)

ACC / DEC: 0 ~ F. Accel / Decel time number (4 bits)

SPD: 0 ~ F. Target speed (4 bits)

DLY: $0 \sim F$. Delay time number (4 bits). The digital output of this PR activates after the delay time. External INS is not valid. The delay time number settings correspond with the parameter P5-40 \sim P5-55.

DLY (4)	Index P5-40 ~ P5-55
(.)	

7) Position Control: (TYPE = 2, Single positioning control. Motor stops when positioning is completed. TYPE = 3: Auto positioning control. Motor goes to next dedicated PR when positioning is completed.)

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
DW0	-	-	DLY	SPD	DEC	ACC	OPT	2 or 3
DW1	DATA (32 bit): Target position, Unit: Pulse of User Unit							

7-20 Revision September 2012

OPT:

	OPT							
Bit 7	Bit 6	Bit 5	Bit 4	Evalenation				
CN	ИD	OVLP	INS	Explanation				
0	0			Absolute position command: Cmd_E = DATA (Note 1)				
1	0			Incremental position command: Cmd_E = Cmd_E + DATA (Note 2)				
0	1			-	-	Relative position command: Cmd_E = Current feedback position + DATA (Note 3)		
1	1			Capture position command: Cmd_E = Capture position + DATA (Note 4)				

% When the TYPE is set to 1 \sim 3, it can accept DO signals, STP (Motor Stop), SNL(SCWL, Reverse Software Limit), SPL(SCCWL, Forward Software Limit).

INS: Insertion command on PR.

OVLP: Overlap the next PR. When OVLP is enabled, please set DLY to 0. This function is not available in speed mode. In position mode, DLY becomes disabled.

CMD: The calculation method for Cmd_E (End of position command) is described in the notes below:

- Note 1: The end of position command is an absolute position command which is equal to DATA directly.
- Note 2: The end of the position command is an incremental position command which is equal to the end of the position command (Cmd_E, monitor variable 40h) plus a designated DATA.
- Note 3: The end of the position command is a relative position command which is equal to current feedback position (monitor variable 00h) plus a designated DATA.
- Note 4: The end of the position command is a capture position command which is equal to capture position (monitor variable 2Bh) plus a designated DATA.
- 8) Special Function: TYPE = 7. Jump to the dedicated PR.

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
DW0	-	-	DLY	-	FUNC_CODE	-	OPT	7
DW1	PR Number (0 ~ 63)							

OPT:

ОРТ							
Bit 7	Bit 6	Bit 5	Bit 4				
-	-	-	INS				

PR Number: Dedicated jump PR

FUN_CODE: Reserved

DLY: Delay time after jump

9) Special Function: TYPE = 8, Write the specified parameter.

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
DW0	0	S_D	DLY	DESTINATION		OPT	8	
DW1		SOURCE						

DLY: Delay time after writing the parameters

If Bit 28 ~ Bit 31 is not set to 0x0, the fault AL213 (Write parameter error) will occur.

S_D: Data resource and write destination

	S_D							
Bit 27	Bit 26	Bit 25	Bit 24	Explanation				
SO	SOUR Rsvd DEST		Data Source	Write Destination				
0	0		0	Constant	Parameter Px-xx			
0	1		0	Parameter Px-xx	Parameter Px-xx			
1	0		0	Data Array	Parameter Px-xx			
1	1	0	0	Monitor Variable	Parameter Px-xx			
0	0	U	1	Constant	Data Array			
0	1		1	Parameter Px-xx	Data Array			
1	0		1	Data Array	Data Array			
1	1		1	Monitor Variable	Data Array			

If Rsvd is not set to 0x0, a fault, AL213 will occur (see Chapter 11 Troubleshooting).

OPT:

ОРТ					
Bit 7	Bit 6	Bit 5	Bit 4		
-	-	AUTO	INS		

Para_Data: Write data

INS: Insertion command on PR.

AUTO: When current positioning is completed, the motor moves to the next dedicated PR automatically.

ROM: 1 indicates that the specified parameter is written into EEPROM simultaneously. (The specified parameter is written into EEPROM simultaneously when the write destination is Parameter Px-xx. If the write destination is Data Array, the specified parameter will not be written into EEPROM simultaneously.)

7-22 Revision September 2012

DESTINATION: Write destination

		DESTINATION		
	Bit 19 ~ 16	Bit 15 ~ 12	Bit 11 ~ 8	
When DEST = 0, the write destination is Parameter Px-xx	P_Grp	P_ldx		
When DEST = 1, the write destination is data array.		Array_Addr		

P_Grp, P_Idx: Specified parameter group and number

Array_Addr: Position of the specified data array.

SOURCE: Data source settings

		SOURCE						
Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
When SOUR = 00, the data source is constant		Para_Data						
When SOUR = 01, the data source is parameter Px-xx	Rsvd (0x0000 0)			P_Grp	P_I	dx		
When SOUR = 10, the data source is data array	Rsvd (0x0000 0)			Array_Addr		r		
When SOUR = 11, the data source is monitor variable	Rsvd (0x0000 00)				Sys_	.Var		

P_Grp, P_Idx: The specified parameter group and number.

Array_Addr: The position of the specified data array.

Para_Data: The written constant data.

Sys_Var: Monitor parameter code. Please refer to the settings of parameter P0-02.

Rsvd: If Rsvd is not set to 0x0, the fault AL213 will occur.

P_Grp: When the value of P_Grp exceeds the setting range, the fault AL217 will occur.

P_Idx: When the value of P_Idx exceeds the setting range, the fault AL209 will occur.

Array_Addr: When the value of Array_Addr exceeds the setting range, the fault AL213 will occur.

Sys_Var: When the value of Sys_Var exceeds the setting range, the fault AL231 will occur.

For more descriptions of the faults AL213, AL217, AL209 and AL231, please see Chapter 11 Troubleshooting.

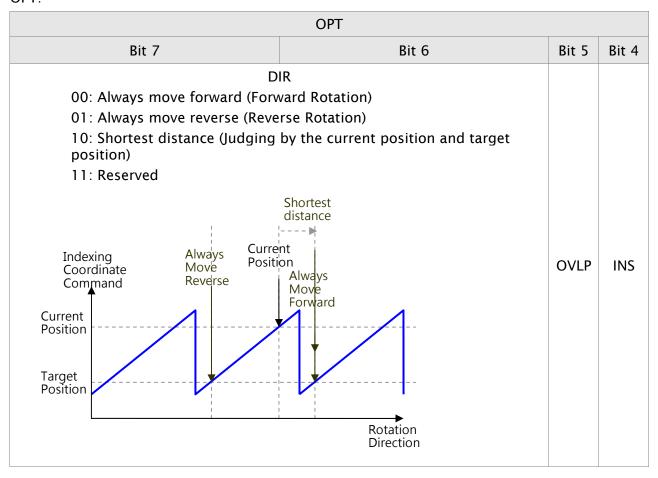
Please note:

- 1. For the firmware version V1.013 and earlier models:
 - If the values of the parameters can be retained when power is off, the new setting values will be written into EEPROM. Please note that do not frequently write data into EEPROM as doing this may damage EEPROM.
- 2. For the firmware version V1.013 and later models:

Even if the values of the parameters can be retained when power is off, the new setting values will not be written into EEPROM. Do not worry that EEPROM may be damaged.

Note:

Writing the specified parameter to the dedicated PR is used for the applications which need On/Off operation or tuning function. For example, it can be used when using P2-00 for different position commands). Usually, On/Off operation or tuning function will not be executed for one time only. They are usually executed for many times repeatedly during the operation of the mechanical system. If users write all the data into EEPROM too frequently, it may damage EEPROM. When setting P2-30 to 5, the data will not retained when power is off. But this is not convenient for users to use. In order to solve this problem, ASDA-A2 series adds this function.


3. If the operation of writing parameter to the dedicated PR is failed, the fault AL213 ~ AL219 will occur (see Chapter 11 Troubleshooting). If any fault occurs, the motor will not move to the next dedicated PR automatically when current positioning is completed.

7-24 Revision September 2012

10) Special Function: TYPE = 0xA, Indexing command.

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
DW0	-	OPT2	DLY	SPD	DEC	ACC	OPT	0xA
DW1	DW1 DATA (32 bit): Indexing Coordinate Command, Unit: Pulse of User Unit							

OPT:

INS: Insertion command on PR.

OVLP: Overlap the next PR. When OVLP is enabled, please set DLY to 0. This function is not available in speed mode. In position mode, DLY becomes disabled.

OPT2:

OPT2					
Bit 27	Bit 26	Bit 25	Bit 24		
-	AUTO	-	S_LOW		

AUTO: When current positioning is completed, the motor moves to the next dedicated PR automatically.

S_LOW: 0 ~ 1, speed unit selection. 0: Unit is 0.1r/min 1: U Unit is 0.01r/min

DATA (DW1): Data format

DW1: DATA (32 bits)
PUU: 0~ (P2-52-1)

P2-52: Indexing Coordinate Command

11) Homing Definition: P6-00 ~ P6-01, (64 bits), total 1 group.

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
DW0	BOOT	-	DLY	-	DEC1	ACC	PATH	BOOT
DW1	ORG_DEF (32 bit)							

PATH (PR): 0 ~ 3F. (6 bits)

00: Stop mode. Motor stops after homing is completed.

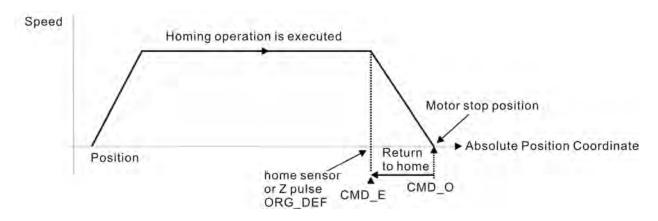
 $1\sim63$ (01 \sim 3F): Auto mode. Motor goes the dedicated PR 1 \sim 63 after homing is completed.

ACC: Acceleration time

DEC1: 1st deceleration time / 2nd deceleration time..

DLY: Delay time

BOOT: Boot mode. Disable or enable homing function when the servo drive is applied to power (power on).


0: Disable homing function

1: Enable homing function (when the servo drive is applied to power, first time Servo On)

ORG_DEF: Homing definition value which is determined by the parameter P6-01. The homing definition value does not necessarily have to be 0.

1) ASDA-A2 series does not provide the functions that find Z pulse and regard Z pulse as "Home". Therefore, it needs to decide if the motor return to Z pulse position when homing operation is completed.

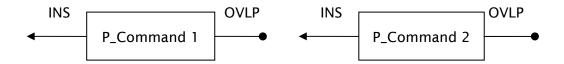
After home sensor or Z pulse is found, the motor must accelerate to stop. Generally, the motor stop position will be a little ahead of the position of Z pulse.

Do not return to Z pulse: Set PR=0

Return to Z pulse: Set PR=a non-zero value and set absolute position command= ORG_DEF.

CMD_O: Command Output Position

CMD_E: Command End Position

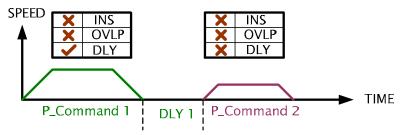

2) Position offset values are not defined when performing homing operation. After homing operation, the position offset values can be set as a dedicated PR.

For example, if users want the motor to move a distance S (relative to home senor or Z pulse), and defined the position coordinate as P, set PR as a non-zero value and set ORG_DEF=P - S.

(P is the absolute position command and S is the incremental position command)

7.10.1 Motion Commands

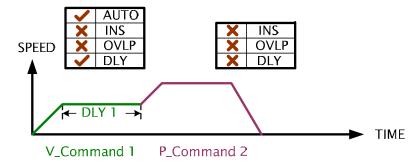
1) Each motion command can be inserted (INS) or overlapped (OVLP).


2) The priority of INS is higher than OVLP.

P_Command 1	P_Command 2	Sequence	Output	Note
OVLP=0	INS=0	Sequential Command	DLY 1	P_Command 1 and P_Command 2 can be speed or position command.
OVLP=1	INS=0	Overlap Command	NO DLY	When P_Command 2 is a speed command, OVLP function is disabled.
OVLP=0	INIC 1	Insertion	NI /A	P_Command 1 and P_Command 2
OVLP=1	INS=1	Command	N/A	can be speed or position command.

7.10.2 Sequence

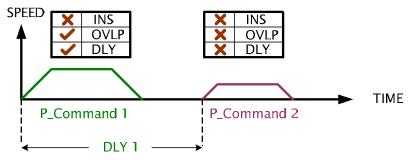
1) Sequential Command on PR


A command will be executed only when the previous command completed.

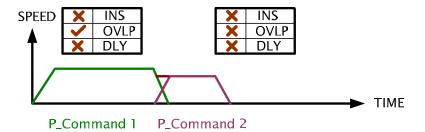
P_Command 1: DLY is set

P_Command 2: INS is not set

(DLY: Delay time is calculated from the time when the position command is completed)


V_Command 1: Speed command. DLY is set

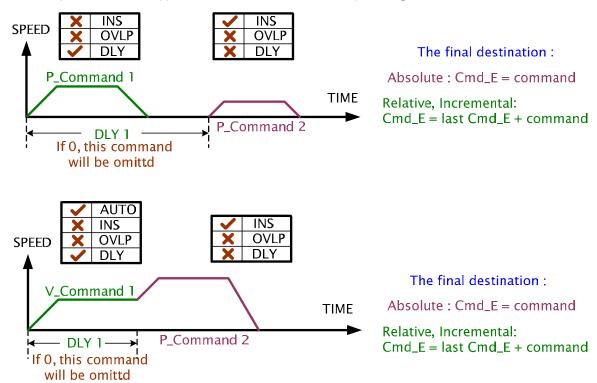
P_Command 2: Position command.


(DLY: Delay time is calculated from the time when the position command is completed)

2) Overlap Command

The second command will be executed after delay time or during deceleration period. A long delay time at the first command will affect the timing of second command. Zero delay is recommended for overlap application.

7-28 Revision September 2012



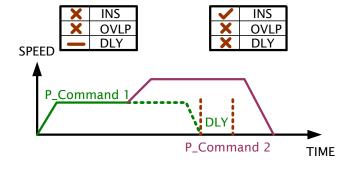
P_Command 1: OVLP is set, DLY can not be set.

P_Command 2: INS is not set

3) Internal Insertion Command

The second command will insert the first command to be a new command. The final result depends on the types of commands. The delay time gets function.

V_Command 1: Speed Command. DLY is set

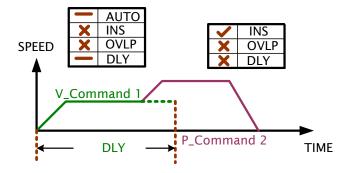

P_Command 2: Position Command. INS is set

(DLY is valid for internal insertion command)

This procedure can be used to create complicated position profile.

4) External Insertion Command

The external insertion will change the command being executed at the moment it inserted. The delay time is not a matter for external insertion.



The final destination:

Absolute : $Cmd_E = command$

Relative : Cmd_E = Fb_PUU + command Incremental : Cmd_E = last Cmd_E + command

Cap. Relative : Data captured + command

The final destination:

Absolute: Cmd_E = command

Relative : Cmd_E = Fb_PUU + command

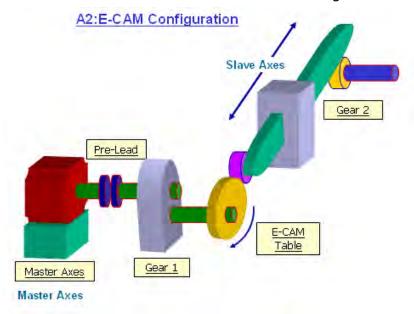
Incremental : Cmd_E = last Cmd_E + command

Cap. Relative: Data captured + command

V_Command 1: Speed Command. The delay time is not a matter for external insertion.

P_Command 2: Position Command. INS is set

(DLY is not valid for external insertion command)


This procedure can be used to change position profile freely.

7-30 Revision September 2012

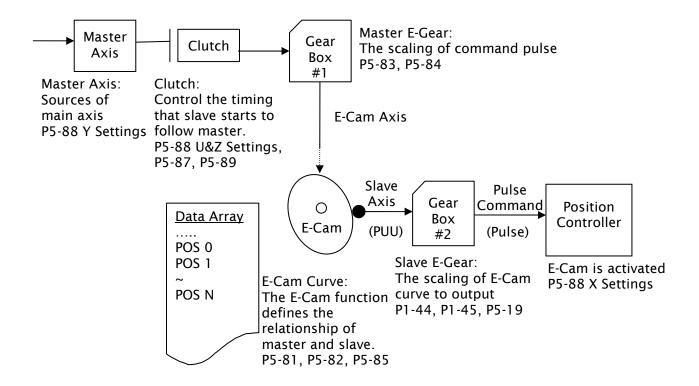
7.11 Electronic Cam (E-Cam) (ASDA-A2 series L type models do not provide this function)

From Machine Cam to Electronic Cam

The concept of electronic cam (E-Cam) is to use the software settings to determine the position relationship between master axis (Master) and slave axis (Slave), almost like a virtual electronic cam exists between both of them. Please refer to the figure below.

In PT mode, the external input pulse number (from master axis) is the reference of the position command (from slave axis). It indicates the slave axis follows the master axis. The relationship between master axis and slave axis is a linear relationship (The ratio is electronic gear ratio). When the electronic cam function is enabled, the relationship between master axis and slave axis is no longer a linear relationship only. It will become a cyclic curve relationship, just like the profile of the electronic cam. In the traditional mechanical system, a machine cam (physical cam) can convert the simple constant speed motion to variable speed motion, reciprocating motion and intermittent motion, etc. a wide range of motion control operation. The electronic cam can provide the same function and make the system to be used for a variety of motion control applications as well.

Please refer to the table below to know the differences between a machine cam (physical cam) and an electronic cam (virtual cam).


	Machine Cam (Physical Cam)	Electronic Cam
Structure	Return to the original position after one rotation.	After E-Cam rotates 360 degrees (one revolution), it can return to the original position and also can display by spiral form like mosquito coil incense.
Smooth Performance	Determined by actual process precision	Three curves can be interpolated between two positions upon software.
Position Accuracy	The position accuracy is very precise (under the condition of no vibration)	The position accuracy is very precise, but the actual motor position will be a little deviated due to the delay time.
Long Distance Motion	When the motion distance is longer, the system needs bigger machine cam. Making a big machine cam is not easy.	Only need to change the values of E- Cam curve. It is applicable for the application of long motion distance.
If master axis can be eliminated	Master axis can not be eliminated	Master axis can be eliminated for constant speed motion application. Users can use the signals that generated by the servo drive.
Replacement	Need of replacement or repair. It will cost money.	No need of replacement or repair. Users only need to reset the parameter settings.
Maintenance	Machine will wear. Maintenance is necessary.	Maintenance is not necessary.
Other	Mater axis will occupy the space and consume the power.	Space and energy saving. Good for environmental protection.

7-32 Revision September 2012

■ Characteristics of E-Cam:

	Characteristics of E-Cam
Control Mode	E-Cam function is available only in PR mode.
Enable E-Cam Function (P5-88 X Settings)	X=0: Disable E-Cam function (Default). If E-Cam has been engaged already, setting X=0 will force E-Cam to be disengaged. X=1: Enable E-Cam function.
States of E-Cam	There are three statuses: Stop / Lead Pulse / Engaged
Sources of Master Axis (P5-88 Y Settings)	 Physical axes: P5-88 Y=1. Linear Encoder (CN5) P5-88 Y=2. Pulse Command (CN1) Output axis: P5-88 Y=0. Capture source setting. (Defined by Capture function, P5-39 B settings) Virtual axes: P5-88 Y=3. PR command (Internal signal) P5-88 Y=4. 1ms clock (Internal signal) P5-88 Y=5. Synchronous Capture Axis (P5-77) P5-88 Y=6. Analog channel 1
Servo Drive Command	 Servo drive command = E-Cam command + PR command The command will be sent only when E-Cam is engaged. No matter E-Cam is engaged or not, PR command is valid. Only when E-Cam is engaged, the source of master axis is PR command and PR command is set to 0. When E-Cam operates, users can adjust E-Cam position through PR command still (usually using incremental position command).
Data Storage Location	 Data array. The E-Cam curve is stored in the data array. P5-81 notes its start point where P5-82 +1 (720+1, maximum items of one E-Cam curve) is for its length. P5-85 is the initial point where the E-Cam engaged.
E-Cam Curve Division	● It is set by P5-82. Range: 5 ~ 720
Data Format	32-bit data with polarity
Data Content	Save the position of slave axis (user unit: PUU)
Calculation Method of E-Cam Position	 Pulses of E-Cam master axis output incrementally → E-Cam Axis Pulses of E-Cam slave axis output incrementally → Position Command After E-Cam rotates one revolution, the slave axis may not return to the original position definitely. The position of the slave axis is determined by the content of E-Cam curve. Three curves can be interpolated between two positions upon software. The adjacent curves at the ends continue quadratic
DO signal: CAM_AREA (DO=0x18)	 differential equation and make the torque of the ends to be smooth. DO signal: CAM_AREA. When CAM_AREA is activated, it indicates that the servo drive has detected the E-Cam master position is within the setting area.

The function block diagram of E-Cam is shown as the figure below:

■ Function of Master Axis

	Function of Master Axis			
Descriptions	The movement of the master axis is the signal which enables E-Cam operation of the servo drive.			
	The command source of the master axis is determined by P5-88 Y settings.			
	Physical axes:			
	■ P5-88 Y=1. Linear Encoder (CN5)			
	■ P5-88 Y=2. Pulse Command (CN1)			
Source of Master Axis (P5-88 Y Settings)	Output axis:			
	 P5-88 Y=0. Capture source setting. (Defined by Capture function, P5-39 B settings) 			
	Virtual axes:			
	■ P5-88 Y=3. PR command (Internal signal)			
	■ P5-88 Y=4. 1ms clock (Internal signal)			
	■ P5-88 Y=5. Synchronous Capture Axis (P5-77)			
	■ P5-88 Y=6. Analog channel 1			
Position of Master Axis (P5-86)	Using P5-86 can monitor the position of the master axis. Before E-Cam is engaged, P5-86 can be set and changed still. Doing this will not affect the position of the slave axis because the movement of the master axis does not change as well. When the E-Cam is activated (P5-88 X=1), the pulse will be counted in P5-86. The P5-86 should be an increasing number. If not, reverse the pulse direction (not motor direction).			

7-34 Revision September 2012

■ Function of Clutch

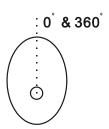
	Function of Clutch			
Descriptions	This function is used to determine the engaging and disengaging state of the master axis and gear box # 1. After E-Cam is engaged, then the movement of the master axis is able to rotate E-Cam of the servo drive.			
Enable E-Cam Function (P5-88 X Settings)	X=0: Disable E-Cam function (Default). If E-Cam has been engaged already, setting X=0 will force E-Cam to be disengaged. X=1: Enable E-Cam function.			
States of E-Cam	There are three statuses: Stop / Lead Pulse / Engaged 5 P5-88 X=0 P5-88 U=1, 2, 6 Stop The lead pulse number is set in P5-87 or P5-90 reached Can be read from monitoring variable 061 Stop There are 3 states to indicate the status of the E-Cam system. Stop This is the default status of E-Cam. E-Cam will not operate in accordance with the pulses of the master axis. When E-Cam function is disabled (P5-88 X=0), E-Cam will return to this state. Lead Pulse When the engaging conditions are satisfied (Path 1), the status of E-Cam will not operate in accordance with the pulses of the master axis. Engaged When the lead pulse number set in P5-87 or P5-92 reached (Path 3), E-Cam will enter into Engaged state and start to operate in accordance with the pulses of the master axis. Path Explanation Path 1 When the engaging conditions are satisfied (P5-88 Z setting), the status of E-Cam will change from Stop to Lead Pulse. The lead pulse number is set in P5-87.			

	Function of Clutch
States of E-Cam	 Path 2 When E-Cam function is disabled (P5-88 X=0), the status of E-Cam will return to Stop. Path 3 When the lead pulse number set in P5-87 or P5-92 reached, , the status of E-Cam will change from Lead Pulse to Engaged. Path 4 When disengaging conditions are satisfied (P5-88 U=4), the status of E-Cam will change from Engaged to Lead Pulse. When the electronic gear is disengaged, the status of E-Cam will not change to Stop. It will change to Lead Pulse and the lead pulse number at this time is set in P5-92 (this function is only available for the firmware version V1.006sub04 and later models). Path 5 When disengaging conditions are satisfied (P5-88 U=1, 2, 6), or when E-Cam function is disabled (P5-88 X=0), the status of E-Cam will change from Engaged to Stop.
Engaging Conditions (P5-88 Z Settings)	When E-Cam is in the status of Stop , this function is used to determine the engaging timing (Path 1). Three conditions to engage the clutch: Z=0: Engage immediately when E-Cam function is enabled (When P5-88 X=1) Z=1: Engage when DI signal, CAM (DI=0x36) is ON. Z=2: Any action of Capture function. E-Cam engaged after the next position is captured. The Capture function is designed to activate E-Cam because of its high speed input. When the Capture function fetches the position, it will bring the E-Cam function enforcement simultaneously. Because the Capture operation is controlled by external control command (hardware), and no delay occurs, this setting is suitable for the application requires real time such as the master axis is already operating before E-Cam is engaged.
Lead Pulse Number (Monitoring Variable 061)	 When E-Cam is in the status of Lead Pulse, the master axis needs to move for a certain distance and then E-Cam is able to be engaged (Path 3). This movement is called as Lead Pulse Number and it can be monitored by the monitoring variable 061. The value of lead pulse number will descend according to the input pulses of the master axis. When the value of lead pulse number becomes 0, the status of E-Cam will change to Engaged. When the status of E-Cam changes to Lead Pulse by Path 1, the lead pulse number is set in P5-87. When the status of E-Cam changes to Lead Pulse by Path 4, the lead pulse number is set in P5-92. If the setting value of P5-87 and P-92 is 0, it indicates that there is no lead pulse number and the status of E-Cam will change to Engaged immediately. + / - signs indicates the direction of lead pulse. Please note that if the polarity of the direction of lead pulse is set incorrectly, E-Cam will not be engaged.

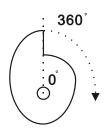
		Function of Clutch				
Lead Pulse Number (Monitoring Variable 061)	When the direction of lead pulse is not set correctly, it will cause that the value of the monitoring variable 061 becomes higher and higher and finally lead to overflow. At this time, E-Cam function will be disabled (P5-88 X=0) and the status of E-Cam will be forced to be changed to Stop .					
	This option is used to determine the disengaging timing when the status of E-Cam is Engaged . Please note that the condition 2, 4, and 6 are mutually exclusive; that is, only one of them can be selected.					
	U	Disengaging Conditions	States of E-Cam when disengaging			
	0	Do not disengage. When P5-88 X=0, E-Cam disengaged.	(Path 5) Change to the status of Stop			
	1	Disengage when DI signal, CAM (DI=0x36) is OFF.	(Path 5) Change to the status of Stop			
Disengaging Timing (P5-88 U Settings)	2	Fixed number of master pulses (P5-89) to disengage. (The polarity sign indicates the direction)	(Path 5) Change to the status of Stop			
	6	(This setting is only available in firmware V1.009 and later models) Fixed number of master pulses (P5-89) to disengage for smooth speed. The function is the same as the setting of U=2. The difference is that the speed will not change when disengaging and the engaging length will exceed the setting value of P5-89 a little. This setting is suitable for the application which needs to use PR command immediately when disengaging.	(Path 5) Change to the status of Stop			
	4	(This setting is only available in firmware V1.009 and later models) Fixed number of master pulses (P5-89) to disengage with cycle function. (The polarity sign indicates the direction)	(Path 4) Return to the status of Lead Pulse (before engaging) (The lead pulse number is set in P5-92).			
	8	Shut down E-Cam when disengaging.	P5-88 X=0			
Auxiliary Function (P5-88 BA Settings)	Call PR defined in P5-88 BA settings when disengaging (only when P5-88 U=2, 4, or 6 is selected). When E-Cam returns to the status of Stop , the designated PR defined in P5-88 BA settings will be executed immediately.					

■ Function of Gear Box #1 (Master E-Gear)

Function of Gear Box #1 (Master E-Gear)			
Function	 This function defines the relationship of the master axis and E-Cam axis. When the master axis rotates one revolution, it does not mean that E-Cam must rotate one revolution as well. The master E-Gear can be set. 		
	 The master E-Gear (electronic gear) will change the resolution of master pulse command. 		
Explanation	 E-Cam axis is a virtual axis. When E-Cam axis rotates 360 degrees, it indicates that E-Cam rotates one revolution also and the slave axis operates one cycle as well. The moving unit of the master axis is pulse number. The resolution is determined by the command source. 		
Setting Method P5-83 : M P5-84 : P	 P5-83 and P5-84 is used to set the scaling of command pulse. After receiving the pulse number P of master axis, the axis of E-Cam will rotate M cycles. P5-83=M, P5-84=P P5-83 can be adjusted while engaging. 		

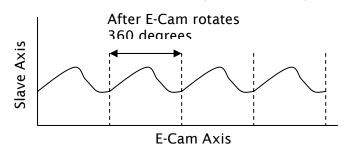

■ Function of E-Cam Curve

Function of E-Cam Curve			
Function	 The E-Cam function defines the relationship of master and slave axes. The related settings are saved in E-Cam curve. When E-Cam rotates one revolution, the slave axis operates one cycle. 		
Data Storage Location	 Data array. The E-Cam curve is stored in the data array. P5-81 notes its start point where P5-82 +1 (720+1, maximum items of one E-Cam curve) is for its length. P5-85 is the initial point where the E-Cam engaged. 		
Data Format	• 32-bit data with polarity (user unit is PUU)		
E-Cam Curve Scaling P5-19 (-2147.000000 ~ 2147.000000)	 It is used to magnify or minify E-Cam curve without changing the setting value of the E-Cam curve. Each data in E-Cam curve can be multiplied by this parameter. Range of P5-19 is:-2147.000000 ~ 2147.000000 with minimum scale of 0.000001. The change or P5-19 will be put into enforcement when the E-Cam re-engaged. E-Cam curve can be a negative scaling. If P5-19 is set to negative, the result will have a upside down curve compared to P5-19 is a positive value. When it is set to 0, E-Cam command will not output (always be 0). 		
E-Cam Curve Division N	 E-Cam curve can be divided into certain equal N parts (set by P5-82, N>=5). For example, if N=5, there will be 6 points recorded in the data array. Each division has 360/N degrees. 720 divisions are maximum number for one curve. 		


7-38 Revision September 2012

Function of E-Cam Curve

- E-Cam curve saves the position data of slave axis (user unit is PUU).
- If E-Cam is divided into N parts, it means that total N+1 points are recorded in the data array. This is because the position of the first point (0°) and the position of the last point (360°) are not the same.
 - 1. When the positions of 0° and 360° are the same:



2. When the positions of 0° and 360° are not the same:

E-Cam Curve Content

- Suppose that:
 - 1. When the positions of 0° and 360° are the same: It indicates that the position of slave axis will return to home after E-Cam rotates 360° (one revolution).

2. When the positions of 0° and 360° are not the same:

It indicates that the position of slave axis will not return to home after E-Cam rotates 360° (one revolution).

Function of E-Cam Curve			
Operation	 Slave axis is a virtual axis (user unit is PUU). P5-85 is the first point where the E-Cam engaged. When E-Cam engaged, the position of E-Cam axis will move to the point set by P5-85. The position of slave axis will move to the position which corresponds to P5-85. After E-Cam engaged, if E-Cam axis does not move, the slave axis will not move either. After E-Cam engaged, if E-Cam 		
	moves, the position changes of E-Cam axis represent the output pulses of the slave axis. When E-Cam rotates 360 degrees (one revolution), the slave axis operates one cycle.		
	• E-Cam axis can rotate in either forward or reverse direction.		
	• If the position of E-Cam axis is between two points of E-Cam curve, the position of the slave axis can be interpolated by cubic curves and the adjacent curves at the ends will continue quadratic differential equation and make the torque of the ends to be smooth. The point number of E-Cam curve will not affect the smooth operation of E-Cam either.		

■ Function of Gear Box #2 (Slave E-Gear)

Function of Gear Box #2 (Slave E-Gear)			
Function	 This function defines the relationship of slave axes and pulse command. When the slave axis rotates one revolution, it does not mean that pulse command must rotate one revolution as well. The slave E-Gear can be set. 		
Explanation	 Slave axis is a virtual axis (user unit is PUU). The unit of pulse command is encoder unit, pulse (1280000 pulse/rev) When E-Cam axis rotates one revolution, the slave axis operates one cycle as well. 		
Setting Method P1-44: Numerator of Electronic Gear Ratio	 When the pulse command of slave axis is L and motor runs R rotation, the electronic gear ratio will be equal to P1-44/P1-45 = 1280000 x R/L 		
P1-45: Denominator of Electronic Gear Ratio	 The function is the same as the electronic gear ratio in PT and PR mode. 		

■ Digital Outputs for E-Cam Function

Digital Outputs for E-Cam Function			
Digital Outputs	● DO signal: CAM_AREA (DO=0x18)		
Function	 When DO signal, CAM_AREA is ON, it indicates that the position of E-Cam axis is within the specified angle range. 		
When E-Cam engaged	 Degree when P5-90 and P5-91 is set to ON See Table 1 & 2 below. 		
When E-Cam disengaged	DO signal: CAM_AREA are OFF		

7-40 Revision September 2012

Table 1 P5-90 <= P5-91:

E-Cam Degree	0°	~	P5-90	~	P5-91	~	360°
DO:CAM_AREA	OFF	OFF	ON	ON	ON	OFF	OFF

Table 2 P5-90 > P5-91:

E-Cam Angle	0°	~	P5-91	~	P5-90	~	360°
DO:CAM_AREA	ON	ON	OFF	OFF	OFF	ON	ON

7.11.1 Capture Function

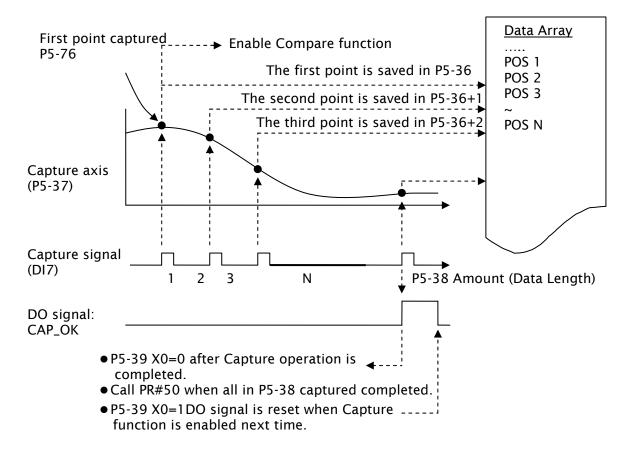
The Capture function can be applied to latch a reference position which could be the signal of main encoder, linear encoder, or pulse train. It is possible to record 800 items with max. length of data array.

The DI7 is the only one high speed digital input in ASDA-A2. The Capture function needs DI7 to admit the signal changed in real time. The signal to DI7 for Capture function is a physical signal and cannot be simulated from software. It can complete precise Capture function for high-speed motion axis.

The characteristics of Capture function is described as follows:

Characteristics of Capture function			
Sources	 Three sources of Capture function: Main encoder: Motor encoder Auxiliary encoder: Linear scale Pulse command: Pulse train The selected source axis will be displayed by P5-37. Before executing Capture function, please set P5-37 first. Please note: The capture source setting can not be changed when the compare source is the capture axis. 		
Trigger Signal	● It is triggered by DI7 and the response time is 5 usec. Please note: DI7 signal is a physical signal used to control Capture function directly. No matter what the setting value of P2-16 is, when DI7 is triggered, Capture function will be enabled always. After Capture function is enabled, in order to avoid the malfunction of the other DI signals, the system will force the other DI signals to be disabled, i.e. set P2-16=0x0100 automatically. Please note that the setting value of P2-16 will not be written into EEPROM when power is off. After re-power the servo drive, the setting value of P2-16 will be restored to its default setting automatically.		
Trigger Method	 By edge triggered. A or B contact can be selectable. It is able to capture multiple positions continuously. The interval time can be set also. (It can determine how long it will take when accepting the next trigger command) 		

	Characteristics of Capture function
Data Storage Location	• Data array. The starting point is set in P5-36.
Amount	 The amount is determined by P5-38. But, the total amount can not exceed the limit of data array.
Data Format	32-bit pulse number (with polarity)
	 If Bit 1 of P5-39 X setting is set, P5-37=P5-76 after the first point is captured.
Auxiliary Function	 If Bit 2 of P5-39 X setting is set, the servo system will initiate Compare function automatically after the first point is captured.
	 If Bit 3 of P5-39 X setting is set, the servo system will call PR#50 automatically when all data in P5-38 captured completely.
	The default setting is OFF.
DO Signal:	It will be ON when the last position is captured.
CAP_OK	 When BitO of P5-39 is set to 1 (P5-39 X0=1), it will be OFF after the capture function is enabled.
Remark	● If P5-38=0 and Bit0 of P5-39 is set to 1 (P5-39 X0=1), Capture function will be disabled. At this time, Bit0 of P5-39 will be reset to 0 (P5-39 X0=0) and the DO signal, CAP_OK will be inactivated (OFF) as well.
	 The data format of Capture axis is 32-bit data. Do not calculate the capture data repeatedly; otherwise the overflow may occur and result in error or invalid result.


The data captured by Capture function are all stored in data array. The first captured point is stored in data array (P5-36), the capture amount is determined by P5-38 and the last captured point is stored in data array (P5-36+P5-38-1). When Bit0=1 (P5-39 X setting value), the Capture function is enabled. Once DI7 is triggered every time, one position data will be captured and stored into data array. At this time, the setting value of P5-38 will decrease 1 automatically until the capture amount is reached, i.e. the setting value of P5-38 becomes 0. When capture function has finished, the value of Bit0 (P5-39 X setting value) will be reset to 0 automatically, and DO signal, CAP_OK will be activated.

When the first point is captured, users can choose to reset the position of Capture axis. Then, the value of the first capture point must be the value of P5-76 and the captured value after the second captured point will be the movement relative to the first captured point. This kind of Capture is called "Relative Capture". However, if users choose not to reset the fist captured point, the capture method is called "Absolute Capture".

When capturing the first point, users can select to enable Compare function as well

7-42 Revision September 2012

Capture Operation:

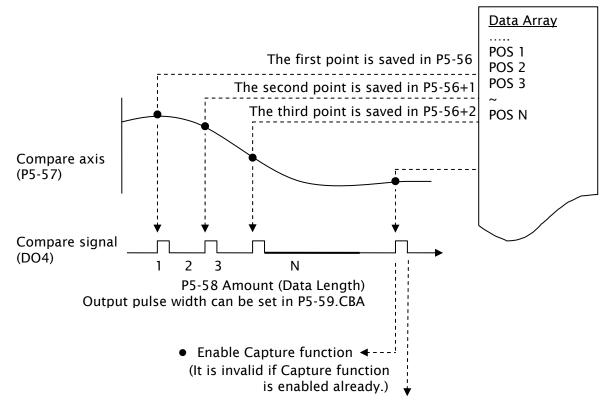
7.11.2 Compare Function

The Compare function is a reverse process of the Capture function. The items stored in data array will be compared to the signal of a physical axis (main encoder, linear encoder, or pulse train).

The Compare function uses the instant position of motion axis to compare with the value which store in data array. When the compare conditions are satisfied, DO4 signal will output immediately for motion control.

The signal to DO4 for Compare function is a physical signal and cannot be simulated from software. It can complete precise Compare function for high-speed motion axis. The characteristics of Compare function is described as follows:

	Characteristics of Compare function
Sources	 Three sources of Compare function: Main encoder: Motor encoder Auxiliary encoder: Linear scale Pulse command: Pulse train Capture axis (When the source is the capture axis, the capture source setting can not be changed.) The selected source axis will be displayed by P5-57. Before executing Capture function, please set P5-57 first.


	Characteristics of Compare function
	It is output by DO4 and the response time is 5 usec. Please note:
Trigger Signal	DO4 signal is a physical signal used to control Compare function directly. No matter what the setting value of P2-21 is, when DO4 is triggered, Compare function will be enabled always. After Compare function is enabled, in order to avoid the malfunction of the other DO signals, the system will force the other DO signals to be disabled, i.e. set P2-21=0x0100 automatically. Please note that the setting value of P2-21 will not be written into EEPROM when power is off. After re-power the servo drive, the setting value of P2-21 will be restored to its default setting automatically.
Output Method	 Pulse output. A or B contact can be selectable. It is able to compare multiple positions continuously. The output pulse width can be set also.
Data Storage Location	Data array. The starting point is set in P5-56.
Amount	The amount is determined by P5-58. But, the total amount can not exceed the limit of data array.
Data Format	32-bit pulse number (with polarity)
Compare Condition	It is triggered when the position of source axis pass through the compare value.
Auxiliary Function	 Continuous Mode: When the last point is compared, the servo system will return to the fist point and start Compare operation again. After the last point is compared, the servo system will enable Capture function automatically.
Remark	 If P5-58=0 and Bit0 of P5-59 is set to 1 (P5-59 X0=1), Compare function will be disabled. At this time, Bit0 of P5-59 will be reset to 0 (P5-59 X0=0). The data format of Compare axis is 32-bit data. Do not calculate the compare data repeatedly; otherwise the overflow may occur and result in error or invalid result.

The data compared by Compare function are all stored in data array. The first compared point is stored in data array (P5-56), the compare amount is determined by P5-58 and the last compared point is stored in data array (P5-56+P5-58-1). When Bit0=1 (P5-59 X setting value), the Compare function is enabled and start to compare the data of the first point. Every time when one position is compared, the pulse signal will output one time. At this time, the setting value of P5-58 will decrease 1 automatically until the compare amount is reached, i.e. the setting value of P5-58 becomes 0. When compare function has finished, the value of Bit0 (P5-59 X setting value) will be reset to 0 automatically.

When the last point is compared, users can choose to compare from the first point again and again, and it is called "Continuous Mode". Or users can choose to enable Capture function automatically after the last point is compared.

7-44 Revision September 2012

Compare Operation:

After the last pulse outputs completely:

- Non-continuous mode: P5-59 X0=0 after Compare operation is completed.
- Continuous mode: The servo system keeps repeating the Compare function, P5-59 X0=1

This page intentionally left blank.

7-46

Chapter 8 Servo Parameters

8.1 Definition

There are following eight groups for drive parameters:

Group 0: Monitor parameters (example: P0-xx)

Group 1: Basic parameters (example: P1-xx)

Group 2: Extension parameters (example: P2-xx)

Group 3: Communication parameters (example: P3-xx)

Group 4: Diagnosis parameters (example: P4-xx)

Group 5: Motion control parameters (example: P5-xx)

Group 6: PR path definition parameters (example: P6-xx)

Group 7: PR path definition parameters (example: P7-xx)

Abbreviation of control modes:

PT : Position control mode (command from external signal)

PR : Position control mode (command from internal signal)

S : Speed control mode
T : Torque control mode

Explanation of symbols (marked after parameter)

- (★) Read-only register, such as P0-00, P0-01, P4-00.
- (▲) Parameter cannot be set when Servo On (when the servo drive is enabled), such as P1-00, P1-46 and P2-33.
- (•) Parameter is effective only after the servo drive is restarted (after switching power off and on), such as P1-01 and P3-00.
- (**I**) Parameter setting values are not retained when power is off, such as P2-31 and P3-06.

8.2 Parameters Summary

8.2.1 Parameters List by Group

Group 0: P0-xx

		Monitor Parameters						
Parameter	Name	Function	Default	Unit	(Con Mo		I
					PT	PR	S	Т
P0-00 ★	VER	Firmware Version	Factory setting	N/A	0	0	0	0
P0-01■	ALE	Drive Fault Code	N/A	N/A	0	0	0	0
P0-02	STS	Drive Status (Front Panel Display)	00	N/A	0	0	0	0
P0-03	MON	Analog Monitor Output	01	N/A	0	0	0	0
P0-04 ~ P0-07	Reserved	(Do Not Use)						
P0-08 ★	TSON	Servo Startup Time	0	Hour	0	0	0	0
P0-09 ★	CM1	Status Monitor 1	N/A	N/A	0	0	0	0
P0-10 ★	CM2	Status Monitor 2	N/A	N/A	0	0	0	0
P0-11★	CM3	Status Monitor 3	N/A	N/A	0	0	0	0
P0-12★	CM4	Status Monitor 4	N/A	N/A	0	0	0	0
P0-13★	CM5	Status Monitor 5	N/A	N/A	0	0	0	0
P0-14 ~ P0-16	Reserved	(Do Not Use)						
P0-17	CM1A	Status Monitor Selection 1	0	N/A	0	0	0	0
P0-18	CM2A	Status Monitor Selection 2	0	N/A	0	0	0	0
P0-19	СМЗА	Status Monitor Selection 3	0	N/A	0	0	0	0
P0-20	CM4A	Status Monitor Selection 4	0	N/A	0	0	0	0
P0-21	CM5A	Status Monitor Selection 5	0	N/A	0	0	0	0
P0-22 ~ P0-24	Reserved	(Do Not Use)						
P0-25	MAP0	Mapping Parameter 1	N/A	N/A	0	0	0	0
P0-26	MAP1	Mapping Parameter 2	N/A	N/A	0	0	0	0
P0-27	MAP2	Mapping Parameter 3	N/A	N/A	0	0	0	0
P0-28	MAP3	Mapping Parameter 4	N/A	N/A	0	0	0	0
P0-29	MAP4	Mapping Parameter 5	N/A	N/A	0	0	0	0
P0-30	MAP5	Mapping Parameter 6	N/A	N/A	0	0	0	0
P0-31	MAP6	Mapping Parameter 7	N/A	N/A	0	0	0	0
P0-32	MAP7	Mapping Parameter 8	N/A	N/A	0	0	0	0

8-2 Revision September 2012

		Monitor Parameters						
Parameter	Name	Function	Default	Unit	(Con Mo		ı
raiailletei	Name	Function	Delault	Oilit	РТ	PR		Т
P0-33 ~ P0-34	Reserved ((Do Not Use)						
P0-35	MAP1A	Block Data Read / Write Register 1 (for P0-25)	0x0	N/A	0	0	0	0
P0-36	MAP2A	Block Data Read / Write Register 2 (for P0-26)	0x0	N/A	0	0	0	0
P0-37	МАР3А	Block Data Read / Write Register 3 (for P0-27)	0x0	N/A	0	0	0	0
P0-38	MAP4A	Block Data Read / Write Register 4 (for P0-28)	0x0	N/A	0	0	0	0
P0-39	MAP5A	Block Data Read / Write Register 5 (for P0-29)	0x0	N/A	0	0	0	0
P0-40	MAP6A	Block Data Read / Write Register 6 (for P0-30)	0x0	N/A	0	0	0	0
P0-41	MAP7A	Block Data Read / Write Register 7 (for P0-31)	0x0	N/A	0	0	0	0
P0-42	MAP8A	Block Data Read / Write Register 8 (for P0-32)	0×0	N/A	0	0	0	0
P0-43	Reserved ((Do Not Use)						
P0-44	PCMN	Status Monitor Register (PC Software Setting)	0x0	N/A	0	0	0	0
P0-45	PCMNA	Status Monitor Register Selection (PC Software Setting)	0x0	N/A	0	0	0	0
P0-46★	SVSTS	Servo Output Status Display	0	N/A	0	0	0	0
P0-47 ~ P0-48	Reserved ((Do Not Use)						
P0-49 ■	UAP	Renew Encoder Absolute Position	0x0	N/A	0	0	0	0
P0-50 ★	APSTS	Absolute Coordinate System Status	0x0	N/A	0	0	0	0
P0-51★	APR	Encoder Absolute Position (Multiturn)	0x0	rev	0	0	0	0
P0-52★	АРР	Encoder Absolute Position (Pulse number within Singleturn or PUU)	0x0	pulse or PUU	0	0	0	0
P0-53	ZDRT	General Range Compare Digital Output - Filtering Time	0x0000	ms	0	0	0	0
P0-54	ZON1L	General Range Compare Digital Output - Lower Limit of 1st Monitoring Variable	0	ms	0	0	0	0

		Monitor Parameters						
Parameter	Name	Function Default	n Default Uni	Unit	Control Mode			I
					PT	PR	S	Т
P0-55	ZON1H	General Range Compare Digital Output - Upper Limit of 1st Monitoring Variable	0	ms	0	0	0	0
P0-56 ~ P0-61	Reserved (Do Not Use)						

Explanation of symbols (marked after parameter)

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (•) Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**I**) Parameter setting values are not retained when power is off.

8-4 Revision September 2012

Group 1: P1-xx

		Basic Parameters						
Parameter	Name	Function	Default	Unit		Con Mo	tro de	I
					PT	PR	S	T
P1-00 ▲	PTT	External Pulse Input Type	0x2	N/A	0			
P1-01 ●	CTL	Control Mode and Output Direction	0	pulse r/min N-m	0	0	0	0
P1-02▲	PSTL	Speed and Torque Limit	0	N/A	0	0	0	0
P1-03	AOUT	Pulse Output Polarity Setting	0	N/A	0	0	0	0
P1-04	MON1	Analog Monitor Output Proportion 1 (MON1)	100	% (full scale)	0	0	0	0
P1-05	MON2	Analog Monitor Output Proportion 2 (MON2)	100	% (full scale)	0	0	0	0
P1-06	SFLT	Accel / Decel Smooth Constant of Analog Speed Command (Low-pass Filter)	0	ms			0	
P1-07	TFLT	Smooth Constant of Analog Torque Command (Low-pass Filter)	0	ms				0
P1-08	PFLT	Smooth Constant of Position Command (Low-pass Filter)	0	ms	0			
P1-09	SP1 ~ 3	1st ~ 3rd Speed Command	1000 ~	r/min			0	0
~ P1-11	3P1 ~ 3	1st ~ 3rd Speed Limit	3000	r/min				
P1-12	TQ1 ~ 3	1st ~ 3rd Torque Command	100	%	0		0	0
~ P1-14	TQT ~ 3	1st ~ 3rd Torque Limit	100	/0				
P1-15	CXFT	CAPTURE SYNC AXIS – Threshold of Correction	0000h	N/A	0	0	0	0
P1-16	CSOF	CAPTURE SYNC AXIS - Offset Compensation	0	The Pulse Unit of Master Axis		0		
P1-17	TEET	Tracking Error Compensation - Additional Time Setting	0	ms with fraction down to usec	0	0	0	0
P1-18	СРСТ	Electronoic Cam (E-Cam) Pulse Phase Compensation - Time Setting	0	ms with fraction down to usec		0		
P1-19	CPEX	Capture / Compare - Additional Function Settings	0	N/A	0	0	0	0
P1-20	СРМК	CAPTURE - Masking Range Setting	0	The Pulse Unit of Capture Axis	0	0	0	0

		Basic Parameters						
Parameter	Name	Function	Default	Unit		Con Mo	tro de	ı
					РТ	PR	S	Т
P1-21	CPCL	Electronoic Cam (E-Cam) Pulse Phase Compensation – Min. Frequency Setting of Master Axis	0	Kpps		0		
P1-22	SPF1	PR Special Filter Settings	0000h	N/A		0		
P1-23	CMOF	COMPARE - Compare data offset (Value of P1-23 are remain unchanged)	0	The Pulse Unit of Capture Axis	0	0	0	0
P1-24	CMOF	COMPARE - Compare data offset (Automatically set P1-24 to 0)	0	The Pulse Unit of Capture Axis	0	0	0	0
P1-25	VSF1	Low-frequency Vibration Suppression (1)	100.0	Hz	0	0		
P1-26	VSG1	Low-frequency Vibration Suppression Gain (1)	0	N/A	0	0		
P1-27	VSF2	Low-frequency Vibration Suppression (2)	100.0	Hz	0	0		
P1-28	VSG2	Low-frequency Vibration Suppression Gain (2)	0	N/A	0	0		
P1-29	AVSM	Auto Low-frequency Vibration Suppression Mode Selection	0	N/A	0	0		
P1-30	VCL	Low-frequency Vibration Detection Level	500	pulse	0	0		
P1-31	Reserved	(Do Not Use)						
P1-32	LSTP	Motor Stop Mode Selection	0	N/A	0	0	0	0
P1-33	Reserved	(Do Not Use)						
P1-34	TACC	Acceleration Time	200	ms			0	
P1-35	TDEC	Deceleration Time	200	ms			0	
P1-36	TSL	Accel /Decel S-curve	0	ms		0	0	
P1-37	GDR	Ratio of Load Inertia to Servo Motor Inertia	10	0.1 times	0	0	0	0
P1-38	ZSPD	Zero Speed Range Setting	100	0.1 r/min	0	0	0	0
P1-39	SSPD	Target Motor Speed	3000	r/min	0	0	0	0
P1-40▲	VCM	Max. Analog Speed Command or Limit 1	rated speed	r/min			0	0
P1-41 ▲	ТСМ	Max. Analog Torque Command or Limit	100	%	0	0	0	0
P1-42	MBT1	On Delay Time of Electromagnetic Brake	0	ms	0	0	0	0
P1-43	MBT2	OFF Delay Time of Electromagnetic Brake	-1000 ~ 1000	ms	0	0	0	0

8-6 Revision September 2012

		Basic Parameters						
Parameter	Name	Function	Default	Unit			tro de	I
					PT	PR	S	Т
P1-44 ▲	GR1	Electronic Gear Ratio (1st Numerator) (N1)	128	pulse	0	0		
P1-45	GR2	Electronic Gear Ratio (Denominator) (M)	10	pulse	0	0		
P1-46 ▲	GR3	Encoder Output Pulse Number	2500	pulse	0	0	0	0
P1-47	SPOK	Speed Reached Output Range	10	N/A			0	
P1-48	МСОК	Motion Control Completed Output Selection	0x0000	N/A	0			
P1-49 ~ P1-51	Reserved	(Do Not Use)						
P1-52	RES1	Regenerative Resistor Value	-	Ohm	0	0	0	0
P1-53	RES2	Regenerative Resistor Capacity	-	Watt	0	0	0	0
P1-54	PER	Positioning Completed Width	12800	pulse	0	0		
P1-55	MSPD	Maximum Speed Limit	rated speed	r/min	0	0	0	0
P1-56	OVW	Output Overload Warning Time	120	%	0	0	0	0
P1-57	CRSHA	Motor Protection Percentage	0	%	0	0	0	0
P1-58	CRSHT	Motor Protection Time	1	ms	0	0	0	0
P1-59	MFLT	Analog Speed Linear Filter (Moving Filter)	0	0.1 ms			0	
P1-60 ~ P1-61	Reserved	(Do Not Use)						
P1-62	FRCL	Friction Compensation Percentage	0	%	0	0	0	
P1-63	FRCT	Friction Compensation Smooth Constant	0	ms	0	0	0	
P1-64 ~ P1-65	Reserved	(Do Not Use)						
P1-66	PCM	Max. Rotation Number of Analog Position Command (will be available soon)	30	0.1 rotation	0			
P1-67	Reserved	(Do Not Use)	1					
P1-68	PFLT2	Position Command Moving Filter	4	ms	0	0		
P1-69 ~ P1-71	Reserved	(Do Not Use)						
P1-72	FRES	Full-closed Control Resolution of Linear Scale	5000	pulse/ rev	0	0		
P1-73	FERR	Full-closed Loop Excessive Position Error Range	30000	pulse	0	0		
P1-74▲	FCON	Full-closed Loop Control Function Selection	000h	N/A	0	0		

		Basic Parameters						
Parameter	Name	Function	Default	Unit		Con Mo	tro de	-
					PT	PR	S	Т
P1-75	FELP	Full-closed Loop Low-pass Filter Time Constant	100	ms	0	0		
P1-76	AMSPD	Max. Rotation Speed of Encoder Output	5500	r/min	0	0	0	0

Explanation of symbols (marked after parameter)

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8-8 Revision September 2012

Group 2: P2-xx

		Extension Parameters						
Parameter	Name	Function	Default	Unit		Contr Mod		
					PT	PR	S	Т
P2-00	KPP	Proportional Position Loop Gain	35	rad/s	0	0		
P2-01	PPR	Position Loop Gain Switching Rate	100	%	0	0		
P2-02	PFG	Position Feed Forward Gain	50	%	0	0		
P2-03	PFF	Smooth Constant of Position Feed Forward Gain	5	ms	0	0		
P2-04	KVP	Proportional Speed Loop Gain	500	rad/s	0	0	0	0
P2-05	SPR	Speed Loop Gain Switching Rate	100	%	0	0	0	0
P2-06	KVI	Speed Integral Compensation	100	rad/s	0	0	0	0
P2-07	KVF	Speed Feed Forward Gain	0	%	0	0	0	0
P2-08■	PCTL	Special Factory Setting	0	N/A	0	0	0	0
P2-09	DRT	Bounce Filter	2	2ms	0	0	0	0
P2-10	DI1	Digital Input Terminal 1 (DI1)	101	N/A	0	0	0	0
P2-11	DI2	Digital Input Terminal 2 (DI2)	104	N/A	0	0	0	0
P2-12	DI3	Digital Input Terminal 3 (DI3)	116	N/A	0	0	0	0
P2-13	DI4	Digital Input Terminal 4 (DI4)	117	N/A	0	0	0	0
P2-14	DI5	Digital Input Terminal 5 (DI5)	102	N/A	0	0	0	0
P2-15	DI6	Digital Input Terminal 6 (DI6)	22	N/A	0	0	0	0
P2-16	DI7	Digital Input Terminal 7 (DI7)	23	N/A	0	0	0	0
P2-17	DI8	Digital Input Terminal 8 (DI8)	21	N/A	0	0	0	0
P2-18	DO1	Digital Output Terminal 1 (DO1)	101	N/A	0	0	0	0
P2-19	DO2	Digital Output Terminal 2 (DO2)	103	N/A	0	0	0	0
P2-20	DO3	Digital Output Terminal 3 (DO3)	109	N/A	0	0	0	0
P2-21	DO4	Digital Output Terminal 4 (DO4)	105	N/A	0	0	0	0
P2-22	DO5	Digital Output Terminal 5 (DO5)	7	N/A	0	0	0	0
P2-23	NCF	Notch Filter 1 (Resonance Suppression)	1000	Hz	0	0	0	0
P2-24	DPH	Notch Filter Attenuation Rate 1 (Resonance Suppression)	0	dB	0	0	0	0
P2-25	NLP	Low-pass Filter Time Constant (Resonance Suppression)	2 or 5	0.1 ms	0	0	0	0
P2-26	DST	External Anti-Interference Gain	0	0.001	0	0	0	0
P2-27	GCC	Gain Switching Control Selection	0	N/A	0	0	0	0
P2-28	GUT	Gain Switching Time Constant	10	10ms	0	0	0	0
P2-29	GPE	Gain Switching Condition	1280000	pulse Kpps r/min	0	0	0	0

		Extension Parameters						
Davamatav	Nama	F	Defeule	l l m l t		Con	tro de	ı
Parameter	Name	Function	Default	Unit	PT	PR		Т
P2-30■	INH	Auxiliary Function	0	N/A	0	0	0	0
P2-31	AUT1	Speed Frequency Response Level in Auto and Semi-Auto Mode	80	Hz	0	0	0	0
P2-32 ▲	AUT2	Tuning Mode Selection	0	N/A	0	0	0	0
P2-33 ▲	INF	Semi-Auto Mode Inertia Adjustment Selection	0	N/A	0	0	0	0
P2-34	SDEV	Overspeed Warning Condition	5000	r/min			0	
P2-35	PDEV	Excessive Error Warning Condition	3840000	pulse	0	0		
P2-36	EDI9	External Digital Input Terminal 9 (EDI9)	0	N/A	0	0	0	0
P2-37	EDI10	External Digital Input Terminal 10 (EDI10)	0	N/A	0	0	0	0
P2-38	EDI11	External Digital Input Terminal 11 (EDI11)	0	N/A	0	0	0	0
P2-39	EDI12	External Digital Input Terminal 12 (EDI12)	0	N/A	0	0	0	0
P2-40	EDI13	External Digital Input Terminal 13 (EDI13)	0	N/A	0	0	0	0
P2-41	EDI14	External Digital Input Terminal 14 (EDI14)	0	N/A	0	0	0	0
P2-42	Reserved	(Do Not Use)						
P2-43	NCF2	Notch Filter 2 (Resonance Suppression)	1000	Hz	0	0	0	0
P2-44	DPH2	Notch Filter Attenuation Rate 2 (Resonance Suppression)	0	dB	0	0	0	0
P2-45	DOD	Notch Filter 3 (Resonance Suppression)	1000	Hz	0	0	0	0
P2-46	FSN	Notch Filter Attenuation Rate 3 (Resonance Suppression)	0	dB	0	0	0	0
P2-47	PED	Auto Resonance Suppression Mode Selection	1	N/A	0	0	0	0
P2-48	BLAS	Auto Resonance Suppression Detection Level	100	N/A	0	0	0	0
P2-49	SJIT	Speed Detection Filter and Jitter Suppression	0	sec	0	0	0	0
P2-50	DCLR	Pulse Deviation Clear Mode	0	N/A	0	0		
P2-51	Reserved	(Do Not Use)						
P2-52	IDXS	Indexing Coordinates Scale	100000000	PUU	0	0	0	0
P2-53	KPI	Position Integral Compensation	0	rad/s	0	0	0	0
P2-54	SVP	Synchronous Speed Loop Gain	0	rad/s	0	0	0	0

8-10 Revision September 2012

Extension Parameters								
Darameter	Name	Function	Default	Unit	Control Mode			
Parameter					РТ	PR		Т
P2-55	SVI	Synchronous Speed Integral Compensation	0	rad/s	0	0	0	0
P2-56	SPI	Synchronous Position Integral Compensation	0	rad/s	0	0	0	0
P2-57	SBW	Synchronous Speed Frequency Response	0	Hz	0	0	0	0
P2-58	SVL	Low-pass Filter Time Constant of Synchronous Speed Error	0	0.1 ms	0	0	0	0
P2-59	Reserved (Do Not Use)							
P2-60	GR4	Electronic Gear Ratio (2nd Numerator) (N2)	128	pulse	0			
P2-61	GR5	Electronic Gear Ratio (3rd Numerator) (N3)	128	pulse	0			
P2-62	GR6	Electronic Gear Ratio (4th Numerator) (N4)	128	pulse	0			
P2-63 ~ P2-64 Reserved (Do Not Use)								
P2-65	GBIT	Special Function 1	0	N/A	0	0	0	
P2-66	GBIT2	Special Function 2	0	N/A	0	0	0	
P2-67	JSL	Stable Inertia Estimating Time	1.5	0.1 times	0	0	0	0
P2-68	TEP	Tracking Error Compensation Selection	0	N/A	0	0	0	0
P2-69	ABS	Absolute Encoder Setting	0x0	N/A	0	0	0	0
P2-70	MRS	Read Data Format Selection	0x0	N/A	0	0	0	0
P2-71	CAP	Absolute Position Homing	0x0	N/A	0	0	0	0
P2-72	Reserved	(Do Not Use)						
P2-73	ALOP	E-Cam Alignment - Operation Setting	0000000h	N/A		0		
P2-74	ALDY	E-Cam Alignment - DI Delay Time Compensation	0.000	ms		0		
P2-75	ALTG	E-Cam Alignment - Alignment Target Position	0	The Pulse Unit of Capture Axis		0		
P2-76	ALCT	E-Cam Alignment - Source Setting	0000h	N/A		0		
P2-77	CMSK	E-Cam Master Axis - Pulse Masking Setting	0000h	N/A		0		
P2-78	СМАР		270	degree		0		
P2-79	СМАР		360	degree	0	0	0	0

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8-12 Revision September 2012

Group 3: P3-xx

	Communication Parameters										
Parameter	Name	Function	Default	Unit		Con Mo	tro de	ı			
					PT	PR	S	Т			
Р3-00●	ADR	Communication Address Setting	0x7F	N/A	0	0	0	0			
P3-01	BRT	Transmission Speed	0x0203	bps	0	0	0	0			
P3-02	PTL	Communication Protocol	6	N/A	0	0	0	0			
P3-03	FLT	Transmission Fault Treatment	0	N/A	0	0	0	0			
P3-04	CWD	Communication Time Out Detection	0	sec	0	0	0	0			
P3-05	СММ	Communication Selection	0	N/A	0	0	0	0			
P3-06■	SDI	Digital Input Communication Function	0	N/A	0	0	0	0			
P3-07	CDT	Communication Response Delay Time	0	1 ms	0	0	0	0			
P3-08■	MNS	Monitor Mode	0000	N/A	0	0	0	0			
P3-09	SYC	CANopen Synchronization Setting	0x57A1	N/A	C	AN mc	•	n			
P3-10 ~ P3-11	Reserved	(Do Not Use)									

Explanation of symbols (marked after parameter)

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

Group 4: P4-xx

		Diagnosis Parameters						
Parameter	Name	Function	Default	Unit		Con Mo	itro ode	I
					PT	PR	S	Т
P4-00★	ASH1	Fault Record (N)	0	N/A	0	0	0	0
P4-01★	ASH2	Fault Record (N-1)	0	N/A	0	0	0	0
P4-02★	ASH3	Fault Record (N-2)	0	N/A	0	0	0	0
P4-03★	ASH4	Fault Record (N-3)	0	N/A	0	0	0	0
P4-04★	ASH5	Fault Record (N-4)	0	N/A	0	0	0	0
P4-05	JOG	JOG Operation	20	r/min	0	0	0	0
P4-06 ▲ ■	FOT	Force Output Contact Control	0	N/A	0	0	0	0
P4-07■	ITST	Input Status	0	N/A	0	0	0	0
P4-08★	PKEY	Digital Keypad Input of Servo Drive	N/A	N/A	0	0	0	0
P4-09★	MOT	Output Status	N/A	N/A	0	0	0	0
P4-10■	CEN	Adjustment Function	0	N/A	0	0	0	0
P4-11	SOF1	Analog Speed Input Drift Adjustment 1	Factory setting	N/A	0	0	0	0
P4-12	SOF2	Analog Speed Input Drift Adjustment 2	Factory setting	N/A	0	0	0	0
P4-13	TOF1	Analog Torque Drift Adjustment 1	Factory setting	N/A	0	0	0	0
P4-14	TOF2	Analog Torque Drift Adjustment 2	Factory setting	N/A	0	0	0	0
P4-15	COF1	Current Detector Drift Adjustment (V1 phase)	Factory setting	N/A	0	0	0	0
P4-16	COF2	Current Detector Drift Adjustment (V2 phase)	Factory setting	N/A	0	0	0	0
P4-17	COF3	Current Detector Drift Adjustment (W1 phase)	Factory setting	N/A	0	0	0	0
P4-18	COF4	Current Detector Drift Adjustment (W2 phase)	Factory setting	N/A	0	0	0	0
P4-19	TIGB	IGBT NTC Calibration	Factory setting	N/A	0	0	0	0
P4-20	DOF1	Analog Monitor Output Drift Adjustment (CH1)	0	mV	0	0	0	0
P4-21	DOF2	Analog Monitor Output Drift Adjustment (CH2)	0	mV	0	0	0	0
P4-22	SAO	Analog Speed Input Offset	0	mV			0	
P4-23	TAO	Analog Torque Input Offset	0	mV				0
P4-24	LVL	Undervoltage Error Level	160	V(rms)	0	0	0	0

8-14 Revision September 2012

Group 5: P5-xx

		Motion Control Parame	ters					
Parameter	Name	Function	Default	Unit		Con Mo	itro ode	
					PT	PR	S	Т
P5-00 ~ P5-02	Reserved	(Do Not Use)						
P5-03	PDEC	Deceleration Time of Protectin Function	0XE0EFEEFF	N/A	0	0	0	0
P5-04	HMOV	Homing Mode	0	N/A		0		
P5-05	HSPD1	1st Speed Setting of High Speed Homing	100.0	0.1 r/min	0	0	0	0
P5-06	HSPD2	2nd Speed Setting of Low Speed Homing	20.0	0.1 r/min	0	0	0	0
P5-07■	PRCM	Trigger Position Command (PR mode only)	0	N/A		0		
P5-08	SWLP	Forward Software Limit	2147483647	PUU		0		
P5-09	SWLN	Reverse Software Limit	-2147483648	PUU		0		
P5-10★	AYSZ	Data Array: Data Amount (N x 32 bits)	N/A	N/A	0	0	0	0
P5-11■	AYID	Data Array: Read / Write Address	0	N/A	0	0	0	0
P5-12■	AYD0	Data Array: Read / Write Data Block 1	0	N/A	0	0	0	0
P5-13■	AYD1	Data Array: Read / Write Data Block 2	0	N/A	0	0	0	0
P5-14	Reserved	(Do Not Use)						
P5-15■	PMEM	PATH 1 ~ PATH 2 Data Not Retained Setting	0×0	N/A	0	0	0	0
P5-16■	AXEN	Axis Position: Motor Encoder	0	PUU	0	0	0	0
P5-17	AXAU	Axis Position: Auxiliary Encoder (Pulse Command Feedback)	N/A	pulse	0	0	0	0
P5-18	AXPC	Axis Position: Pulse Command	N/A	pulse	0	0	0	0
P5-19	TBS	E-Cam Curve Scaling	1.000000	1/(10^ 6)		0		
P5-20 ~ P5-33	AC0 ~ AC13	Accel / Decel Time 0 ~ 13	200 ~ 8000	ms		0		
P5-34	AC14	Accel / Decel Time 14	50	ms		0		
P5-35	AC15	Accel / Decel Time 15	30	ms		0		
P5-36	CAST	CAPTURE: Start Address of Data Array	0	N/A	0	0	0	0
P5-37■	CAAX	CAPTURE: Axis Position CNT	0	N/A	0	0	0	0
P5-38■	CANO	CAPTURE: Capture Amount	1	N/A	0	0	0	0
P5-39■	CACT	CAPTURE: Capture Source Setting	0x2010	N/A	0	0	0	0

	Motion Control Parameters										
			D. C. II.		(Contro Mode		ı			
Parameter	Name	Function	Default	Unit	РТ	PR		Т			
P5-40 ~ P5-55	DLY0 ~ DLY15	Delay Time 0 ~ 15	0 ~ 5500	ms		0					
P5-56	CMST	COMPARE: Start Address of Data Array	0	N/A	0	0	0	0			
P5-57 ■	CMAX	COMPARE: Axis Position	0	N/A	0	0	0	0			
P5-58■	CMNO	COMPARE: Compare Amount	1	N/A	0	0	0	0			
P5-59	СМСТ	COMPARE: Compare Source Setting	00640010h	N/A	0	0	0	0			
P5-60 ~ P5-75	POV0 ~ POV15	Moving Speed Setting of Position 0 ~ 15	20.0 ~ 3000.0	0.1 r/min		0					
P5-76★	CPRS	Capture 1st Position Reset Data	0	N/A	0	0	0	0			
P5-77■	CSAX	Position of CAPTURE SYNC AXIS	0	N/A	0	0	0	0			
P5-78	CSDS	Interval Pulse Number of CAPTURE SYNC AXIS	100	pulse	0	0	0	0			
P5-79 ■	CSDS	Error Pulse Number of CAPTURE SYNC AXIS	0	pulse	0	0	0	0			
P5-80	CSDS	Max. Correction Rate of CAPTURE SYNC AXIS	10	%	0	0	0	0			
P5-81	ECHD	E-Cam: Start Address of Data Array	100	N/A	0	0	0	0			
P5-82	ECMN	E-Cam: E-Cam Area Number N (at least >=5)	5	N/A		0					
P5-83	ECMM	E-Cam: E-Cam Cycle Number (M)	1	N/A		0					
P5-84	ECMP	E-Cam: Pulse Number of Master Axis (P)	3600	N/A		0					
P5-85	ECME	E-Cam: Engage Area Number	0	N/A		0					
P5-86■	ECAX	E-Cam: Position of Master Axis	0	N/A		0					
P5-87	PLED	E-Cam: Lead Command Length	0	N/A		0					
P5-88■	ECON	E-Cam: E-Cam Setting	00000000h	N/A		0					
P5-89	ECRD	E-Cam: Disengage Timing Data	0	N/A		0					
P5-90	СМАР	E-Cam: Area Number + (Polarity is Positive)	0	N/A		0					
P5-91	CMAN	E-Cam: Area Number - (Polarity is Negative)	0	N/A		0					
P5-92	PLED	E-Cam: Cyclic Lead Command Length	0	N/A		0					
P5-93	CSDS	Motion Control: Macro Parameter 4	0	N/A		0					
P5-94	CSDS	Motion Control: Macro Parameter 3	0	N/A		0					

8-16 Revision September 2012

	Motion Control Parameters											
Parameter	Name	Function	Default	Unit		Con Mo	tro de	I				
					PT	PR	S	Т				
P5-95	CSDS	Motion Control: Macro Parameter 2	0	N/A		0						
P5-96	CSDS	Motion Control: Macro Parameter	0	N/A		0						
P5-97■	CSDS	Motion Control: Macro Command	100	pulse	0	0	0	0				
P5-98	EVON	Event Rising-edge Trigger Command (OFF → ON)	0	N/A		0						
P5-99	EVOF	Event Falling-edge Trigger Command (ON → OFF)	0	N/A		0						

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

Group 6: P6-xx

	PR Path Definition Parameters											
Parameter	Name	Function	Function Default Unit		(Con Mo						
					PT	PR	S	Т				
P6-00	PDEC	Homing Definition	0×00000000	N/A		0						
P6-01	ODAT	Homing Definition Value	0	N/A		0						
P6-02 ~ P6-98	PDEF1 ~ PDEF49	Definition of Path 1 ~ 49	0x00000000	N/A		0						
P6-03 ~ P6-99	PDAT1 ~ PDEF49	Data of Path 1 ~ 49	0	N/A		0						

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (**●**) Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8-18 Revision September 2012

Group 7: P7-xx

	PR Path Definition Parameters											
Parameter	Name	ne Function Default U		Unit	•	Con Mo		I				
					PT	PR	S	Т				
P7-00 ~ P7-26	PDEF50 ~ PDEF63	Definition of Path 50 ~ 63	0x00000000	N/A		0						
P7-01 ~ P7-27	PDAT50 ~ PDEF63	Data of Path 50 ~ 49	0	N/A		0						

Explanation of symbols (marked after parameter)

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8.2.2 Parameters List by Function

	Monitor and General Use										
					Со	ntro	l Mo	de	Related		
Parameter	Name	Function	Default	Unit	PT	PR	S	Т	Section		
P0-00 ★	VER	Firmware Version	Factory Setting	N/A	О	О	0	О	-		
P0-01■	ALE	Drive Fault Code	N/A	N/A	О	0	0	О	11.1 11.2 11.3		
P0-02	STS	Drive Status (Front Panel Display)	00	N/A	О	О	0	О	7.2		
P0-03	MON	Analog Monitor Output	01	N/A	0	О	0	0	4.3.5		
P0-08 ★	TSON	Servo Startup Time	0	Hour					-		
P0-09★	CM1	Status Monitor 1	N/A	N/A	0	О	0	0	4.3.5		
P0-10★	CM2	Status Monitor 2	N/A	N/A	0	0	0	0	4.3.5		
P0-11★	CM3	Status Monitor 3	N/A	N/A	0	0	0	0	4.3.5		
P0-12★	CM4	Status Monitor 4	N/A	N/A	0	О	0	0	4.3.5		
P0-13★	CM5	Status Monitor 5	N/A	N/A	0	О	0	О	4.3.5		
P0-17	CM1A	Status Monitor Selection 1	0	N/A					-		
P0-18	CM2A	Status Monitor Selection 2	0	N/A					-		
P0-19	СМЗА	Status Monitor Selection 3	0	N/A					-		
P0-20	CM4A	Status Monitor Selection 4	0	N/A					-		
P0-21	CM5A	Status Monitor Selection 5	0	N/A					-		
P0-25	MAP1	Mapping Parameter 1	N/A	N/A	0	О	0	0	4.3.5		
P0-26	MAP2	Mapping Parameter 2	N/A	N/A	О	О	О	О	4.3.5		
P0-27	MAP3	Mapping Parameter 3	N/A	N/A	О	О	0	О	4.3.5		
P0-28	MAP4	Mapping Parameter 4	N/A	N/A	0	О	0	0	4.3.5		
P0-29	MAP5	Mapping Parameter 5	N/A	N/A	0	О	0	0	4.3.5		
P0-30	MAP6	Mapping Parameter 6	N/A	N/A	0	0	0	0	4.3.5		
P0-31	MAP7	Mapping Parameter 7	N/A	N/A	0	0	0	0	4.3.5		
P0-32	MAP8	Mapping Parameter 8	N/A	N/A	0	0	0	0	4.3.5		
P0-35	MAP1A	Block Data Read / Write Register 1 (for P0-25)	0x0	N/A	0	0	0	0	4.3.5		
P0-36	MAP2A	Block Data Read / Write Register 2 (for P0-26)	0x0	N/A	0	0	0	0	4.3.5		
P0-37	MAP3A	Block Data Read / Write Register 3 (for P0-27)	0x0	N/A	0	0	0	0	4.3.5		
P0-38	MAP4A	Block Data Read / Write Register 4 (for P0-28)	0x0	N/A	0	0	0	0	4.3.5		

8-20 Revision September 2012

Monitor and General Use										
Parameter	Name	Function	Default	Unit	Со	ntro	l Mo	de	Related	
rarameter	Name	runction	Derault	Onit	PT	PR	S	Т	Section	
P0-39	MAP5A	Block Data Read / Write Register 5 (for P0-29)	0x0	N/A	0	О	0	0	4.3.5	
P0-40	MAP6A	Block Data Read / Write Register 6 (for P0-30)	0x0	N/A	0	О	0	0	4.3.5	
P0-41	MAP7A	Block Data Read / Write Register 7 (for P0-31)	0x0	N/A	0	О	0	0	4.3.5	
P0-42	MAP8A	Block Data Read / Write Register 8 (for P0-32)	0x0	N/A	0	О	0	0	4.3.5	
P0-46★	SVSTS	Servo Output Status Display	0	N/A	О	О	0	0	-	
P1-04	MON1	Analog Monitor Output Proportion 1 (MON1)	100	% (full scale)	0	0	0	0	6.4.4	
P1-05	MON2	Analog Monitor Output Proportion 2 (MON2)	100	% (full scale)	0	0	0	0	6.4.4	

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

Smooth Filter and Resonance Suppression											
Dava atau	Mana	F ation	Defects	llos!#	Со	ntro	l Mo	de	Related		
Parameter	Name	Function	Default	Unit	PT	PR	S	Т	Section		
P1-06	SFLT	Accel / Decel Smooth Constant of Analog Speed Command (Low-pass Filter)	0	ms			0		6.3.3		
P1-07	TFLT	Smooth Constant of Analog Torque Command (Low-pass Filter)	0	ms				0	6.4.3		
P1-08	PFLT	Smooth Constant of Position Command (Low-pass Filter)	0	10ms	О	О			6.2.6		
P1-25	VSF1	Low-frequency Vibration Suppression (1)	100.0	0.1Hz	О	О			6.2.9		
P1-26	VSG1	Low-frequency Vibration Suppression Gain (1)	0	N/A	О	О			6.2.9		
P1-27	VSF2	Low-frequency Vibration Suppression (2)	100.0	0.1Hz	0	0			6.2.9		
P1-28	VSG2	Low-frequency Vibration Suppression Gain (2)	0	N/A	0	О			6.2.9		
P1-29	AVSM	Auto Low-frequency Vibration Suppression Mode Selection	0	N/A	0	0			6.2.9		
P1-30	VCL	Low-frequency Vibration Detection Level	500	pulse	0	О			6.2.9		
P1-34	TACC	Acceleration Time	200	ms		0	0		6.3.3		
P1-35	TDEC	Deceleration Time	200	ms		0	0		6.3.3		
P1-36	TSL	Accel /Decel S-curve	0	ms		0	О		6.3.3		
P1-59	MFLT	Analog Speed Linear Filter (Moving Filter)	0	0.1 ms			0		-		
P1-62	FRCL	Friction Compensation Percentage	0	%	О	0	0	0	-		
P1-63	FRCT	Friction Compensation Smooth Constant	0	ms	0	0	0	0	-		
P1-68	PFLT2	Position Command Moving Filter	0	ms	0	0			-		
P1-75	FELP	Full-closed Loop Low-pass Filter Time Constant	100	ms	О	0			-		
P2-23	NCF1	Notch Filter 1 (Resonance Suppression)	1000	Hz	О	0	0	0	6.3.7		
P2-24	DPH1	Notch Filter Attenuation Rate 1 (Resonance Suppression)	0	dB	0	0	0	0	6.3.7		
P2-43	NCF2	Notch Filter 2 (Resonance Suppression)	1000	Hz	0	0	0	0	6.3.7		
P2-44	DPH2	Notch Filter Attenuation Rate 2 (Resonance Suppression)	0	dB	0	0	0	0	6.3.7		

8-22 Revision September 2012

Smooth Filter and Resonance Suppression										
Parameter	Name	Function	Default	Unit	Co	ntro	l Mo	de	Related	
raiailletei	Name	runction	Delauit	Oilit	PT	PR	S	Т	Section	
P2-45	NCF3	Notch Filter 3 (Resonance Suppression)	1000	Hz	0	0	0	0	6.3.7	
P2-46	DPH3	Notch Filter Attenuation Rate 3 (Resonance Suppression)	0	dB	0	О	0	0	6.3.7	
P2-47	ANCF	Auto Resonance Suppression Mode Selection	1	N/A	0	0	0	0	-	
P2-48	ANCL	Auto Resonance Suppression Detection Level	100	N/A	О	О	0	0	-	
P2-25	NLP	Low-pass Filter Time Constant (Resonance Suppression)	2 or 5	ms	О	0	0	0	6.3.7	
P2-33▲	INF	Semi-Auto Mode Inertia Adjustment Selection	0	N/A	0	0	0	0	6.3.6	
P2-49	SJIT	Speed Detection Filter and Jitter Suppression	0	sec	0	0	0	0	-	

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

		Gain and Swi	tch						
Parameter	Name	Function	Default	Unit	Co	ntro	l Mo	de	Related
Parameter	Name	Function	Delault	Unit	PT	PR	S	Т	Section
P2-00	KPP	Proportional Position Loop Gain	35	rad/s	0	0			6.2.8
P2-01	PPR	Position Loop Gain Switching Rate	100	%	0	О			6.2.8
P2-02	PFG	Position Feed Forward Gain	50	%	О	0			6.2.8
P2-03	PFF	Smooth Constant of Position Feed Forward Gain	5	ms	0	0			-
P2-04	KVP	Proportional Speed Loop Gain	500	rad/s	0	0	0	0	6.3.6
P2-05	SPR	Speed Loop Gain Switching Rate	100	%	0	0	0	0	-
P2-06	KVI	Speed Integral Compensation	100	rad/s	О	0	О	О	6.3.6
P2-07	KVF	Speed Feed Forward Gain	0	%	О	0	О	О	6.3.6
P2-26	DST	External Anti-Interference Gain	0	0.001	О	0	О	О	-
P2-27	GCC	Gain Switching Control Selection	0	N/A	0	0	0	0	-
P2-28	GUT	Gain Switching Time Constant	10	10ms	О	0	О	О	-
P2-29	GPE	Gain Switching Condition	1280000	pulse Kpps r/min	О	О	0	0	-
D2 21 =	A.L. = 1	Speed Frequency Response	00						5.6
P2-31■	AUT1	Level in Auto and Semi-Auto Mode	80	Hz	0	0	0	0	6.3.6
D2 22 4	AUTO	Speed Frequency Response		.					5.6
P2-32▲	AUT2	Level in Auto and Semi-Auto Mode	0	N/A	0	0	0	0	6.3.6

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8-24 Revision September 2012

		Position Cont	rol						
					Co				Related
Parameter	Name	Function	Default	Unit	PT	PR	S	Т	Section
P1-01●	CTL	Control Mode and Output Direction	0	pulse r/min N-M	0	О	О	0	6.1
P1-02 ▲	PSTL	Speed and Torque Limit	0	N/A	0	0	0	0	6.6
P1-12 ~ P1-14	TQ1 ~ 3	1st ~ 3rd Torque Limit	100	%	0	О	0	0	6.4.1
P1-46 ▲	GR3	Encoder Output Pulse Number	2500	pulse	0	0	0	0	-
P1-55	MSPD	Maximum Speed Limit	rated	r/min	0	0	0	0	-
P1-72	FRES	Full-closed Control Resolution of Linear Scale	5000	Pulse/ rev	0	О			-
P1-73	FERR	Full-closed Loop Excessive Position Error Range	30000	pulse	0	О			-
P1-74	FCON	Full-closed Loop Excessive Position Error Range	000h	-	0	0			-
P2-50	DCLR	Pulse Deviation Clear Mode	0	N/A	0	0			-
		External Pulse Control Com	mand (P	T mode)				
P1-00▲	PTT	External Pulse Input Type	0x2	N/A	0				6.2.1
P1-44▲	GR1	Electronic Gear Ratio (1st Numerator) (N1)	1	pulse	0	0			6.2.5
P1-45 ▲	GR2	Electronic Gear Ratio (Denominator) (M)	1	pulse	0	0			6.2.5
P2-60 ▲	GR4	Electronic Gear Ratio (2nd Numerator) (N2)	1	pulse	0	О			-
P2-61 ▲	GR5	Electronic Gear Ratio (3rd Numerator) (N3)	1	pulse	0	0			-
P2-62 ▲	GR6	Electronic Gear Ratio (4th Numerator) (N4)	1	pulse	0	0			-
		Internal Pulse Control Com	mand (PI	R mode)				
P6-02 ~ P7-27	PO1 ~ PO63	Definition of Path 1 ~ 63 Data of Path 1 ~ 63	0	N/A		О			7.10
P5-60 ~ P5-75	POV1 ~ POV15	Moving Speed Setting of Position 0 ~ 15	20 ~ 3000	0.1 r/min		0			7.10
P5-03	PDEC	Deceleration Time of Protectin Function	0XF00F FFFF	N/A	0	О	0	О	-
P5-04	HMOV	Homing Mode	0	N/A	0	0			-
P5-05	HSPD1	1st Speed Setting of High Speed Homing	100	0.1 r/min	0	0	0	0	-
P5-06	HSPD2	2nd Speed Setting of Low Speed Homing	20	0.1 r/min	0	О	0	0	-
P5-07■	PRCM	Trigger Position Command (PR mode only)	0	N/A		О			-

		Position Cont	rol						
Parameter	Name	Function	Default	Unit	Со	ntro	rol Mode		Related
raiailletei	Name	runction	Delauit	OIIIC	PT	PR	S	Т	Section
P5-20 ~ P5-35	AC0 ~ AC15	Accel / Decel Time 0 ~ 13	200 ~ 30	ms		О			7.10
P5-40 ~ P5-55	DLY0 ~ DLY15	Delay Time 0 ~ 15	0 ~ 5500	ms		О			7.10
P5-98	EVON	Event Rising-edge Trigger Command (OFF → ON)	0	N/A		0			-
P5-99	EVOF	Event Falling-edge Trigger Command (ON → OFF)	0	N/A		0			-
P5-15■	PMEM	PATH 1 ~ PATH 2 Data Not Retained Setting	0x0	N/A	0	0	0	0	-
P5-16■	AXEN	Axis Position: Motor Encoder	N/A	N/A	О	0	О	0	7.3
P5-17	AXAU	Axis Position: Auxiliary Encoder (Pulse Command Feedback)	N/A	N/A	0	0	0	0	7.3
P5-18	AXPC	Axis Position: Pulse Command	N/A	N/A	О	0	О	О	7.3
P5-08	SWLP	Forward Software Limit	+231	PUU		0			-
P5-09	SWLN	Reverse Software Limit	-231	PUU		0			-

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8-26 Revision September 2012

		Speed Contr	ol						
Parameter	Name	Function	Default	Unit	Co	ntro	l Mo	de	Related
Parameter	Name	Function	Derauit	Unit	PT	PR	S	Т	Section
P1-01 ●	CTL	Control Mode and Output Direction	0	pulse r/min N-M	0	О	0	0	6.1
P1-02▲	PSTL	Speed and Torque Limit	0	N/A	О	О	0	0	6.6
P1-46 ▲	GR3	Encoder Output Pulse Number	1	pulse	О	О	О	О	-
P1-55	MSPD	Maximum Speed Limit	rated	r/min	О	О	0	0	-
P1-09 ~ P1-11	SP1 ~ 3	1st ~ 3rd Speed Command	1000 ~ 3000	0.1 r/min			0	0	6.3.1
P1-12 ~ P1-14	TQ1 ~ 3	1st ~ 3rd Torque Limit	100	%	О	О	0	О	6.6.2
P1-40▲	VCM	Max. Analog Speed Command or Limit 1	rated	r/min			0	0	6.3.4
P1-41 ▲	ТСМ	Max. Analog Torque Command or Limit	100	%	0	О	0	0	-
P1-76	AMSPD	Max. Rotation Speed of Encoder Output	5500	r/min	0	О	0	0	-

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

		Torque Cont	rol						
Parameter	Name	Function	Default	Unit	Co	ntro			Related
raiailletei	Name	runction	Derauit	Ullit	PT	PR	S	Т	Section
P1-01 ●	CTL	Control Mode and Output Direction	0	pulse r/min N-M	0	0	0	0	6.1
P1-02 ▲	PSTL	Speed and Torque Limit	0	N/A	0	0	О	0	6.6
P1-46▲	GR3	Encoder Output Pulse Number	1	pulse	0	О	0	0	-
P1-55	MSPD	Maximum Speed Limit	rated	r/min	0	0	0	0	-
P1-09 ~ P1-11	SP1~3	1st ~ 3rd Speed Limit	100 ~ 300	r/min			0	0	6.6.1
P1-12 ~ P1-14	TQ1~3	1st ~ 3rd Torque Command	100	%	0	0	0	0	6.4.1
P1-40▲	VCM	Max. Analog Speed Command or Limit 1	rated	r/min			0	0	-
P1-41 ▲	ТСМ	Max. Analog Torque Command or Limit	100	%	0	0	0	0	6.4.4

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8-28 Revision September 2012

		Digital I/O and Relative Inp	ut Outp	ut Sett	ing				
Parameter	Name	Function	Default	Unit	Co	Control Mode		de	Related
raiailletei	Name	runction	Delauit	Oiiit	PT	PR	S	Т	Section
P2-09	DRT	Bounce Filter	2	2ms	0	0	0	0	
P2-10	DI1	Digital Input Terminal 1 (DI1)	101	N/A	0	0	0	0	Table 8.A
P2-11	DI2	Digital Input Terminal 2 (DI2)	104	N/A	0	0	0	0	Table 8.A
P2-12	DI3	Digital Input Terminal 3 (DI3)	116	N/A	0	0	0	0	Table 8.A
P2-13	DI4	Digital Input Terminal 4 (DI4)	117	N/A	0	0	0	0	Table 8.A
P2-14	DI5	Digital Input Terminal 5 (DI5)	102	N/A	0	0	0	0	Table 8.A
P2-15	DI6	Digital Input Terminal 6 (DI6)	22	N/A	0	0	0	0	Table 8.A
P2-16	DI7	Digital Input Terminal 7 (DI7)	23	N/A	0	0	0	0	Table 8.A
P2-17	DI8	Digital Input Terminal 8 (DI8)	21	N/A	0	0	0	0	Table 8.A
P2-36	EDI9	External Digital Input Terminal 9 (EDI9)	0	N/A	О	О	О	О	Table 8.A
P2-37	EDI10	External Digital Input Terminal 10 (EDI10)	0	N/A	О	О	О	О	Table 8.A
P2-38	EDI11	External Digital Input Terminal 11 (EDI11)	0	N/A	О	О	О	О	Table 8.A
P2-39	EDI12	External Digital Input Terminal 12 (EDI12)	0	N/A	0	О	0	О	Table 8.A
P2-40	EDI13	External Digital Input Terminal 13 (EDI13)	0	N/A	0	О	0	0	Table 8.A
P2-41	EDI14	External Digital Input Terminal 14 (EDI14)	0	N/A	0	0	О	0	Table 8.A
P2-18	DO1	Digital Output Terminal 1 (DO1)	101	N/A	0	0	О	0	Table 8.B
P2-19	DO2	Digital Output Terminal 2 (DO2)	103	N/A	0	0	О	0	Table 8.B
P2-20	DO3	Digital Output Terminal 3 (DO3)	109	N/A	0	0	О	0	Table 8.B
P2-21	DO4	Digital Output Terminal 4 (DO4)	105	N/A	0	0	О	0	Table 8.B
P2-22	DO5	Digital Output Terminal 5 (DO5)	7	N/A	0	О	0	0	Table 8.B
P1-38	ZSPD	Zero Speed Range Setting	100	0.1 r/min	0	0	0	0	Table 8.B
P1-39	SSPD	Target Motor Speed	3000	r/min	О	0	0	О	Table 8.B
P1-42	MBT1	On Delay Time of Electromagnetic Brake	0	ms	0	0	0	0	6.5.5

	Digital I/O and Relative Input Output Setting										
Parameter	Name	Function Default Unit		l Mode		Related					
rarameter	Name	runction	Delault	Ullit	PT	PR	S	Т	Section		
P1-43	MBT2	OFF Delay Time of Electromagnetic Brake	0	ms	О	О	0	О	6.5.5		
P1-47	SCPD	Speed Reached Output Range	10	r/min			0		Table 8.B		
P1-54	PER	Positioning Completed Width	12800	pulse	0	О			Table 8.B		
P1-56	OVW	Output Overload Warning Time	120	%	0	0	0	0	Table 8.B		

		Communicat	ion							
Parameter	Nama	Function	Default	Unit	Co	ntro	l Mo	de	Related	
Parameter	Name	Function	Derauit	Unit	PT	PR	S	Т	Section	
P3-00●	ADR	Communication Address Setting	0x7F	N/A	0	О	0	О	9.2	
P3-01	BRT	Transmission Speed	0x0203	bps	0	0	0	0	9.2	
P3-02	PTL	Communication Protocol	6	N/A	0	0	0	0	9.2	
P3-03	FLT	Transmission Fault Treatment	0	N/A	0	0	0	0	9.2	
P3-04	CWD	Communication Time Out Detection	0	sec	О	О	О	О	9.2	
P3-05	СММ	Communication Selection	0	N/A	0	0	0	0	9.2	
P3-06■	SDI	Digital Input Communication Function	0	N/A	О	О	0	0	9.2	
P3-07	CDT	Communication Response Delay Time	0	1 ms	0	О	0	0	9.2	
P3-08■	MNS	Monitor Mode	0000	N/A	0	0	0	0	9.2	
P3-09	SYC	CANopen Synchronization Setting	0×57A1	N/A	О	О	0	0	9.2	

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8-30 Revision September 2012

		Diagnosis							
Darameter	Nama	Function	Default	Unit	Co	ntro	l Mo	de	Related
Parameter	Name	Function	Derauit	Unit	PT	PR	S	Т	Section
P4-00★	ASH1	Fault Record (N)	0	N/A	0	0	0	0	4.4.1
P4-01★	ASH2	Fault Record (N-1)	0	N/A	О	0	0	0	4.4.1
P4-02★	ASH3	Fault Record (N-2)	0	N/A	0	0	О	О	4.4.1
P4-03★	ASH4	Fault Record (N-3)	0	N/A	0	0	0	0	4.4.1
P4-04★	ASH5	Fault Record (N-4)	0	N/A	0	0	0	0	4.4.1
P4-05	JOG	JOG Operation	20	r/min	О	0	0	0	4.4.2
P4-06 ▲ ■	FOT	Force Output Contact Control	0	N/A	О	0	О	0	4.4.4
P4-07	ITST	Input Status	0	N/A	0	O	О	0	4.4.5 9.2
P4-08★	PKEY	Digital Keypad Input of Servo Drive	N/A	N/A	О	О	О	0	-
P4-09★	МОТ	Output Status	N/A	N/A	О	0	0	0	4.4.6
P4-10▲	CEN	Adjustment Function	0	N/A	О	0	О	0	-
P4-11	SOF1	Analog Speed Input Drift Adjustment 1	Factory Setting	N/A	0	О	О	0	-
P4-12	SOF2	Analog Speed Input Drift Adjustment 2	Factory Setting	N/A	0	0	0	0	-
P4-13	TOF1	Analog Torque Drift Adjustment 1	Factory Setting	N/A	0	О	0	0	-
P4-14	TOF2	Analog Torque Drift Adjustment 2	Factory Setting	N/A	0	О	0	0	-
P4-15	COF1	Current Detector Drift Adjustment (V1 phase)	Factory Setting	N/A	0	О	0	0	-
P4-16	COF2	Current Detector Drift Adjustment (V2 phase)	Factory Setting	N/A	0	О	0	0	-
P4-17	COF3	Current Detector Drift Adjustment (W1 phase)	Factory Setting	N/A	О	О	0	0	-
P4-18	COF4	Current Detector Drift Adjustment (W2 phase)	Factory Setting	N/A	0	О	0	0	-
P4-19	TIGB	IGBT NTC Calibration	Factory Setting	N/A	О	0	0	0	-
P4-20	DOF1	Analog Monitor Output Drift Adjustment (CH1)	0	mV	0	0	0	0	6.4.4
P4-21	DOF2	Analog Monitor Output Drift Adjustment (CH2)	0	mV	0	0	0	0	6.4.4
P4-22	SAO	Analog Speed Input Offset	0	mV			0		-
P4-23	TAO	Analog Torque Input Offset	0	mV				0	-
P4-24	LVL	Undervoltage Error Level	160	V(rms)	0	0	0	0	-

		E-Cam Functi	on						
Parameter	Name	Function	Default	Unit	Co	ntro	l Mo	de	Related Section 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10
rarameter	Name	Function	Derauit	Unit	PT	PR	S	Т	Section
P5-81	ECHD	E-Cam: Start Address of Data Array	100	N/A	0	0	0	О	7.10
P5-82	ECMN	E-Cam: E-Cam Area Number N (at least >=5)	5	N/A		0			7.10
P5-83	ECMM	E-Cam: E-Cam Cycle Number (M)	1	N/A		О			7.10
P5-84	ЕСМР	E-Cam: Pulse Number of Master Axis (P)	3600	N/A		0			7.10
P5-85	ECME	E-Cam: Engage Area Number	0	N/A		0			7.10
P5-86■	ECAX	E-Cam: Position of Master Axis	0	N/A		0			7.10
P5-87	PLED	E-Cam: Lead Command Length	0	N/A		0			7.10
P5-88■	ECON	E-Cam: E-Cam Setting	000000 00h	N/A		О			7.10
P5-89	ECRD	E-Cam: Disengage Timing Data	0	N/A		0			7.10
P5-90	СМАР	E-Cam: Area Number + (Polarity is Positive)	0	N/A		О			7.10
P5-91	CMAN	E-Cam: Area Number - (Polarity is Negative)	0	N/A		0			7.10
P5-92	PLED	E-Cam: Cyclic Lead Command Length	0	N/A		0			7.10

- (★) Read-only register.
- (**A**) Parameter cannot be set when Servo On (when the servo drive is enabled).
- (Parameter is effective only after the servo drive is restarted (after switching power off and on).
- (**■**) Parameter setting values are not retained when power is off.

8-32 Revision September 2012

8.3 Detailed Parameter Listings

Group 0: P0-xx Monitor Parameters

PΩ	-00	7 7
•		

VER	Firmware Version		Address: 0000H 0001H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: Factory setting		• • •
Con Mo	trol de: ALL		
U	nit:		7 1 1 1
Ran	ge::-		
Data Si	ize: 16-bit		7 2 4 4
Disp Form	play nat: Decimal		

Settings:

This parameter displays the firmware version of the servo drive.

_			
М	ш	ŊΙ	
		<u> </u>	

ALE	Drive Fault Code		Address: 0002H 0003H
Operat	ion Ice: Keypad/Software	Communication	Related Section:
Interfa	ice:	:	Section: 11.1
Defa	ult: -		Section: 11.2
Con Mo	trol de:: ^{ALL}		Section: 11.3
U	nit: -		: : :
Ran	ge: 0 ~ 0 (0: clear the fa drive, the same func signal))		
Data Si	ze: 16-bit		
Disp Form	olay nat: BCD		

Settings:

This parameter shows the current servo drive fault if the servo drive is currently faulted.

The fault code is hexadecimal data but displayed in BCD format (Binary coded decimal).

Servo Drive Fault Codes:

001: Overcurrent 002: Overvoltage

003: Undervoltage (This fault code shows when main circuit voltage is below its minimum specified value while Servo On, and it will not show while Servo Off. This fault code can't be cleared automatically after the voltage has returned within its specification. Please refer to parameter P2-66.)

004: Motor error (The drive and motor are not correctly matched for size (power rating).

- 005: Regeneration error
- 006: Overload
- 007: Overspeed
- 008: Abnormal pulse control command
- 009: Excessive deviation
- 010: Reserved
- 011: Encoder error (The wiring of the encoder is in error and this causes the communication error between the servo drive and the encoder.)
- 012: Adjustment error
- 013: Emergency stop activated
- 014: Reverse limit switch error
- 015: Forward limit switch error
- 016: IGBT temperature error
- 017: Memory error
- 018: Encoder output error
- 019: Serial communication error
- 020: Serial communication time out
- 021: Reserved
- 022: Input power phase loss
- 023: Pre-overload warning
- 024: Encoder initial magnetic field error
- 025: Encoder internal error
- 026: Encoder data error
- 030: Motor protection error
- 031: U, V, W, GND wiring error
- 040: Full-closed loop excessive deviation
- 041: Linear scale wiring error
- 099: DSP firmware upgrade

CANopen Communication Fault Codes:

- 185: CANbus error
- 111: CANopen SDO receive buffer overrun
- 112: CANopen PDO receive buffer overrun
- 121: Index error occurs when accessing CANopen PDO object.
- 122: Sub-index error occurs when accessing CANopen PDO object.
- 123: Data type (size) error occurs when accessing CANopen PDO object.
- 124: Data range error occurs when accessing CANopen PDO object.
- 125: CANopen PDO object is read-only and write-protected.
- 126: CANopen PDO object does not support PDO.
- 127: CANopen PDO object is write-protected when Servo On.
- 128: Error occurs when reading CANopen PDO object from EE-PROM.

- 129: Error occurs when writing CANopen PDO object into EE-PROM.
- 130: EE-PROM invalid address range
- 131: EE-PROM checksum error
- 132: Password error

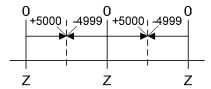
Motion Control Fault Codes:

- 201: CANopen data initial error
- 213: Write parameter error: exceeds the limit of normal range
- 215: Write parameter error: read only
- 217: Write parameter error: parameter lock
- 219: Write parameter error: parameter lock
- 235: PR command overflow
- 245: PR positioning time out
- 249: Invalid PR path number
- 261: Index error occurs when accessing CANopen object.
- 263: Sub-index error occurs when accessing CANopen object.
- 265: Data type (size) error occurs when accessing CANopen object.
- 267: Data range error occurs when accessing CANopen object.
- 269: CANopen object is read-only and write-protected.
- 26b: CANopen object does not support PDO.
- 26d: CANopen object is write-protected when Servo On.
- 26F: Error occurs when reading CANopen object from EE-PROM.
- 271: Error occurs when writing CANopen object into EE-PROM.
- 273: EE-PROM invalid address range
- 275: EE-PROM checksum error
- 277: Password error
- 283: Forward software limit
- 285: Reverse software limit
- 289: Position counter overflow
- 291: Servo Off error
- 301: CANopen SYNC failed
- 302: CANopen SYNC signal error
- 303: CANopen SYNC time out
- 304: CANopen IP command failed
- 305: SYNC period error
- 380: Position deviation alarm for digital output, MC_OK (Please refer to P1-48.)

Absolute System Fault Messages

- 028: Voltage level above specification
- 029: Gray code error
- 060: Absolute position lost

- 061: Voltage level below specification
- 062: Overflow warning of absolute position
- 068: I/O data transmission error of absolute position
- 069: Motor type error
- 289: Position counter overflow


P0-02

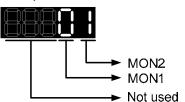
STS	Drive Status (Front Pa	Address: 0004H 0005H	
Operat	Operation Keypad/Software Communication		Related Section:
Interfa	ice:		Section 7.2
Defa	ult: 00		
Control Mode: ALL			# 1
U	nit: -		7 : :
Ran	ge: 00 ~ 127		
Data Size::16-bit			
Disp Forn	olay nat: Decimal		
	Operat Interfa Defa Con Mo U Ran Data S	Operation Interface: Keypad/Software Default: 00 Control Mode: ALL Unit: - Range: 00 ~ 127	Operation Interface: Keypad/Software Communication Default: 00 Control Mode: ALL Unit: - Range: 00 ~ 127 Data Size: 16-bit

Settings:

This parameter shows the servo drive status.

- 00: Motor feedback pulse number (after electronic gear ratio is set) [PUU]
- 01: Input pulse number of pulse command (after electronic gear ratio is set) [PUU]
- 02: Position error counts between control command pulse and feedback pulse [PUU]
- 03: Motor feedback pulse number (encoder unit, 1280000 pulse/rev) [pulse]
- 04: Input pulse number of pulse command (before electronic gear ratio is set) [pulse]
- 05: Position error counts [pulse]
- 06: Input frequency of pulse command [Kpps]
- 07: Motor rotation speed [r/min]
- 08: Speed input command [Volt]
- 09: Speed input command [r/min]
- 10: Torque input command [Volt]
- 11: Torque input command [%]
- 12: Average load [%]
- 13: Peak load [%]
- 14: Main circuit voltage [Volt]
- 15: Ratio of load inertia to Motor inertia [0.1times]
- 16: IGBT temperature
- 17: Resonance frequency [Hz]
- 18: Absolute pulse number relative to encoder (use Z phase as home). The value of Z phase home point is 0, and it can be the value from -5000 to +5000 pulses.

The interval of two Z phase pulse command is 10000 pulses.


- 19: Mapping Parameter 1: Display the content of parameter P0-25 (mapping target is specified by parameter P0-35)
- 20: Mapping Parameter 2: Display the content of parameter P0-26 (mapping target is specified by parameter P0-36)
- 21: Mapping Parameter 3: Display the content of parameter P0-27 (mapping target is specified by parameter P0-37)
- 22: Mapping Parameter 4: Display the content of parameter P0-28 (mapping target is specified by parameter P0-38)
- 23: Status Monitor 1: Display the content of parameter P0-09 (the monitor status is specified by parameter P0-17)
- 24: Status Monitor 2: Display the content of parameter P0-10 (the monitor status is specified by parameter P0-18)
- 25: Status Monitor 3: Display the content of parameter P0-11 (the monitor status is specified by parameter P0-19)
- 26: Status Monitor 4: Display the content of parameter P0-12 (the monitor status is specified by parameter P0-20)
- 37: Compare data offset [PUU]. CMP_DATA = DATA_ARRAY[*] + P1-23 + P1-24
- 38: Voltage level of battery [0.1 Volt]. For example, when the display value is 36, it indicates that the voltage level of the battery is 3.6V.

D	n.	_(72	Ì

MON	Analog Monitor Outp	alog Monitor Output		
Operati Interfa	on Keypad/Software	Communication	Related Section: Section 6.6.4	
Defau	ılt: 00		Section 6.6.4	
Cont Mod	rol de: ALL			
Ur	nit:[-			
Rang	ge: 00 ~ 77		<u> </u>	
Data Si	ze: 16-bit		; ;	
Disp Form	lay At: Hexadecimal			

Settings:

This parameter determines the functions of the analog monitor outputs.

MON1, MON2 Settings:

- 0: Motor speed (+/-8V / maximum motor speed)
- 1: Motor torque (+/-8V / maximum torque)
- 2: Pulse command frequency (+8Volts / 4.5Mpps)
- 3: Speed command (+/-8Volts / maximum speed command)
- 4: Torque command (+/-8Volts / maximum torque command)
- 5: V_BUS voltage (+/-8Volts / 450V)
- 6: Reserved
- 7: Reserved

Please note:

For the setting of analog output voltage proportion, refer to the P1-04 and P1-05. Example: P0-03 = 01 (MON1 is motor speed analog output, MON2 is motor

torque analog output)

MON1 output voltage=
$$8 \times \frac{\text{Motor speed}}{(\text{Max. motor speed} \times \frac{\text{P1-04}}{100})}$$
 (unit: Volts)

MON2 output voltage=
$$8 \times \frac{\text{Motor toque}}{(\text{Max. motor torque} \times \frac{\text{P1-05}}{100})}$$
 (unit: Volts)

P0-04	Reserved (Do Not Use)	Address: 0008H
10-04	Reserved (DO NOT OSE)	0009H
P0-05	Reserved (Do Not Use)	Address: 000AH
PU-U5	Reserved (Do Not Ose)	000BH
P0-06	Reserved (Do Not Use)	Address: 000CH
10-00	reserved (DO NOt OSe)	000DH
P0-07	Reserved (Do Not Use)	Address: 000EH
PU-U/	reserved (DO NOL OSE)	000FH

P0-08★	TSON	Servo Startup Time	Servo Startup Time		
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: N/A	
	Defa	7 : : :			
		trol ode:			
	U	Init: Hour		• • •	
	Ran	nge: 0 ~ 65535		•	
	Data Size: 16-bit		:		
	Disp Forn	olay nat: Decimal			

This parameter shows the total startup time of the servo drive.

P0-09★	CM1	Status Monitor 1		Address: 0012H 0013H
	Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: Section 4.3.5
	Default: -			
	Con Mo	trol de: ALL		
	U	nit: -		:
	Ran	ige: -		
	Data Si	ize: 32-bit		
	Disp Form	olay nat::Decimal		

Settings:

This parameter is used to provide the value of one of the status monitoring functions found in P0-02. Please refer to section 7.2.1 Monitoring Variables.

The value of P0-09 is determined by P0-17 (desired drive status) through communication setting or the keypad. The drive status can be read from the communication address of this parameter via communication port.

For example:

Set P0-17 to 3, then all consequent reads of P0-09 will return the motor feedback pulse number in pulse.

When reading the drive status through Modbus communication, the system should read two 16-bit data stored in the addresses of 0012H and 0013H to form a 32-bit data.

(0013H : 0012H) = (High Word : Low Word)

When reading the drive ststus through the keypad, if P0-02 is set to 23, VAR-1 will quickly show for about two seconds and then the value of P0-09 will display on the display.

Address: 0014H P0-10★ **Status Monitor 2** CM2 0015H Operation Keypad/Software Related Section: Communication Section 4.3.5 Default: -Control ALL Mode: Unit: -Range::-Data Size: 32-bit Display Decimal

Settings:

This parameter is used to provide the value of one of the status monitoring functions found in P0-02. Please refer to section 7.2.1 Monitoring Variables.

The value of P0-10 is determined by P0-18 (desired drive status) through communication setting or the keypad. The drive status can be read from the communication address of this parameter via communication port.

When reading the drive status through the keypad, if P0-02 is set to 24, VAR-2 will quickly show for about two seconds and then the value of P0-10 will display on the display.

P0-11★	CM3 Status Monitor 3	Address: 0016H 0017H
	Operation Interface: Keypad/Software Communication	Related Section:
	Interface: Neypudy Software	Section 4.3.5
	Default: -	
	Control Mode: ALL	
	Unit: -	
	Range: -	
	Data Size::32-bit	

Settings:

Display Decimal

Format:

This parameter is used to provide the value of one of the status monitoring functions found in PO-02. Please refer to section 7.2.1 Monitoring Variables.

The value of P0-11 is determined by P0-19 (desired drive status) through communication setting or the keypad. The drive status can be read from the communication address of this parameter via communication port.

When reading the drive status through the keypad, if PO-02 is set to 25, VAR-3 will quickly show for about two seconds and then the value of PO-11 will display on the display.

8-40 Revision September 2012 P0-12

7	CM4	Status Monitor 4		Address: 0018H 0019H
	Operation of the second of the	on ce: Keypad/Software	Communication	Related Section: Section 4.3.5
i-	Defau	ılt: -		: : :
	Conti Mod	rol le:		
:	Un	it::-		
:	Rang	je:-		•
	Data Siz	ze: 32-bit		7 : : :
	Displ Forma	ay at: Decimal		

Settings:

This parameter is used to provide the value of one of the status monitoring functions found in P0-02. Please refer to section 7.2.1 Monitoring Variables.

The value of P0-12 is determined by P0-20 (desired drive status) through communication setting or the keypad. The drive status can be read from the communication address of this parameter via communication port.

When reading the drive status through the keypad, if P0-02 is set to 26, VAR-4 will quickly show for about two seconds and then the value of P0-12 will display on the display.

P0-13★	CM5	Status Monitor 5	Address: 001AH 001BH	
	Operation Interface: Keypad/Software Communication		Related Section:	
	Interf	ace:		Section 4.3.5
	Defa	ault: -		:
	Con Mo	ntrol ode: ^{ALL}		
		Jnit: -		:
	Rar	nge: ̞-		
	-	Size: 32-bit		
	Dis Forr	play mat: Decimal		

Settings:

This parameter is used to provide the value of one of the status monitoring functions found in P0-02. Please refer to section 7.2.1 Monitoring Variables.

The value of P0-12 is determined by P0-20 (desired drive status) through communication setting or the keypad. The drive status can be read from the communication address of this parameter via communication port.

•		
P0-14	Reserved (Do Not Use)	Address: 001CH 001DH
P0-15	Reserved (Do Not Use)	Address: 001EH 001FH
P0-16	Reserved (Do Not Use)	Address: 0020H 0021H
P0-17	CM1A Status Monitor Selection 1	Address: 0022H 0023H
	Operation Interface: Keypad/Software Communicat	ion Related Section: N/A
	Default: 0	
	Control Mode:	
	Unit: -	
	Range: 0 ~ 127	· · · · · · · · · · · · · · · · · · ·
	Data Size: 16-bit	
	Display Format:	

This parameter is used to determine the drive status found in P0-02. For the setting values, please refer to section 7.2.1 Monitoring Variables. The selected drive status will be displayed by P0-09.

For example:

Set P0-17 to 7, then all consequent reads of P0-09 will return the motor rotation speed in r/min.

P0-18	CM2A	Status Monitor Select	Address: 0024H 0025H	
	Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
	Defa	ult::0	- · ·	
	Con Mo	trol ode:		
	Unit: -			1 : : :
	Ran	ige: 0 ~ 127		
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to determine the drive status found in P0-02. For the setting values, please refer to section 7.2.1 Monitoring Variables. The selected drive status will be displayed by P0-10. Refer to P0-17 for explanation.

8-42 Revision September 2012

0-19	CM3A Statu	us Monitor Selecti	on 3	Address: 0026H 0027H
	Operation Interface: K	eypad/Software	Communication	Related Section: N/A
	Default: 0			
	Control _ Mode:			
	Unit: -			
	Range: 0	~ 127		
	Data Size: 1	6-bit		": : :
	Display Format: D	ecimal		

This parameter is used to determine the drive status found in P0-02. For the setting values, please refer to section 7.2.1 Monitoring Variables. The selected drive status will be displayed by P0-11. Refer to P0-17 for explanation.

P0-20	CM4A Status Monitor Selection 4		Address: 0028H 0029H	
	Operation Interface: Keypad/Software		Communication	Related Section: N/A
	Default: 0			
	Control Mode:			
	Unit: - Range: 0 ~ 127			
	Data Size::16-bit			
	Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to determine the drive status found in P0-02. For the setting values, please refer to section 7.2.1 Monitoring Variables. The selected drive status will be displayed by P0-12. Refer to P0-17 for explanation.

P0-21	CM5A Status Monitor Selection 5		Address: 002AH 002BH
	Operation Interface: Keypad/Software	Communication	Related Section: N/A
	Default: 0		
	Control Mode:		
	Unit: -		
	Range: 0 ~ 127		"" : :
	Data Size: 16-bit		:
	Display Format:		

This parameter is used to determine the drive status found in P0-02. For the setting values, please refer to section 7.2.1 Monitoring Variables. The selected drive status will be displayed by P0-13. Refer to P0-17 for explanation.

P0-22	Reserved (Do Not Use)	Address: 002CH 002DH
P0-23	Reserved (Do Not Use)	Address: 002EH 002FH
P0-24	Reserved (Do Not Use)	Address: 0030H 0031H
P0-25	MAP1 Mapping Parameter 1	Address: 0032H 0033H
	Operation Interface: Keypad/Software Communication	Related Section: Section 4.3.5
	Default: N/A, initialization is not required	
	Control Mode: ALL	
	Unit: -	
	Range: determined by the parameter specified P0-35	by
	Data Size: 32-bit	
	Display Format: Hexadecimal	

Settings:

The parameters from P0-25 to P0-32 are used to read and write the values of the parameters those communication addresses are not consecutive. The users can set P0-35 \sim P0-42 as the desired read and write mapping parameter numbers through communication setting or the keypad.

When reading or writing P0-25 \sim P0-32, the read or write values are equivalent to the values of the parameters specified by P0-35 \sim P0-42, and vise versa. Refer to P0-35 for explanation.

8-44 Revision September 2012

P0-26	MAP2	Mapping Parameter 2		Address: 0034H 0035H
	Operat Interfa	ion Keypad/Software	Communication	Related Section: Section 4.3.5
	Defa	ult: N/A, initialization is	Section 4.5.5	
	Cont Mo	trol de: ALL		
	Uı	nit::-		• • •
	Ran	ge: determined by the p P0-36	parameter specified by	
	Data Si	ze: 32-bit		T
	Disp Form	lay nat: Hexadecimal		

Refer to P0-25 and P0-36 for explanation.

P0-27	МАР3	Mapping Parameter 3		Address: 0036H 0037H
	Operat	tion ace: Keypad/Software	Communication	Related Section:
	;	ult::N/A, initialization is	s not required	Section 4.3.5
	Con Mo	trol ode: ALL		
	U	Jnit: -		 : :
	Rar	nge: determined by the P0-37	parameter specified by	
	Data S	ize: 32-bit		
	Disp Forn	olay nat: Hexadecimal		

Settings:

Refer to P0-25 and P0-37 for explanation.

P0-28	MAP4	Mapping Parameter 4		Address: 0038H 0039H
	Operat	tion ace: Keypad/Software	Communication	Related Section:
	Interfa	ace: Teypua/ Sortman		Section 4.3.5
	Defa	ult: N/A, initialization is	s not required	
		trol ode: ALL		
	U	nit: -		
	Ran	nge: determined by the po-38	parameter specified by	
	Data S	ize: 32-bit		1
	Disp Forn	olay nat: Hexadecimal		
	Settings:			=

Refer to P0-25 and P0-38 for explanation.

8-45 Revision September 2012

P0-29	MAP5	Mapping Parameter 5		Address: 003AH 003BH
	Operat	ion Keypad/Software	Communication	Related Section:
	Interface: // / / / / / / / / / / / / / / / / /	Section 4.3.5		
	Defa	ult: N/A, initialization is r	ot required	:
	Con Mo	trol de:		
	U	nit: -		
	Rar	ge: determined by the pa P0-39	rameter specified by	
	Data S	ize: 32-bit		
	Disp Forn	olay nat: Hexadecimal		

Refer to P0-25 and P0-39 for explanation.

P0-30	МАР6	Mapping Parameter 6		Address: 003CH 003DH
	Opera	tion ace: Keypad/Software	Communication	Related Section:
	;	ault::N/A, initialization i	s not required	Section 4.3.5
	Con	trol de:		
	Unit: -			
	Rar	nge: determined by the P0-40	parameter specified by	
	Data S	ize: 32-bit		
	Disı Forn	play mat: Hexadecimal		

Settings:

Refer to P0-25 and P0-40 for explanation.

P0-31	MAP7 Mapping Parameter 7	Address: 003EH 003FH
	Operation Interface: Keypad/Software Communication	Related Section:
	Default: N/A, initialization is not required	Section 4.3.5
	Control Mode: ALL	
	Unit: -	
	Range: determined by the parameter specified b P0-41	У
	Data Size: 32-bit	:
	Display Format:	
	Settings:	

Refer to P0-25 and P0-41 for explanation.

P0-3

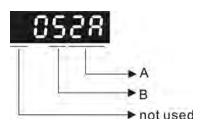
2	MAP8	Mapping Parameter 8		Address: 0040H 0041H
	Operat	ion Keypad/Software	Communication	Related Section:
	Interfa	ice:		Section 4.3.5
	Defa	ult: N/A, initialization is	s not required	· · ·
		trol de: ALL		
	U	nit::-		- - -
	Ran	ge: determined by the p P0-42	parameter specified by	
	Data S	ize: 32-bit		
	Disp Forn	olay Hexadecimal		

Settings:

Refer to P0-25 and P0-42 for explanation.

P0-33	Reserved (Do Not Use)	Address: 0042H
1033	Reserved (50 Not 03c)	0043H
P0-34	Reserved (Do Not Use)	Address: 0044H
F0-34	reserved (DO NOT OSE)	0045H
DO 25	MARIA Block Data Read / Write Register 1	Address: 0046H
P0-35	(for P0-25)	0047H
	Operation Kounad (Software Communication	Related Section:
	Operation Interface: Keypad/Software Communication	Section 4.3.5
	Default::0x0	
	Control	
	Control Mode: ALL	
	Unit: -	
	Range: determined by the communication address of the designated parameter	
	Data Size: 32-bit	- : :
	Display Format:	- 1

Settings:


The parameters from P0-35 to P0-42 are used to designate the desired read and write parameter numbers for P0-25 to P0-32, and read and write the values of the parameters those communication addresses are not consecutive through communication setting or the keypad more efficiently.

The read / write parameter could be one 32-bit parameter or two 16-bit parameters.

The operation of parameter PO-35 is described as follows:

When PH≠PL, it indicates that P0-25 includes two 16-bit parameters.

When PH = PL = P, it indicates that the content of P0-25 is one 32-bit parameter. V32 = *(P). If P = 060Ah (parameter P6-10), the value of V32 is the value of P6-10.

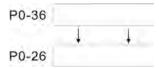
A: Parameter group code in hexadecimal format

B: Parameter number in hexadecimal format

For example:

If the desired read and write parameter number is P2-06, please set P0-35 to 0206. If the desired read and write parameter number is P5-42, please set P0-35 to 052A, and vise versa.

When the users want to read and write the value of the parameter P1-44 (32-bit parameter) via P0-25, please set P0-35 to 0x012C012C through communication setting or the keypad. The the value of the parameter P1-44 will be displayed by P0-25.


When the users want to read and write the values of the parameters P2-02 (Position Feed Forward Gain, 16-bit parameter) and P2-04 (Proportional Speed Loop Gain, 16-bit parameter) via P0-25, please set P0-35 to 0x02040202 through communication setting or the keypad. The the values of the parameters P2-02 and P2-04 will be displayed by P0-25.

8-48 Revision September 2012

MAP2A	Block Data Read / Wri (for P0-26)	te Register 2	Address: 0048H 0049H
Operat	ion Ice: Keypad/Software	Communication	Related Section:
:	ult::0x0	:	Section 4.3.5
Con	trol de: ALL	€ : : : :	
Unit: -		1	
Range: determined by the communication address of the designated parameter			
Data Size: 32-bit			
Display Format: Hexadecimal			

Settings:

Refer to P0-35 for explanation.



P0-37

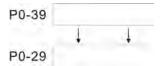
Address: 004AH 004BH
Related Section: Section 4.3.5
 : :

Settings:

Refer to P0-35 for explanation.

MAP4A	Block Data Read / Write Register 4 (for P0-28)		Address: 004CH 004DH
Operation Interface: Keypad/Software Communication			Related Section: Section 4.3.5
:	ult: 0x0	i	3600011 4.3.3
Control Mode:			- - - - - -
Unit: -			1 1 1
Range: determined by the communication address of the designated parameter			
Data Size: 32-bit			
Display Format: Hexadecimal			

Settings:

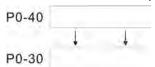

Refer to P0-35 for explanation.

P0-38 ↓ ↓ ↓ P0-28

P0-39

Settings:

Refer to P0-35 for explanation.

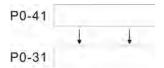


8-50 Revision September 2012

МАР6А	Block Data Read / Write Register 6 (for P0-30)		Address: 0050H 0051H
Operat	ion Ace: Keypad/Software	Communication	Related Section:
Interfa	ice:		Section 4.3.5
Defa	ult: 0x0		:
Control Mode: ALL			
Unit: -			7 1 1
Range: determined by the communication address of the designated parameter			
Data Size: 32-bit			
Display Format: Hexadecimal			

Settings:

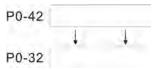
Refer to P0-35 for explanation.



P0-41

	ock Data Read / Write Register 7 for P0-31)		Address: 0052H 0053H
Operatio	n E: Keypad/Software	Communication	Related Section:
Interrace	2:;	:	Section 4.3.5
Defaul	t: 0x0		:
Contro Mode	ol e:: <mark>ALL</mark>		
Unit:-		- :	
Range: determined by the communication address of the designated parameter			"" 1
Data Size: 32-bit			
Displa Forma	Hexadecimal		

Settings:


Refer to P0-35 for explanation.

MAP8A	Block Data Read / Wri (for P0-32)	te Register 8	Address: 0054H 0055H
Operat	ion .ce: Keypad/Software	Communication	Related Section:
IIIterra	.ce.	:	Section 4.3.5
	ult: 0x0		
Cont Mo	rol de: ALL		
Unit: -		-1 	
Range: determined by the communication address of the designated parameter			
Data Size: 32-bit			
Disp Form	lay nat: Hexadecimal		- - - - - - -

Settings:

Refer to P0-35 for explanation.

P0-43

Reserved (Do Not Use)	Address: 0056H
Reserved (DO NOT USE)	0057H

P0-44★

	Status Monitor Register (PC Software Setting)	Address: 0058H 0059H
Operat Interfa	ion Ice: Keypad/Software Communication	Related Section: Section 4.3.5
Defa	ult: 0x0	
Cont Mo	de: ALL	
U	nit: -	
Range: determined by the communication address of the designated parameter		5
Data Size: 32-bit		
Display Format:: Decimal		

Settings:

The function of this parameter is the same as P0-09 (Please refer to P0-09). Please note that this pamameter can be set through communication setting only.

8-52 Revision September 2012

JUN-AZ				inupter o servo i urumeters
P0-45 ■		Status Monitor Regist (PC Software Setting)	er Selection	Address: 005AH 005BH
	Keypad/Software Communication		Related Section: Section 4.3.5	
	Default::0x0			
	Con Mo	ontrol Node:		
	Unit: -			
	Range: 0~127			
	Data Si	ize: 16-bit		
	Disp Form	olay nat: Decimal		

The function of this parameter is the same as P0-17 (Please refer to P0-17). Please note that this pamameter can be set through communication setting only.

P0-46★	SVSTS Servo Output Status Display		Address: 005CH 005DH	
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: N/A
	Defa	ult: 0		
	Con Mc	trol ode: ALL		
	U	lnit:-		
	Ran	nge: 0x00 ~ 0xFF		· · · · · · · · · · · · · · · · ·
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Hexadecimal		

Settings:

This parameter is used to display the digital output signal of the servo drive. The servo output status display will show in hexadecimal format.

Bit0: SRDY (Servo ready)

Bit1: SON (Servo On)

Bit2: ZSPD (At Zero speed)

Bit3: TSPD (At Speed reached)

Bit4: TPOS (At Positioning completed)

Bit5: TQL (At Torque limit)

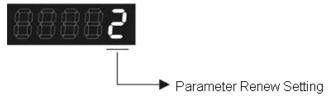
Bit6: ALRM (Servo alarm activated)

Bit7: BRKR (Electromagnetic brake control)

Bit9: OLW (Output overload warning)

Bit10: WARN (Servo warning activated. WARN is activated when the drive has detected reverse limit error; forward limit error, emergency stop, serial communication error, and undervoltage these fault conditions.)

Bit11: Reserved Bit12: Reserved Bit13: Reserved Bit14: Reserved Bit15: Reserved


The servo output status display can be monitored through communication also.

P0-47	Reserved (Do Not Use)	Address: 005EH 005FH
P0-48	Reserved (Do Not Use)	Address: 0060H 0061H

49 ■	UAP	Renew Encoder Absolu	ute Position	Address: 0062H 0063H
	Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ult::0x0] :
	Con ⁻ Mo	trol: de:: ^{ALL}		
	U	nit::N/A		:
:	Ran	ge: 0x00 ~ 0x02		** : :
	Data S	ize: 16-bit		- · ·
	Disp Form	Hexadecimai		

Settings:

This parameter is used to renew the absolute position data of the encoder.

Parameter Renew Setting:

- 1: Renew the encoder data to parameters P0-50~P0-52 only.
- 2: Renew the parameters P0-50~P0-52, and clear the position error as well. While this setting is activated, the current position of the motor will be reset as the target position of position command (same function as CCLR).

8-54 Revision September 2012

P0-50★

APSTS	Absolute Coordinate S	bsolute Coordinate System Status		
Operat Interfa	ion ce: Keypad / Software	Related Section: N/A		
Defa	ult: 0x0		7 1 1	
Cont Mo	rol de: ALL			
Uı	nit: N/A			
Ran	ge: 0x00 ~ 0x1F			
Data Si	ze: 16-bit		7 : :	
Displ Form	Hexadecimal			

Settings:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8

Bit0: Absolute position status

Bit0=0: Normal

Bit0=1: Absolute position is lost

Bit1: Voltage level of battery

Bit0=0: Normal

Bit0=1: Low battery

Bit2: Status of encoder multiturn

Bit0=0: Normal

Bit0=1: Overflow

Bit3: Status of PUU

Bit0=0: Normal

Bit0=1: Overflow

Bit4: Absolute coordinate system status

Bit0=0: Normal

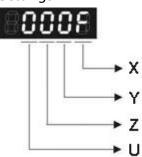
Bit0=1: Absolute coordinate system has not been set

Bit5 ~ Bit15: Reserved. Must be set to 0.

P0-51★	APR E	ncoder Absolute Pos	oder Absolute Position (Multiturn)			
	Operatio Interfac	n e: Keypad / Software	Communication	Related Section: N/A		
	Defaul	t::0x0	(
	Contro Mode	ol e: ALL				
	Unit::rev					
	Rang	e:-32768 ~ +32767	-32768 ~ +32767			
: : :	Data Siz	e: 32-bit		1 : :		
:	Displa Forma	y Decimal				

While the Bit 1 of P2-70 is set to read the encoder pulse number, this parameter represents the turns of encoder absolute position. While the Bit 1 of P2-70 is set to read the PUU number, this parameter becomes disabled and the setting value of this parameter is 0.

P0-52★	APP	Encoder Absolute Position (Pulse number within Singleturn or PUU)	Address: 0068H 0069H
	Opera Interfa	tion ace: Keypad / Software Communication	Related Section: N/A
:		ault: 0x0	
	Con Mo	ode: ALL	
	U		
	Rar		
	Data S	ize: 32-bit	
	Disp Forr	olay Decimal mat:	

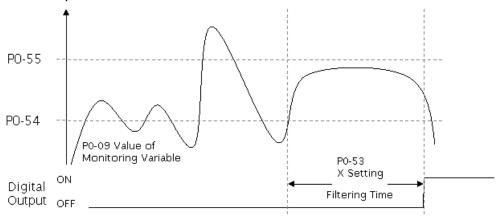

Settings:

While the Bit 1 of P2-70 is set to read the pulse number, this parameter represents the pulse number of encoder absolute position. While the Bit 1 of P2-70 is set to read the PUU number, this parameter represents PUU number of motor absolute position.

8-56 Revision September 2012

ZDKI	General Range Compa Filtering Time	Address: 006AH 006BH	
Operat Interfa	ion ce: Keypad / Software	Related Section: N/A	
Defa	ult::0x0000		
Con Mo	trol: de:: ^{ALL}		
U	nit: ms		
Ran	ge: 0x0000 ~ 0x000F	•	
Data S	ize: 16-bit		
Disp Forn	Hexadecimal		

Settings:



X: Filtering time for 1st monitoring variable

UYZ: Reserved

While the value of the monitoing variable is changed within the range between the setting values of P0-54 and P0-55, this parameter is used to set the filter timing for the monitoing variable. The value of monitoring variable will output after the filtering time determined by parameter P0-53.

For example: when P0-09 is used

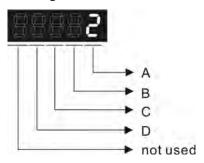
P0-54		neral Range Compai wer Limit of 1st Mor		Address: 006CH 006DH
	Operation Interface:	Keypad / Software	Communication	Related Section: N/A
	Default:	0		· ·
	Control Mode:	ALL		
	Unit:	ms		
	Range:	-2147483648 ~ +21	47483647	•
	Data Size:	32-bit		
	Display Format:	Decimal		

The value of parameter P0-09 will change withing the range between P0-54 and P0-55 and then output after the filtering time determined by parameter P0-53.

P0-55	ZON1H	General Range Compa Upper Limit of 1st Mo		Address: 006EH 006FH
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ult: 0		T I I
	Control Mode: ALL			
	Unit::ms			
	Range::-2147483648 ~ +2147483647			
	Data Size: 32-bit			1 : :
	Disp Forn	'Decimai		

Settings:

The value of parameter P0-09 will change withing the range between P0-54 and P0-55 and then output after the filtering time determined by parameter P0-53.


8-58 Revision September 2012

P0-56 Reserved (Do Not Use)	Address: 0070H 0071H
P0-57 Reserved (Do Not Use)	Address: 0072H
Reserved (Do Not ose)	0073H
P0-58 Reserved (Do Not Use)	Address: 0074H
Reserved (DO NOT OSE)	0075H
P0-59 Reserved (Do Not Use)	Address: 0076H
Reserved (DO NOT OSE)	0077H
P0-60 Reserved (Do Not Use)	Address: 0078H
Reserved (DO NOT OSE)	0079Н
P0-61 Reserved (Do Not Use)	Address: 007AH
Reserved (DO NOT OSE)	007BH

Group 1: P1-xx Basic Parameters

Ρ1	E	OI	n	Λ

PTT	External Pulse Input 7	Address: 0100H 0101H	
Operat Interfa	ion ice: Keypad/Software	Related Section: Section 6.2.1	
Defa	ult: 0x2		· ·
Con Mo	trol de: PT	1 1 1 1 1	
U	nit: -	1 1 1	
Ran	ge: 0 ~ 1132	· · ·	
Data S	ize: 16-bit		
Disp Forn	olay nat: Hexadecimal		

A: Input pulse type

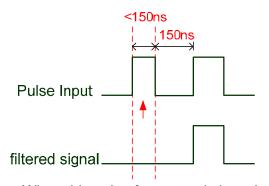
0: AB phase pulse (4x) (Quadrature Input)

1: Clockwise (CW) + Counterclockwise(CCW) pulse

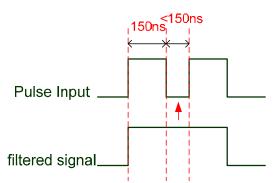
2: Pulse + Direction

3: Other settings: Reserved

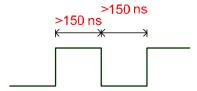
B: Input pulse filter


This setting is used to suppress or reduce the chatter caused by the noise, etc. However, if the instant input pulse filter frequency is over high, the frequency that exceeds the setting value will be regarded as noise and filtered.

Setting Value	Low-speed Filter Frequency (Min. Filter Frequency (see note 1))	Setting Value	High-speed Filter Frequency (Min. Filter Frequency (see note 1))
0	0.83Mpps (600ns)	0	3.33Mpps (150ns)
1	208Kpps (2.4us)	1	0.83Mpps (600ns)
2	104Kpps (4.8us)	2	416Kpps (1.2us)
3	52Kpps (9.6us)	3	208Kpps (2.4us)
4	No Filter Function	4	No Filter Function

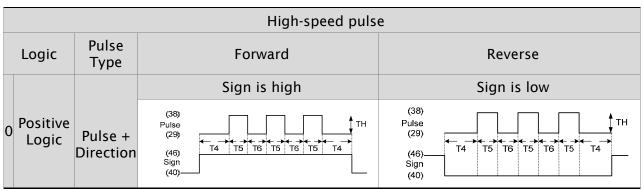

8-60 Revision September 2012

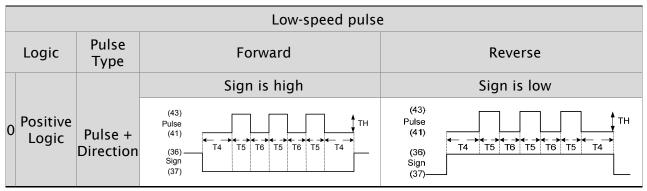
Please note:


1. When the source of pulse command is the high-speed linear driver signal and the setting value B is set to 0 (High-speed Filter Frequency is 3.33Mpps):

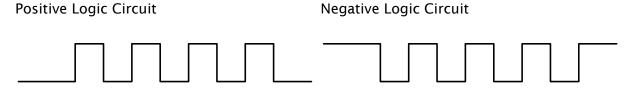
When this pulse frequency is less than 150 ns, this signal will be regarded as a low-level pulse and two input pulses will be regarded as one input pulse.

When this pulse frequency is less than 150 ns, this signal will be regarded as a high-level pulse and two input pulses will be regarded as one input pulse.


When the pulse frequencies of high-level duty and low-level duty both are greater than 150 ns, the signal will not be filtered (that is, the pulse command will pass through).


If an input pulse of 2~4MHz is used, it is recommended to change the setting value B (Input pulse filter) and set this setting value to 4. Please note that this function is available for DSP version V1.036 sub05, CPLD version V10 and later models only.

Note: If the signal is a 4Mpps high input pulse, setting the value B to 4 is able to ensure that the signal will not be filtered and will be certainly delivered.


C: Input polarity

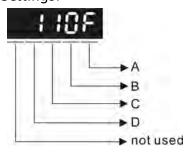
	High-speed pulse and Low-speed pulse						
Logic	Pulse Type	Forward	Reverse				
		Pulse Phase-Lead	Pulse Phase-Lag				
O Positive	AB phase pulse	(38) Pulse (29) (46) Sign T1 T1 T1 T1 T1 T1	(38) Pulse (29) (46) Sign (40) T1 T1 T1 T1 T1 T1 T1				
Logic	CW + CCW pulse	(38) Pulse (29) (46) Sign (40)	T3 T2 T2 T2 T2 T2 T1				

In digital electronics, logic circuits are generally divided into two classes according to their polarity - positive logic and negative logic. With reference to positive logic, logical 1 state represents the high voltage level and logic 0 represents the low voltage level. With reference to negative logic, logical 1 state represents the low voltage level and logic 0 state represents the high voltage level.

8-62 Revision September 2012

Pulse specification		Max.	Min. time width					
		input pulse frequency	Tl	T2	Т3	T4	T5	Т6
High-speed pulse	Line driver	4Mpps	62.5ns	125ns	250ns	200ns	125ns	125ns
Low-speed pulse	Line driver	500Kpps	0.5µs	1µs	2µs	2µs	1µs	1µs
	Open collector	200Kpps	1.25µs	2.5µs	5µs	5µs	2.5µs	2.5µs

Pulse spec	cification	Max. input pulse frequency	Voltage specification	Forward specification
High-speed pulse	Line driver	4Mpps	5V	< 25mA
Low speed pulse	Line driver	500Kpps	2.8V ~ 3.7V	< 25mA
Low-speed pulse	Open collector	200Kpps	24V (Max.)	< 25mA


D: Source of pulse command

Setting value	Input pulse interface	Remark
0	Open collector for low-speed pulse	CN1 Terminal Identification: PULSE, SIGN
1	Line driver for high-speed bulse	CN1 Terminal Identification: HPULSE, HSIGN

P1-01

CTL	Control Mode and Ou	Address: 0102H 0103H	
Operat	ion Keypad/Software	Communication	Related Section:
Interfa	Interface: Reypady Software Communication		Section 6.1,
Defa	ult: 0		Table 8.A
Con Mo	trol de: ALL		
U	nit: pulse (P mode), r/m	nin (S mode),	
	N-m (T mode)		
Ran	ge: 00 ~ 110F		-
Data Si	ze: 16-bit		
Disp Form	olay nat: Hexadecimal		

Settings:

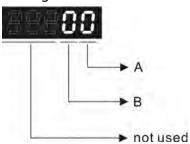
A: Control mode settings

	PT	PR	S	Т	Sz	Tz
		Sing	le Mo	ode		
00	A					
01						
02						
03						
04						
05						
Multiple Mode						
0E	A	A				
OF	A	A				

	PT	PR	S	Т	Sz	Tz
		Dua	al Mo	de		
06	A					
07	A			A		
08		A	A			
09		A		A		
0A			A	A		
OB	CANopen Mode					
0C	Reserved					
0D	A					

- PT: Position control mode. The command is from external pulse or analog voltage (external analog voltage will be available soon).
- PR: Position control mode. The command is from internal signal. Execution of 64 positions is via DI signals (POSO ~ POS5). A variety of homing control is also provided.
- S: Speed control mode. The command is from external signal or internal signal. Execution of the command selection is via DI signals, SPD0 and SPD1.
- T: Torque control mode. The command is from external signal or internal signal. Execution of the command selection is via DI signals, TCM0 and TCM1.
- Sz: Zero speed / internal speed command
- Tz: Zero torque / internal torque command
- Dual Mode: Control of the mode selection is via DI signals. For example, either PT or S control mode can be selected via DI signal, S-P (see Table 8.A).
- Multiple Mode: Control of the mode selection is via DI signals. For example, either PT or PR or S control mode can be selected via DI signals, S-P and PT-PR (see Table 8.A).
- B: Torque output direction settings

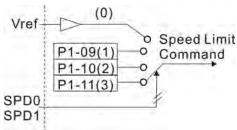
Direction	0	1
Forward	P(CCW)	N(CW)
Reverse	N(CW)	P(CCW)


C: Discrete I/O Setting

- 1: When switching to different mode, digital inputs/outputs (P2-10 ~ P2-22) can be reset to be the default value of the mode you switch to.
- 0: When switching to different mode, the setting value of digital inputs/outputs (P2-10 ~ P2-22) will remain the same and will not be changed.

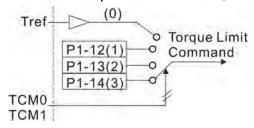
P1-02▲

PSTL	Speed and Torque Lin	Address: 0104H 0105H	
Operati	on ce: Keypad/Software	Communication	Related Section:
Interfa	ce:	Electronic Communication	Section 6.6,
Defa			Table 8.A
Cont Mod	rol de: ALL		
Ur	nit: -		
Ran	ge: 00 ~ 11		
Data Si	ze: 16-bit		
Disp Form	lay at: Hexadecimal		

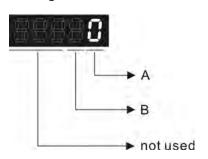

Settings:

A: Disable or Enable speed limit function

0: Disable speed limit function


1: Enable speed limit function (It is available in torque mode)

B: Disable or Enable torque limit function


0: Disable torque limit function

1: Enable torque limit function (It is available in position and speed mode)

This parameter is used to determine that the speed and torque limit functions are enabled or disabled. If P1-02 is set to 11, it indicates that the speed and torque limit functions are enabled always. The users can also use DI signals, SPDLM and TRQLM to enable the speed and torque limit functions. Please note that DI signals, SPD0, SPD1, TCM0, and TCM1 are used to select the command source of the speed and torque limit.

iupier o ser	vo rarame	ASUA-AZ			
P1-03	AOUT	Pulse Output Polarity	Setting	Address: 0106H 0107H	
	Operation Keypad/Software Communication		Operation Keypad /Software		Related Section:
	Interfa	ace: Keypau/Software	Communication	Section 3.3.3	
	Default: 0				
	Con Mo	trol de: ALL			
	U	nit: -			
	Ran	ge: 0 ~ 13		:	
	Data Si	ize: 16-bit		= ¬ - -	

Display Hexadecimal

A: Analog monitor outputs polarity

0: MON1(+), MON2(+)

1: MON1(+), MON2(-)

2: MON1(-), MON2(+)

3: MON1(-), MON2(-)

B: Position pulse outputs polarity

0: Forward output

1: Reverse output

P1-04	MON1	Analog Monitor Outp	ut Proportion 1 (MON1)	Address: 0108H 0109H
	Operat	ion Ace: Keypad/Software	Communication	Related Section:
	Interface: Keypua/Sortware		Section 6.4.4	
	Defa	ult: 100		
	Con Mo	trol ode:		
	U			
	Ran	nge: 0 ~ 100		
	Data S	ize: 16-bit		• • •
	Disp Forn	olay nat::Decimal		

Settings:

Please note:

For the settings of analog monitor output, refer to the P0-03.

Example: P0-03 = 01 (MON1 is motor speed analog output, MON2 is motor torque analog output)

8-66 Revision September 2012

MON1 output voltage=
$$8 \times \frac{\text{Motor speed}}{\text{(Max. motor speed} \times \frac{\text{P1-04}}{100})}$$
 (unit: Volts)

MON2 output voltage=
$$8 \times \frac{\text{Motor toque}}{(\text{Max. motor torque} \times \frac{\text{P1-05}}{100})}$$
 (unit: Volts)

P1-05	MON2	Analog Monitor Outpu	ut Proportion 2 (MON2)	Address: 010AH 010BH
	Operation Interface: Keypad/Software Communication		Communication	Related Section:
				Section 6.4.4
	Default: 100			
	Con Mo	trol ode: ALL		
	Unit::% (full scale)			- - -
	Ran	ige: 0 ~ 100		7 ! !
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		7 1 1 1 1

Please note:

For the settings of analog monitor output, refer to the P0-03.

Example: P0-03 = 01 (MON1 is motor speed analog output, MON2 is motor torque analog output)

MON1 output voltage=
$$8 \times \frac{\text{Motor speed}}{\text{(Max. motor speed} \times \frac{\text{P1-04}}{100}}$$
 (unit: Volts)

Mon2 output voltage= $8 \times \frac{\text{Motor toque}}{\text{(Max. motor torque} \times \frac{\text{P1-05}}{100}}$ (unit: Volts)

\mathbf{p}	Е	N	6

	Accel / Decel Smooth Speed Command (Low		Address: 010CH 010DH	
Operati Interfac	on ce: Keypad/Software	Communication	Related Section: Section 6.3.3	
Defau	ılt: 0)		
Cont Mod	rol de: S	S		
Ur	nit: ms	ms		
Rang	ge: 0 ~ 1000 (0: Disable	0 ~ 1000 (0: Disabled)		
Data Siz	ze::16-bit	16-bit		
Displ Form	ay at: Decimal			

Settings: 0: Disabled

P1-07

	Smooth Constant of Analog Torque Command (Low-pass Filter)		Address: 010EH 010FH	
Operat Interfa	ion ce: Keypad/Software	Communication	Related Section: Section 6.4.3	
Defa	ult: 0		· · ·	
Cont Mo	rol de: T	ol: ⊤ ≟∷		
U	nit: ms	- - -		
Ran	ge: 0 ~ 1000 (0: Disabl	1 1 :		
Data Si	ze: 16-bit			
Disp Form	lay nat: Decimal		**	

Settings: 0: Disabled

P1-08

DLI I			Address: 0110H 0111H	
Operation Interface: Keypad/Software Communication		Communication	Related Section: Section 6.2.6	
Defa	ult:			:
Control Mode: PT, PR Unit::10ms Range::0 ~ 1000 Data Size::16-bit				
		: : :		
		`		
Display Format: Decimal				
	Operat Interfa Defa Con Mo U Ran Data S	Operation Interface: Default: Control Mode: Unit: Range: Data Size:	Operation Interface: Keypad/Software Default: 0 Control Mode: PT, PR Unit: 10ms Range: 0 ~ 1000 Data Size: 16-bit	Operation Interface: Keypad/Software Communication Default: 0 Control PT, PR Mode: PT, PR Unit: 10ms Range: 0 ~ 1000 Data Size: 16-bit

Settings: 0: Disabled

For example: 11=110 msec

8-68 Revision September 2012

SP1	1st Speed Command	or Limit	Address: 0112H 0113H
Opera Interf	tion ace: Keypad/Software	Communication	Related Section: Section 6.3.1
Defa	ault: 1000		: : : :
Con Mo	itrol ode: S, T		
ί	Jnit: 0.1r/min		
Rar	nge∷-60000 ~ +60000		-
Data S	ize: 32-bit		
Dis Forr	play nat: Decimal		
	alue Speed Command: 1 ^{1ple} Speed Limit: Please	20=12 r/min refer to the table below	-

Settings:

1st Speed Command

In Speed mode, this parameter is used to set speed 1 of internal speed command.

1st Speed Limit

In Torque mode, this parameter is used to set speed limit 1 of internal speed command.

Speed Limit Setting Value of P1-09	Allowable Speed Range	Speed Limit of Forward Direction	Speed Limit of Reverse Direction
1000	-100 ~ 100	100 % /***	100 % (%)
-1000 r/min		100 r/min	-100 r/min

SP2	2nd Speed Command	or Limit	Address: 0114H 0115H
Operat	ion Ice: Keypad/Software	Communication	Related Section:
Interfa	ice:		Section 6.3.1
Defa	ult: 2000		1 1 1 2
Con Mo	trol de: S, T		
U	nit: 0.1r/min		
Ran	ge: -60000 ~ +60000		7 : :
Data Si	ze: 32-bit		
Disp Form	olay nat: Decimal		
	lue Speed Command: 1 ple Speed Limit: Please	20=12 r/min refer to the table below.	7

Settings:

2nd Speed Command

In Speed mode, this parameter is used to set speed 2 of internal speed command.

2nd Speed Limit

In Torque mode, this parameter is used to set speed limit 2 of internal speed command.

Speed Limit Setting Value of P1-10	Allowable Speed Range	Speed Limit of Forward Direction	Speed Limit of Reverse Direction
1000	-100 ~ 100	100 % (700)	100 = /
-1000	r/min	100 r/min	-100 r/min

SP3	3rd Speed Command or Limit		Address: 0116H 0117H
Operat	ion Keypad/Software	Communication	Related Section:
Interfa	ice:		Section 6.3.1
Defa	ult::3000		<u>:</u>
Con Mo	trol de: S, T		
U	nit: 0.1r/min		
Ran	ge: -60000 ~ +60000		
Data S	ze::32-bit		
Disp Form	olay nat: Decimal		
•	lue Speed Command: 1 ple Speed Limit: Please	•	W.

Settings:

3rd Speed Command

In Speed mode, this parameter is used to set speed 3 of internal speed command.

3rd Speed Limit

In Torque mode, this parameter is used to set speed limit 3 of internal speed command.

Speed Limit Setting Value of P1-11	Allowable Speed Range	Speed Limit of Forward Direction	Speed Limit of Reverse Direction
1000	-100 ~ 100	100 % /200	100 % /20 :2
-1000	r/min	100 r/min	-100 r/min

8-70 Revision September 2012

	TQ1	1st Torque Command or Limit		Address: 0118H 0119H
	Operat	ion Keypad/Software	Communication	Related Section:
			:	Section 6.4.1
:	Defa	ult: 100		:
	Cont Mo	trol de: T, P&S		
	Unit: % Range: -300 ~ +300 Data Size: 16-bit			
				· ·
				· · ·
	Disp Form			
	•	lue Torque Command: ple Torque Limit: Please below.		

Settings:

1st Torque Command

In Torque mode, this parameter is used to set torque 1 of internal torque command.

1st Torque Limit

In Position and Speed mode, this parameter is used to set torque limit 1 of internal torque command.

Torque Limit Setting Value of P1-12	Allowable Torque Range	Torque Limit of Forward Direction	Torque Limit of Reverse Direction
30	20 20 0/	30.0/	20.0/
-30	-30 ~ 30 %	30 %	-30 %

Digital output signal TQL is activated when the drive has detected that the motor has reached the torques limits set by either the parameters $P1-12 \sim P1-14$ of via an external analog voltage.

TQ2	2nd Torque Comman	d or Limit	Address: 011AH 011BH
Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: Section 6.4.1
Defa	ult: 100		
Con Mo	trol de: T, P&S		
U	nit: %		
Range: -300 ~ +300			
Data Size: 16-bit		:	
Display Format: Decimal			
	llue Torque Command: Iple Torque Limit: Pleas below.		

2nd Torque Command

In Torque mode, this parameter is used to set torque 2 of internal torque command.

2nd Torque Limit

In Position and Speed mode, this parameter is used to set torque limit 2 of internal torque command.

Torque Limit Setting Value of P1-13	Allowable Torque Range	Torque Limit of Forward Direction	Torque Limit of Reverse Direction
30	20 20 0/	30.0/	20.0/
-30	-30 ~ 30 %	30 %	-30 %

Digital output signal TQL is activated when the drive has detected that the motor has reached the torques limits set by either the parameters $P1-12 \sim P1-14$ of via an external analog voltage.

\mathbf{P}	Б	4
--------------	---	---

TQ3	3rd Torque Command or Limit		Address: 011CH 011DH
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: Section 6.4.1
Defa	ult: 100		:
Con Mo	trol de: T, P&S		
U	nit: %		
Ran	ge: -300 ~ +300		Ti
Data Si	ze: 16-bit		
Disp Form	olay nat: Decimal		
	llue Torque Command: ple ple Torque Limit: Please below.		

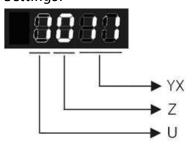
Settings:

3rd Torque Command

In Torque mode, this parameter is used to set torque 3 of internal torque command.

3rd Torque Limit

In Position and Speed mode, this parameter is used to set torque limit 3 of internal torque command.


Torque Limit Setting Value of P1-14	Allowable Torque Range	Torque Limit of Forward Direction	Torque Limit of Reverse Direction
30	20 20 0/	30.0/	30.0/
-30	-30 ~ 30 %	30 %	-30 %

Digital output signal TQL is activated when the drive has detected that the motor has reached the torques limits set by either the parameters $P1-12 \sim P1-14$ of via an external analog voltage.

8-72 Revision September 2012

(X F I	CAPTURE SYNC AXIS - Correction	- Threshold of	Address: 011EH 011FH
Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0000h		- - - -
Con Mo	Control Mode: ALL		
U	Unit::N/A		
Ran	ige: 0000h ~ 1F5Fh		
Data S	ize: 16-bit		
Disp Forn	olay nat: Hexadecimal		

Settings:

This parameter is used to set the threshold of correction of CAPTURE SYNC AXIS operation. Setting either of YX and Z to 0 is to disable the filter function.

YX: Threshold of correction (%)

When SYNC axis operates after the data is captured, the system will calculate the errors. The function of this parameter is enabled only when the error value is less than this setting range. Otherwise, the system will use the new threshold of correction to perform the CAPTURE SYNC AXIS operation.

YX	00	01 ~ 05F
Function	Disabled	Error <= (1~YX) % : Enabled

Z: Filter intensity

Z	0	1 ~ F
Function	Disabled	Average of 2^Z: Enabled

When the value of Z is increased, the change of correction is getting slow and it can expedite the performance of the filter function.

U: Display filter function (Read-only)

(This function is available in firmware version V1.038 sub15 and later models only)

U=0: Filter function is disabled. It indicates that the error value is greater than the setting range of $(1\sim YX)$ %.

U=1: Filter function is enabled. It indicates that the error value is less than the setting range of $(1\sim YX)$ %.

CSOF	CAPTURE SYNC AXIS - Offset Compensation		Address: 0120H 0121H
Operat Interfa	ion ce: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		T: : : :
Cont Mo	rol de: PR		
U	nit: The Pulse Unit of Ca	apture Axis	
Ran	ge::-32768 ~ +32767		•
Data Si	ze: 16-bit		
Disp Form	lay nat: Decimal		

This parameter is used to set the offset compensation value to adjust the error pulse number of CAPTURE SYNC AXIS operation.

When SYNC axis operates after the data is captured, if the users want to change the SYNC error pulse number, i.e. parameter P5-79, using this parameter can change the error pulse number immediately.

Write P1-16: P5-79 = P5-79 + P1-16 Read P1-16: Read value = P5-79

Please note:

- 1. The setting value of this parameter is an accumulative value. It will not be affected by the current error value.
- 2. The setting value of P5-79 can be monitored by the monitoring variable code 084 (54h), Synchronous Capture Axis Synchronous error pulse number.

P1-17	TEET Tracking Error Compe Time Setting	ensation - Additional	Address: 0122H 0123H
	Operation Interface: Keypad/Software	Communication	Related Section: N/A
	Default: 0		
	Control Mode: ALL		
	Unit: ms with fraction do	wn to usec	
	Range: -20.000 ~ +20.000	(Three decimal point)	
	Data Size: 16-bit		
	Display Format: Decimal		
	Input Value Example 1.5 = Motor speed	x 1.5 ms (PUU)	

Settings:

(This function is available in firmware version V1.038 sub15 and later models only)

8-74 Revision September 2012

When the function of tracking error compensation is enable (P1-36=1), the system will calculate the compensation value according to the input command automatically and make the position error (PUU) to be close to 0. However, as the time delay caused by other reasons cannot be predicted in advance. The users can set the additional time to compensate the positioning time delay.

Additional compensation distance = $P1-17 \times Motor Speed$

Please note:

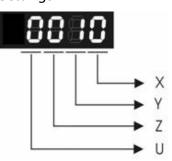
- 1. The setting value of this parameter is proportioned to the value of the motor speed.
- 2. This parameter is enabled only when P1-36 is set to 1.

Ρí	Б	18
----	---	----

СРСТ	Electronoic Cam (E-Cam) Pulse Phase Compensation – Time Setting		Address: 0124H 0125H
Operat Interfa	ion ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		
Con Mo	Control PR Mode:		
U	nit: ms with fraction do	wn to usec	
Ran	ge: -20.000 ~ +20.000	(Three decimal point)	
Data Size: 16-bit		 : : :	
Disp Forn	Display Format: Decimal		

Settings:

(This function is available in firmware version V1.038 sub48 and later models only)
This parameter is used to compensate the delay pulse phase when the electronic cam function is enabled during operation. Please use this parameter with P1-21.
Compensated Pulse Phase (pls) = P1-18 x (Pulse Frequency of E-Cam Master Axis


Please note:

(Kpps) - P1-21)

- 1. The setting value of this parameter is proportioned to the value of the pulse frequency of E-Cam master axis.
- 2. The pulse phase compensation function is enabled only when the setting value of parameter P1-18 is higher than 0.
- 3. The pulse phase compensation function is enabled only when the value of the pulse frequency of E-Cam master axis (monitoring variable is 060 (3Ch) Pulse number of E-Cam master axis (Incremental)) is higher than the setting value of parameter P1-21.

I (PF X	CAPTURE / COMPARE Settings	- Additional Function	Address: 0126H 0127H
Operat Interfa	ion .ce: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		
Cont Mo	Control Mode: ALL		
U	Unit::N/A		7
Ran	ge: 0x0000 ~ 0x0101		
Data Si	ze::16-bit		
Disp Form	llay nat: Hexadecimal		

Settings:

- X: Bit settings of Capture additional function settings
- Y: Reserved.
- Z: Bit settings of Compare additional function settings
- U: Reserved.

X: Bit settings of Capture additional function settings:

Please refer to the following table and descriptions:

Bit	3	2	1	0
Function	-	-	-	Repeating Mode
Explanation	-	-	-	Enable the repeating mode. After the last position is captured, the system will automatically repeat this CAPTURE function. The captured data is still stored in the data array that the starting address is specified by P5-36! (This function is available in firmware version V1.038 sub19 and later models only)

Z: Bit settings of Compare additional function settings:

Please refer to the following table and descriptions:

Bit	3	2	1	0
Function	-	-	-	Automatically set P1-24 to 0.
Explanation	-	-	-	When Bit0 is set to 1, P1-24 will only be effective once and reset to 0 automatically! Otherwise, the value of P1-24 will remain unchanged. (This function is available in firmware version V1.038 sub19 and later models only)

8-76 Revision September 2012

СРМК	CAPTURE - Masking R	Address: 0128H 0129H	
Oper Inter	ation face: Keypad/Software	Communication	Related Section: N/A
	fault: 0		7
Co M	ontrol 10de:		
:	Unit: The Pulse Unit of C		
Ra	ange: 0 ~ +100000000	-	
Data	Size: 32-bit	· · · · · · · · · · · · · · · · · · ·	
Di Fo	splay rmat: Decimal		

Settings:

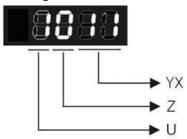
When multiple points are required to be captured, after each point is captured, the masking range can be set in this parameter. In the masking area, the CAPTURE function will not work. The masking range is defined as follows:

Please note:

1. When the setting value of this parameter is set to 0, the masking function is disabled.

P1-21	CPCL	Electronoic Cam (E-Ca Compensation - Min. Master Axis	•	Address: 012AH 012BH
	Opera Interfa	tion ace: Keypad/Software	Communication	Related Section: N/A
	Default: 0		:	
	Control Mode: PR			
	Unit::Kpps (Kpulse/sec)			
	Range:-32768 ~ +32767			
	Data S	ize: 16-bit		:
	Dis _l Forn	olay nat: Decimal		

Settings:


(This function is available in firmware version V1.038 sub48 and later models only) This parameter is used to compensate the delay pulse phase when the electronic cam function is enabled during operation. Please use this parameter with P1-18. Compensated Pulse Phase (pls) = P1-18 x (Pulse Frequency of E-Cam Master Axis (Kpps) – P1-21)

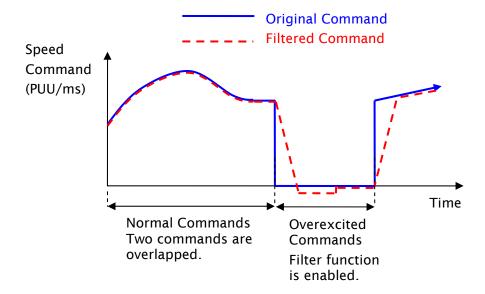
Please note:

1. The setting value of this parameter is proportioned to the value of the pulse frequency of E-Cam master axis.

- 2. The pulse phase compensation function is enabled only when the setting value of parameter P1-18 is higher than 0.
- 3. The pulse phase compensation function is enabled only when the value of the pulse frequency of E-Cam master axis (monitoring variable is 060 (3Ch) Pulse number of E-Cam master axis (Incremental)) is higher than the setting value of parameter P1-21.

P1-22	SPF1	PR Special Filter Setti	ngs	Address: 012CH 012DH
	Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
	Defa	ult: 000h		
	Control PR Mode:			
	U	nit: N/A		- - - -
	Range: 0000h ~ 107Fh Data Size: 16-bit format = UZYX			
			- - - -	
	Disp Forn	olay nat: Hexadecimal		

YX: Acceleration time limit (0: Disabled, [1~127] x 10ms), Units: 10ms

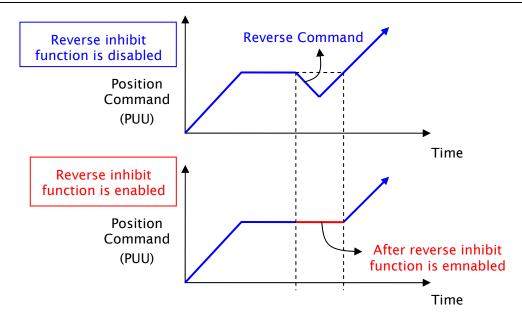

When the changes of PR (or E-Cam) commands are too fast, it will cause the vibration of the mechanical system and affect the system performance. Using this function is able to control the acceleration (deceleration) speed not to exceed thw limit to smooth the operation, reduce the noise and extend the system life.

This function has different meaning than general filter function. The traditional filter function will perform filter the commands no matter the changes of the commands are fast or slow. This always makes the commands be delivered with time delay and lower the efficiency of the system. This function can help to disable the filter function when the changes of the commands are not fast. Then, the commands can be delievered with no time delay. The definition of this setting is the required acceleration time when the motor runs from 0 to 3000 r/min. The required time is longer, the effect of the filter function is better and the acceleration / deceleration will become smoother.

8-78 Revision September 2012

Please note:

1. The unit of acceleration time limit is 10ms. For example, if YX=12h, the acceleration time limit is 180ms. It means the filter function is enabled when the acceleration or deceleration time is faster than 180ms. Otherwise, the command will remain unchanged.


- 2. When this filter function is enabled, it may cause the motor goes beyond the original position. Usually, the motor will return to the original position after the command becomes stable. However, if the command does not become stable, the internal position errors may be accumulated and result in AL404.
- 3. The setting value of the acceleration time limit must be less than the acceleration time of the normal command and higher than the overexcited command.
- 4. If the users do not want to see that the reverse operation occurs after using this function, please enable the following reverse inhibition function (when U is set to 1).

U: Reverse Inhibit Function

U=0: Reverse inhibit function is disabled.

U=1: Reverse inhibit function is enabled.

When this reverse inhibit function is enabled, the reverse command will be inhibited and cannot be output. The reverse command will be reserved and output after the received forward command exceeds the reserved reverse command.

P1-23	CMOF	Compare data offset (remain unchanged)	(Value of P1-23 are	Address: 012EH 012FH
	Opera Interfa	tion ace: Keypad/Software	Communication	Related Section: N/A
	Default: 0 Control ALL Mode: Unit: The Pulse Unit of Capture Axis Range: -10000000 ~ +10000000 Data Size: 32-bit format			
				· ·
	Dis _l Forn	play nat: Decimal		

The users can use this parameter to add an offset value to compare data as actual compare data.

 $CMP_DATA = DATA_ARRAY[*] + P1-23 + P1-24$

Please note:

- 1. P1-23: The value of P1-23 will always remain unchanged.
- 2. P1-24: When P1-24 is set, if Bit 0 of P1-19 Z setting is set to 1, P1-24 will only be effective once and reset to 0 automatically.
- 3. The compare data (CMP_DATA) can be displayed and monitored via monitor variable code V25h (037).

8-80 Revision September 2012

	COMPARE - Compare (Automatically set P1-		Address: 0130H 0131H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		
Con Mo	trol de: ALL		
U	nit: The Pulse Unit of Ca	1 1 1	
Ran	ge: -32768 ~ +32767		
Data Size: 16-bit format			 - -
Disp Form			

Settings:

The users can use this parameter to add an offset value to compare data as actual compare data.

$$CMP_DATA = DATA_ARRAY[*] + P1-23 + P1-24$$

Please note:

- 1. The parameter setting value of P1-24 will not be retained when power is off.
- 2. P1-24: When P1-24 is set, if Bit 0 of P1-19 Z setting is set to 1, P1-24 will only be effective once and reset to 0 automatically.

P1-25	VSF1	Low-frequency Vibratio	on Suppression (1)	Address: 0132H 0133H
	Opera Interfa	tion ace: Keypad/Software	Communication	Related Section: Section 6.2.9
	Default: 0			
	Con Mo	trol ode: PT, PR		
	U	Init: 0.1Hz		:
	Rar	nge: 10 ~ 100		
	Data Size::16-bit			
	Dis _l Forn	olay nat: Decimal		
	Input Va Exam	lue 150 = 15Hz		

Settings:

This parameter is used to set the first group of the low-frequency of mechanical system. It can be used to suppress the low-frequency vibration of mechanical system. If P1-26 is set to 0, this parameter is disabled.

26	VSG1 L	ow-frequency Vibratio	on Suppression Gain (1)	Address: 0134H 0135H
:	Operation	on e: Keypad/Software	Communication	Related Section:
	Interfac	e: Reypady Software		Section 6.2.9
:	Defau	lt: 0		· · · · · · · · · · · · · · · · · · ·
:	Contr Mod	ol e: PT, PR		
	Un	it: -		
	Rang	e: 0 ~ 9 (0: Disable th	e function of P1-25)	
:	Data Siz	e: 16-bit		
; ; ;	Displ Forma	ay nt: Decimal		- - - - - - -

This parameter is used to set the vibration suppression gain for P1-25. When the setting value is higher, the position response is quicker. However, if the setting value is over high, it may affect the normal operation of servo motor. It is recommended to set P1-26 as 1.

VSF2	Low-frequency Vibratio	on Suppression (2)	Address: 0136H 0137H
Opera Inter	ation face: Keypad/Software	Communication	Related Section: Section 6.2.9
Def	ault: 1000		
Co M	ntrol ode: PT, PR		
	Unit: 0.1Hz		:
Ra	nge: 10 ~ 1000		:
Data	Size: 16-bit		
Dis For	play mat:		
Input Va Exai	alue nple 150 = 15Hz		

Settings:

This parameter is used to set the second group of the low-frequency of mechanical system. It can be used to suppress the low-frequency vibration of mechanical system. If P1-28 is set to 0, this parameter is disabled.

8-82 Revision September 2012

	VSG2	Low-frequency Vibratio	Address: 0138H 0139H	
	Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: Section 6.2.9
	Defa	ult: 0		: : : :
	Control Mode: PT, PR			
:	U	nit: -		
	Range: $0 \sim 9$ (0: Disable the function of P1-27)			•
	Data Si	ze: 16-bit	: : :	
:	Disp Form	olay nat: Decimal		

Settings:

This parameter is used to set the vibration suppression gain for P1-27. When the setting value is higher, the position response is quicker. However, if the setting value is over high, it may affect the normal operation of servo motor. It is recommended to set P1-28 as 1.

P1-29	Ρī	-29
-------	----	-----

	Auto Low-frequency Vi Mode Selection	Address: 013AH 013BH	
Operat Interfa	ion Ace: Keypad/Software	Communication	Related Section: Section 6.2.9
Defa	ult: 0		
Con Mo	trol de: PT, PR		
U	nit: -		
Ran	ge: 0 ~ 1		
Data S	ize: 16-bit		
Disp Forn	play Decimal		

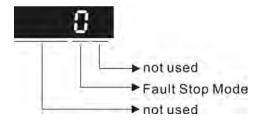
Settings:

- 0: Normal mode (Disable Auto Low-frequency Vibration Suppression Mode).
- 1: Auto mode (Enable Auto Low-frequency Vibration Suppression Mode).

Explanation:

If P1-29 is set to 0, the setting of low-frequency vibration suppression is fixed and will not change automatically.

If P1-29 is set to 1, when there is no low-frequency vibration or the low-frequency vibration becomes less and stable, the system will set P1-29 to 0, save the measured low-frequency value automatically and memorize it in P1-25.


P1-30	VCL	Low-frequency Vibratio	Address: 013CH 013DH	
	Operation Interface: Keypad/Software Com		Communication	Related Section:
	Interfa	Interface: Reypady Software Communication		Section 6.2.9
	Default: 500		· · · ·	
	Control PT, PR Mode: PT			
	U	nit: pulse		
	Ran	ge: 0 ~ 8000		
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

When P1-29 is set to 1, the system will find this detection level automatically. If the setting value of P1-30 is too low, the detection of frequency will become sensitive and result in erroneous measurement. If the setting value of P1-30 is too high, although the probability of erroneous measurement will decrease, the frequency will become difficult to be found especially when the vibration of mechanical system is less.

P1-31	Reserved	d (Do Not Use)	Address: 013EH 013FH	
P1 22				Address: 0140H
P1-32	LSTP	Motor Stop Mode Selec	ction	0141H
	Opera Interf	tion ace: Keypad/Software	Communication	Related Section: N/A
	Defa	ault: 0		
	Cor Mo	ntrol ode: ALL		
		Jnit: N/A		
	Rai	nge: 0 ~ 20		
	Data S	Size: 16-bit		
	Dis Forr	play mat: Hexadecimal		

Settings:

This parameter is used to select servo motor stop mode when Servo Off or a fault (servo alarm, includes EMGS (Emergency stop)) occurs.

8-84 Revision September 2012

Fault Stop Mode

- 0: Use dynamic brake
- 1: Allow servo motor to coast to stop
- 2: Use dynamic brake first, after the motor speed is below than P1-38, allow servo motor to coast to stop

When the fault NL(CWL) or PL(CCWL) occurs, please refer to the settings of parameter P5-03 to determine the deceleration time. If the deceleration time is set to 1ms, the motor will stop instantly.

D1 22	Pagamus d (Da Not Has)	Address: 0142H
P1-55	Reserved (Do Not Use)	0143H

TACC	Acceleration Time		Address: 0144H 0145H
Keypad/Software Communication			Related Section: Section 6.3.3
Defa	ult: 200		-
	trol de: S		
U	nit: ms		
Ran	ge: 1 ~ 65500		
Data S	ize: 16-bit		- - -
Disp Forn	olay nat:		
			-

Settings:

This parameter is used to determine the acceleration time to accelerate from 0 to its rated motor speed. The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Please note:

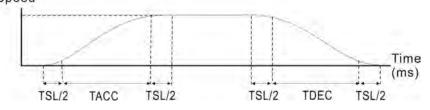
- 1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.
- 2. When the source of speed command is analog command, the maximum setting value of P1-34 is limited to 20000 automatically.

	TDEC	Deceleration Time		Address: 0146H 0147H
	Operat Interfa	ion .ce: Keypad/Software	Communication	Related Section: Section 6.3.3
:	Defa	ult: 200		: : :
		trol de: S		
:	U	nit: ms		- - - :
:	Ran	ge: 1 ~ 65500		•
	Data Si	ze: 16-bit		
	Disp Form	llay nat::Decimal		

Settings:

This parameter is used to determine the acceleration time to accelerate from 0 to its rated motor speed. The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Please note:


- 1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.
- 2. When the source of speed command is analog command, the maximum setting value of P1-35 is limited to 20000 automatically.

	TSL	Accel /Decel S-curve		Address: 0148H 0149H
	Operati Interfa	ion ce: Keypad/Software	Communication	Related Section: Section 6.3.3
:	Defa	;		Section 0.3.3
	Cont Mod	rol de: S, PR		
:	Ur	nit: ms		
:	Rang	ge: 0 ~ 65500 (0: Disa	bled)	
	Data Si	ze: 16-bit		
	Disp Form	lay at: Decimal		

Settings:

This parameter is used to make the motor run more smoothly when startup and windup. Using this parameter can improve the motor running stability.

Speed

8-86 Revision September 2012

TACC: P1-34, Acceleration time TDEC: P1-35, Deceleration time TSL: P1-36, Accel /Decel S-curve

Total acceleration time = TACC + TSL

Total deceleration time = TDEC + TSL

The functions of parameters P1-34, P1-35 and P1-36 are each individual. When P1-36 is set to 0 (Disabled), the settings of P1-34, P1-35 are still effective. It indicates that the parameters P1-34 and P1-35 will not become disabled even when P1-36 is disabled.

Tracking error compensation function:

This function is available in firmware version V1.036 sub00 and later models only.

Function	P1-36 = 0	P1-36 = 1	P1-36 > 1
Accel /Decel S-curve	Disabled	Disabled	Enabled
Track error compensation	Disabled	Enabled	Determined by P2-68 X settings

Please note:

- 1. When the source of speed command is analog command, the maximum setting value of P1-36 is set to 0, the acceleration and deceleration function will be disabled.
- 2. When the source of speed command is analog command, the maximum setting value of P1-36 is limited to 10000 automatically.

-	

			Address: 014AH	
GDR	Ratio of Load Inertia to	tio of Load Inertia to Servo Motor Inertia		
Operat Interfa	ion ce: Keypad/Software	Communication	Related Section: N/A	
Defa	ult: 1.0	10		
Cont Mo	trol de: ALL			
U	nit: 1 times	0.1 times		
Ran	ge: 0.0 ~ 200.0	0 ~ 2000	:	
Data Si	ze: 16-bit			
Disp Form	olay nat: One-digit	Decimal		
Input Val Examp	ue ble: 1.5 = 1.5 times	15 = 1.5 times		

Settings:

Ratio of load inertia to servo motor inertia (for Rotation Motor): (J_load /J_motor)

J_load: Total equivalent moment of inertia of external mechanical load

J_motor: Moment of inertia of servo motor

Ratio of load weight to servo motor weight (for Linear Motor): (M_load /M_motor) (not available now but will be available soon)

M_load: Total equivalent weight of external mechanical load

M_motor: Weight of servo motor

ZSPD Z	ero Speed Range Sett	Address: 014CH 014DH	
Operatio Interfac	n e: Keypad/Software	Communication	Related Section: Table 8.A
Defau	lt: 10	100	
Contr Mod	ol e: ALL		
Un	it: 1 r/min	0.1 r/min	
Rang	e: 0.0 ~ 200.0	0 ~ 2000	
Data Siz	e: 16-bit		
Displa Forma	One-digit	Decimal	
Input Valu Exampl	e: 1.5 = 1.5 r/min	15 = 1.5 r/min	

Settings:

This parameter is used to set output range of zero speed signal (ZSPD) and determine whrn zero speed signal (ZSPD) becomes activated. ZSPD is activated when the drive senses the motor is equal to or below the Zero Speed Range setting as defined in parameter P1-38.

For example, at default ZSPD will be activated when the drive detects the motor rotating at speed at or below 100r/min. ZSPD will remain activated until the motor speed increases above 100r/min.

P1-39	SSPD	Target Motor Speed		Address: 014EH 014FH
	Operat Interfa	tion Ace: Keypad/Software	Communication	Related Section: Table 8.A
	;	ult: 3000	:	Table 6.A
	Con Mo	trol ode: ALL		**************************************
	U	nit: r/min		7 1 1 1
	Ran	ıge: 0 ~ 5000		· · ·
	Data S	ize: 16-bit		· · ·
	Disp Forn	olay nat: Decimal		

Settings:

When target motor speed reaches its preset value, digital output (TSPD) is enabled. When the forward and reverse speed of servo motor is equal and higher than the setting value, the motor will reach the target motor speed, and then TSPD signal will output.

TSPD is activated once the drive has detected the motor has reached the Target Motor Speed setting as defined in parameter P1-39. TSPD will remain activated until the motor speed drops below the Target Motor Speed.

8-88 Revision September 2012

	VCM	Max. Analog Speed Coi	mmand or Limit 1	Address: 0150H 0151H
	Operat	ion Ice: Keypad/Software	Communication	Related Section:
:	Interfa	ice:: '/'	:	Section 6.3.4
:	Defa	ult: rated speed of conr	nected model	:
	Con Mo	trol de: S, T		
:	U	nit::r/min		:
	Ran	ge: 0 ~ 50000		•
:	Data S	ze: 16-bit	7 : :	
:	Disp Forn			- - - - - - - -

In **Speed mode**, this parameter is used to set the maximum analog speed command based on the maximum input voltage (10V).

In **Torque mode**, this parameter is used to set the maximum analog speed limit based on the maximum input voltage (10V).

For example, in speed mode, if P1-40 is set to 3000 and the input voltage is 10V, it indicates that the speed command is 3000r/min. If P1-40 is set to 3000, but the input voltage is changed to 5V, then the speed command is changed to 1500r/min. Speed Command / Limit = Input Voltage Value x Setting value of P1-40 / 10

P1-41▲	ТСМ	Max. Analog Torque Co	Address: 0152H 0153H	
	Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: Section 6.4.4
	Defa	ult: 100		
	Con Mo	trol ode: ALL		
	U	nit: %		
	Ran	ige: 0 ~ 1000		
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

Settings:

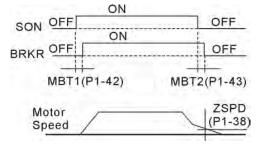
In **Torque mode**, this parameter is used to set the maximum analog torque command based on the maximum input voltage (10V).

In **Position (PT, PR)** and **Speed mode**, this parameter is used to set the maximum analog torque limit based on the maximum input voltage (10V).

For example, in torque mode, if P1-41 is set to 100 and the input voltage is 10V, it indicates that the torque command is 100% rated torque. If P1-41 is set to 100, but the input voltage is changed to 5V, then the torque command is changed to 50% rated torque.

Torque Command / Limit = Input Voltage Value x Setting value of P1-41 / 10

MBT1	On Delay Time of Elect	Address: 0154H 0155H	
Operati Interfa	on ce: Keypad/Software	Communication	Related Section: Section 6.5.5,
Defau			Table 8.B
Control Mode: ALL			
Unit: ms			
Range::0 ~ 1000			:
Data Size: 16-bit			
Disp Form	ay at: Decimal		


Settings:

Used to set the period of time between when the servo drive is On (Servo On) and when electromagnetic brake output signal (BRKR) is activated.

1-43	МВТ2	OFF Delay Time of Elec	ctromagnetic Brake	Address: 0156H 0157H
	Operat	tion ace: Keypad/Software	Communication	Related Section:
	Interfa	ie: Reypud/ Software Estimation		Section 6.5.5,
	Defa	ult: 0		Table 8.B
	Con Mo	trol ode: ALL		
	U	lnit: ms		
	Ran	nge: -1000 ~ +1000		
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

Settings:

Used to set the period of time between when the servo drive is Off (Servo Off) and when electromagnetic brake output signal (BRKR) is inactivated.

Please note:

1. When servo is commanded off and the off delay time set by P1-43 has not elapsed, if the motor speed is lower than the setting value of P1-38, the electromagnetic brake will be engaged regardless of the off delay time set by P1-43.

8-90 Revision September 2012

- 2. When servo is commanded off and the off delay time set by P1-43 has elapsed, if the motor speed is higher than the setting value of P1-38, electromagnetic brake will be engaged regardless of the current motor speed.
- 3. When the servo drive is disabled (Servo Off) due to a fault (except AL022) or by EMGS (Emergency stop)) being activated, if the off delay time set by P1-43 is a negative value, it will not affect the operation of the motor. A negative value of the off delay time is equivalent to one with a zero value.

P1-44▲	GR1	Electronic Gear Ratio (Address: 0158H 0159H	
	Operat	tion ace: Keypad/Software	Communication	Related Section:
	Interfa	iterface: 100 pad, 50 that is		Section 6.2.5
	Defa	ıult: 128		
	Con Mo	trol pde: PT, PR		
	U	Init: pulse		
	Rar	nge: 1 ~ (2 ²⁹ -1)		
	Data S	ize: 32-bit		
	Dist Forn	olay nat: Decimal		

This parameter is used to set the numerator of the electronic gear ratio. The denominator of the electronic gear ratio is set by P1-45. P2-60 \sim P2-62 are used to set the additional numberators.

Please note:

- 1. In PT mode, the setting value of P1-44 can be changed only when the servo drive is enabled (Servo On).
- 2. In PR mode, the setting value of P1-44 can be changed only when the servo drive is disabled (Servo Off).

P1-4 5	GR2 Electronic Gear Ratio (Denominator) (M)		Address: 015AH 015BH	
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Section 6.2.5
	Defa	ult: 10		
	Con Mo	itrol pde: PT, PR		
	U	Init: pulse		
	Rar	nge: 1 ~ (2³¹-1)		:
	Data S	ize: 32-bit		
	Disp Forn	play nat: Decimal		

This parameter is used to set the denominator of the electronic gear ratio. The numerator of the electronic gear ratio is set by P1-44. P2-60 \sim P2-62 are used to set the additional numberators.

As the wrong setting may cause motor to run chaotically (out of control) and it may lead to personnel injury, therefore, ensure to observe the following rule when setting P1-44, P1-45.

The electronic gear ratio setting (Please also see P1-44, P2-60 ~ P2-62):

Pulse input

f1

Position command

f2 = f1
$$\times \frac{N}{M}$$

f1: Pulse input

f2: Position command

N: Numerator, the setting value of P1-44 or P2-60 \sim P2-62

M: Denominator, the setting value of P1-45

The electronic gear ratio setting range must be within: 1/50<N/M<25600.

Please note:

1. In PT and PR mode, the setting value of P1-45 can not be changed when the servo drive is enabled (Servo On).

|--|

GR3	Encoder Output Pulse	Address: 015CH 015DH	
Operat Interfa	ion ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 2500		
Con Mo	trol de: ALL		
U	nit: pulse		
Ran	ge: 20 ~ 320000	:	
Data Si	ize: 32-bit		
Disp Form	play nat: Decimal		

Settings:

This parameter is used to set the pulse numbers of encoder outputs per motor revolution.

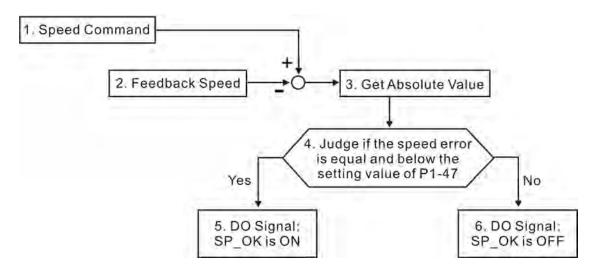
Setting range: 20 ~ 320000

The maximum frequency output of the hardware is 19.8 MHz.

Please note:

When the following conditions occur, the output frequency for pulse output may exceed the specification and cause that the servo drive fault AL018 (Encoder Output Error) is activated.

Condition 1: Encoder error.


Condition 2: Motor speed is above the value set by parameter P1-76.

Condition 3:
$$\frac{\text{Motor Speed}}{60} \times \text{P1} - 46 \times 4 > 19.8 \times 10^6$$

SPOK	Speed Reached Output	Address: 015EH 015FH	
Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 10	T: : :	
Con Mc	trol ode: S, Sz		
U	Init: r/min	- - - -	
Rar	nge: 0 ~ 300	•	
Data S	ize: 32-bit		
Disp Forn	olay nat::Decimal		

Settings:

This parameter is used to set the speed reached output range. The DO signal, SP_OK will be activated when the speed error is equal and below the setting value of P1-47.

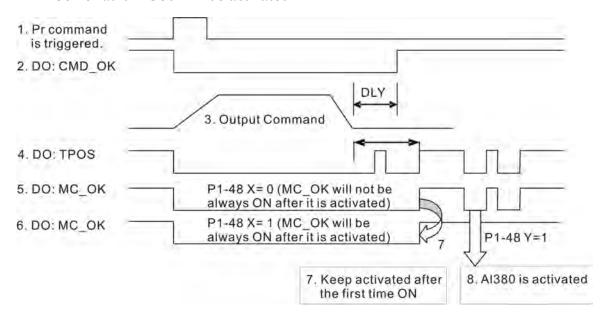
- 1. Speed Command: It is the speed command input by the users (no Accel/Decel), not the frond-end command of speed control loop. The source of this command includes analog voltage and registers.
- 2. Feedback Speed: It is the actual motor speed which is filtered.
- 3. Get Absolute Value
- 4. Judge if the speed error is equal and below the setting value of P1-47: When P1-47 is set to 0, this digital output will be always off.
- 5. ON or OFF: When the speed error is equal and below the setting value of P1-47, SP_OK will be ON; otherwise, SP_OK will be OFF.

SPOK	Speed Reached Output Range		Address: 0160H 0161H
Operat Interfa	ion ace: Keypad/Software	Related Section: N/A	
Defa	ult: 0x0000		
Con	trol pde:		
U	nit: N/A		
Ran	ige: 0x0000 ~ 0x0011		
Data S	ize: 16-bit		
Disp Forn	olay nat::Hexadecimal		

Settings:

Settings: (for firmware version V1.003 sub08 and later models only)

This parameter is used to determine the operation after digital output signal, MC_OK (DO code is 0x17) is activated.


Display	0	0	Y	Х
Range	-	-	0 ~ 1	0 ~ 1

X=0: MC_OK will not be always ON after it is activated.

X=1: MC_OK will be always ON after it is activated.

Y=0: Servo fault AL380 will not be activated.

Y=1: Servo fault AL380 will be activated.

- 1. PR command is triggerred: It indicates that the new PR command becomes effective. When the signal 3 starts to output the command, the signals 2, 4 and 5 will be clear simetaneously.
- 2. CMD_OK: CMD_OK is used to detect if the internal position command, signal 3 has been completed. DLY delay time can also be set.
- 3. Output Command: Output the internal position command according to desired acceleration and deceleration.

8-94 Revision September 2012

- 4. TPOS: It is activated when the position error is equal and below the setting value of P1-54.
- 5. MC_OK (P1-48 X=0): It is activated when the position command has output and the positioning is completed also, i.e. CMD_OK and TPOS are both ON. However, once TPOS becomes OFF, it will become OFF as well.
- 6. MC_OK (P1-48 X=1): It is activated when the position command has output and the positioning is completed also, i.e. CMD_OK and TPOS are both ON. However, when TPOS becomes OFF, it will not become OFF. It will be always ON
- 7. The signal 5 and signal 6 cannot be selected simetaneously. This function is determined by X setting of P1-48.
- 8. Position deviation alarm (AL380): After signal 7 occurs, if signal 4 or 5 becomes off, it indicates a position deviation alarm is detected and AL380 can be activated to provide an alarm signal. This function is determined by Y setting of P1-48.

P1-49	Reserved (Do Not Use)	Address: 0162H 0163H
P1-50	Reserved (Do Not Use)	Address: 0164H 0165H
P1-51	Reserved (Do Not Use)	Address: 0166H 0167H

RES1	Regenerative Resistor	Address: 0168H 0169H	
Operat	ion Ace: Keypad/Software	Communication	Related Section:
Interfa	Interface: 10, page 30, sorting 20, married		Section 2.7
Defa	ult: See the table below	1	:
Con	trol de: ALL		
Unit: Ohm			
Ran	ge: 10 ~ 750		
Data Si	ize: 16-bit		
Disp Form	olay nat: Decimal		

P1-52

This parameter is used to set the resistance of the applicable regenerative resistor.

Model	Default
For 1.5kW and below models	40Ω
For 2kW to 4.5kW models	20Ω
For 5.5kW	15Ω
For 7.5kW	15Ω

	RES2	Regenerative Resistor	Capacity	Address: 016AH 016BH
	' Kevpad/Software Communication		Related Section: Section 2.7	
			:	
:				
:				
:				

Settings:

This parameter is used to set the capacity of the applicable regenerative resistor.

Model	Default
For 1.5kW and below models	60W
For 2kW to 4.5kW models	100W
For 5.5kW	OW
For 7.5kW	OW

PΊ	-54
----	-----

PER	Positioning Completed	Width	Address: 016CH 016DH
Operat Interfa	ion ce: Keypad/Software	Communication	Related Section: Table 8.A
Defa	ult: 12800		
Cont Mo	rol de: PT, PR		
Uı	nit: pulse		
Ran	ge: 0 ~ 1280000		<u>:</u>
Data Si	ze: 32-bit		
Disp Form	lay lat: Decimal		

Settings:

In PT mode, when the error pulse numbers is less than the setting value of parameter P1-54, TPOS (At positioning completed signal) will be activated.

In PR mode, when the difference in pulse number between the target position and the actual position is less than the setting value of parameter P1-54, TPOS (At positioning completed signal) will be activated.

8-96 Revision September 2012

MSPD	Maximum Speed Limit		Address: 016EH 016FH
Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
Defa	ult: Rated speed of con	nected model	
Con Mo	trol de: ALL		
U	nit: r/min		
Ran	ge: 0 ~ Max. speed		
Data S	ize: 16-bit		
Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to set maximum motor speed. The default setting is rated speed.

6	OVW	Output Overload Warning Time		Address: 0170H 0171H
	Operation Keypad/Software Communication		Related Section: N/A	
	Defa	ult:[120		:
	Con Mo	trol de: ALL		
	U	nit: %		7 : : :
	Range: 0 ~ 120			
	Data Si	ze: 16-bit		
	Disp Form	llay nat: Decimal		

Settings:

This parameter is used to set output overload time. If the setting value of parameter P1-56 is set to $0 \sim 100$, the function of parameter P1-56 is enabled. When the motor has reached the output overload time set by parameter P1-56, the motor will send a warning to the drive. After the drive has detected the warning, the DO signal OLW will be activated. If the setting value of parameter P1-56 exceeds 100, the function of parameter P1-56 is disabled.

 t_{OL} = Permissible Time for Overload x the setting value of parameter P1-56 When overload accumulated time (continuously overload time) exceeds the value of t_{OL} , the overload warning signal will output, i.e. DO signal, OLW will be ON. However, if the accumulated overload time (continuous overload time) exceeds the permissible time for overload, the overload alarm (AL006) will occur.

For example:

If the setting value of parameter P1-56 (Output Overload Warning Time) is 60%, when the permissible time for overload exceeds 8 seconds at 200% rated output, the overload fault (AL006) will be detected and shown on the LED display.

At this time, toleright = 8 x 60% = 4.8 seconds

Result:

When the drive output is at 200% rated output and the drive is continuously overloaded for 4.8 seconds, the overload warning signal will be ON, i.e. DO signal OLW will be activated. If the drive is continuously overloaded for 8 seconds, the overload alarm will be detected and shown on the LED display (AL006). Then, Servo Fault signal will be ON (DO signal ALRM will be activated).

P1-57	CRSHA Motor Protection Percentage	Address: 0172H 0173H
	Operation Interface: Keypad/Software Communication	Related Section: N/A
	Default: 0	:
	Control Mode: ALL	
	Unit: %	:
	Range: 0 ~ 300	
	Data Size: 16-bit	
	Display Format: Decimal	

Settings:

This parameter is used to protect the motor in case the motor touchs the mechanical equipment. If P1-57 is set to 0, the function of P1-57 is disabled. The function of P1-57 is enabled when the setting value of P1-57 is set to 1 or more. The fault AL030 will be activated when the setting value of P1-57 is reached after a period of time set by P1-58.

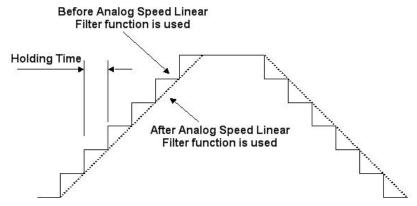
P1-58	CRSHT Motor Protection Time		Address: 0174H 0175H	
	Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
	Defa	ult:[1		
	Control Mode: ALL			
	U	nit: ms		** : :
	Ran	ge::0 ~ 1000		
	Data Si	ze::16-bit		· ·
	Disp Form	llay nat: Decimal		

Settings:

This parameter is used to protect the motor in case the motor touchs the mechanical equipment. The fault AL030 will be activated when the setting value of P1-57 is reached after a period of time set by P1-58.

Please note that this function is applicable for non-contact applications, such as electric discharge machines only (P1-37 must be set correctly).

8-98 Revision September 2012


MFLT Analog Speed Linear	Filter (Moving Filter)	Address: 0176H 0177H
Operation Interface: Keypad/Software	Communication	Related Section: N/A
Default: 0.0	0	
Control S Mode: S		
Unit: 1 ms	0.1 ms	:
Range: 0.0 ~ 4.0	0 ~ 40	
Data Size: 16-bit		
Display Format: One-digit	Decimal	
Input Value Example: 1.5 = 1.5 times	15 = 1.5 times	

Settings: (0: Disabled)

This parameter is used to eliminate the noise generated during the operation when the host (external) controller sends the step analog voltage speed command.

The parameter P1-06 is Low-pass Filter and parameter P1-59 is Moving Filter. The differences are that Low-pass Filter is usually used to smooth the end of the command but Moving Filter can be used to smooth the start and the end of step analog voltage speed command. Using Moving Filter can facilitate the smooth operation of the motor very effectively.

Therefore, it is recommended to use P1-06 Low-pass Filter when the speed command from the external controller is applied for position control loop. If the command is for speed control only, using Moving Filter P1-59 can achieve better (smooth) performance.

P1-60	Reserved (Do Not Use)	Address: 0178H 0179H
P1-61	Reserved (Do Not Use)	Address: 017AH
11-01	Reserved (Do Not Use)	017BH

-62	FRCL	Friction Compensation	Percentage	Address: 017CH 017DH
	Opera Interfa	Operation Interface: Keypad/Software Communication		Related Section: N/A
	Default: 0 Control Mode: PT, PR, S			
	U	Init::%		· ·
	Rar	nge:∶0 ~ 100		
	Data S	ize: 16-bit		
	Dis _l Forn	olay nat:: Decimal		

This parameter is used to set the torque percentage for friction compensation. If P1-62 is set to 0, the function of P1-62 is disabled. The function of P1-62 is enabled when the setting value of P1-62 is set to 1 or more.

P1-63	FRCT Friction Compensation Smooth Constant		Address: 017EH 017FH	
	Operation Interface: Keypad/Software Communication		Related Section: N/A	
	Default: 0			
	Control PT, PR, S Mode:			
	Unit: ms			
	Range: 0 ~ 1	000		
	Data Size: 16-bi	t		:
	Display Format: Decin	nal		

Settings:

This parameter is used to set the smooth constant of friction compensation.

P1-64	Reserved (Do Not Use)	Address: 0180H 0181H
P1-65	Reserved (Do Not Use)	Address: 0182H
F 1-03		0183H

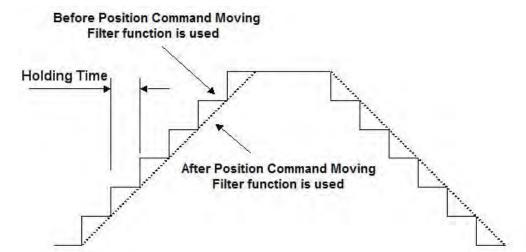
8-100 Revision September 2012

PCM Max. Rotation Number Command	Address: 0184H 0185H	
Operation Interface: Keypad/Software Communicati		Related Section: N/A
Default: 1.0	10	
Control Mode:		
Unit: 1 rotation	0.1 rotation	9 1 1 1
Range: 0.0 ~ 200.0	0 ~ 2000	
Data Size: 16-bit		
Display Format: One-digit	Decimal	
Input Value Example: 1.5 = 1.5 rotation	15 = 1.5 rotation	

Settings: (available in firmware version V1.031 sub08 and later models only)

This parameter is used to set the maximum rotation number of analog position command based on the maximum input voltage (10V).

For example, if P1-66 is set to 30 and the input voltage is 10V, it indicates that the position command is +3 rotations. If P1-66 is set to 30, but the input voltage is changed to 5V, then the position command is +1.5 rotations. If the input voltage is changed to -10V, then the position command is -3 rotations.


Position Command = Input Voltage Value x Setting value of P1-66 / 10

P1-67	Pacaryod (Do Not Usa)	Address: 0186H
P1-07	Reserved (Do Not Use)	0187H

P1-68	PFLT2 Position Command Moving Filter		Address: 0188H 0189H
	Operation Keypad/Software Communication Default: 4		Related Section: N/A
	Control Mode: PT, PR		
	Unit: ms		:
	Range: 0 ~ 100		
	Data Size: 16-bit		
	Display Format:		

Settings:

Moving Filter can be used to smooth the start and the end of step position command. Using Moving Filter can facilitate the smooth operation of the motor very effectively, but it will cause command delay.

P1-69	Reserved (Do Not Use)	Address: 018AH 018BH
P1-70	Reserved (Do Not Use)	Address: 018CH 018DH
P1-71	Reserved (Do Not Use)	Address: 018EH 018FH

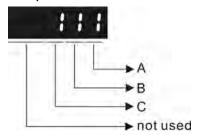
FRES	Full-closed Control Res	Address: 0190H 0191H	
Operat Interfa	ion ace: Keypad/Software	Related Section: N/A	
Defa	ult: 5000		
Con Mo	trol ode: PT, PR		
U	nit∷pulse (PT mode), re	:	
Ran	ige: 200 ~ 1280000	7 : :	
Data S	ize: 32-bit	:	
Disp Forn	olay nat: Decimal		

P1-72

This parameter is used to set the corresponding AB (Quadrature) phase pulses (4x) for full-closed control per motor revolution.

8-102 Revision September 2012

FERR	Full-closed Loop Excessive Position Error Range		Address: 0192H 0193H
Operation Communication Interface: Keypad/Software Communication			Related Section: P2-34
Defa	ault: 30000		
Cor Mo	Control PT, PR Mode:		
Unit: pulse (based on full-closed loop)			
Raı	Range: 1 ~ (2 ³¹ -1)		
Data S	Data Size: 32-bit		
Dis Forr	play nat: Decimal		


Settings:

When the position of A/B counter feedbacked by full-closed loop is too far from the position feedbacked by the encoder of the servo motor, it indicates that the encoder connector may loose or there is some problem occurred on connected mechanical system.

P1-74▲	FCON	Full-closed Loop Contr	ol Function Selection	Address: 0194H 0195H
	Opera Interf	tion ace: Keypad/Software	Communication	Related Section: P1-46
	Default::0000h		:	
	Con Mo	ntrol pt, PR pde:		
	<u>.</u>	Jnit: N/A		:
	Rar	nge: 0000h ~ 0111h		:
	Data S	ize: 16-bit		
	Dis Forr	play mat: Hexadecimal		

Settings:

This parameter is used to determine the function of full-closed loop control.

- A: Full-closed loop function selection
 - 0: Disable full-closed loop function.
 - 1: Enable full-closed loop function.
- B: Source of OA/OB/OZ outputs
 - 0: The source of OA/OB/OZ outputs is the encoder of the motor.
 - 1: The source of OA/OB/OZ outputs is the encoder of the linear scale full-closed loop.

2: The source of OA/OB/OZ outputs is the pulse command of CN1 (only provided by the firmware DSP V1.016 + CPLD 0.07 and later models.).

C: Polarity setting of linear scale

C=0		C=1	
Forward Reverse		Forward	Reverse
A-phase signal		A-phase signal	

P1-75

	Full-closed Loop Low-p Constant	ll-closed Loop Low-pass Filter Time nstant	
Operati Interfac	Operation Interface: Keypad/Software Communication		Related Section: N/A
Defau	Default::100		
Cont Mod	rol le: PT, PR	PT, PR	
Un	Unit: ms		·
Rang	Range: 0 ~ 1000		
Data Size: 16-bit		· · · · · · · · · · · · · · · · · · ·	
Displ Form	ay at: Decimal		

Settings:

When the stiffness of the mechanical system between full-closed loop and half-closed loop is insufficient, the users can use this parameter to enhance the stability of the mechanical system.

When P1-75 is set to 0, the low-pass filter function is disabled.

The stiffness of the mechanical system \uparrow , the setting value of P1-75 \downarrow .

The stiffness of the mechanical system \downarrow , the setting value of P1-75 \uparrow .

P1-76	AMSPD Max. Rotation Speed of Encoder Output			Address: 0198H 0199H
	Operation Interface: Keypad/Software Communication		Related Section: P1-46	
	Defa	ult: 5500		
	Con Mo	trol ode: ALL		
	U	lnit: r/min		
	Ran	nge: 0 ~ 6000 (0: Disab	led)	
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

8-104 Revision September 2012

This parameter is used to optimize the encoder outputs (OA, OB). When the users set the actual reached maximum motor speed, the servo drive will equalize the encoder outputs automatically. When P1-76 is set to 0, it indicates that equalizing function is not available.

P1-77	Reserved (Do Not Use)	Address: 019AH 019BH
P1-78	Reserved (Do Not Use)	Address: 019CH 019DH
P1-79	Reserved (Do Not Use)	Address: 019EH 019FH
P1-80	Reserved (Do Not Use)	Address: 01A0H 01A1H
P1-81	VCM2 Max. Analog Speed Command or Limit 1	Address: 01A2H 01A3H
	Operation Keypad/Software Communication	Related Section: P1-40
	Default: rated speed	
	Control Mode: S, T	
	Unit: r/min, 10V	
	Range: 0 ~ 10000	
	Data Size: 16-bit	
	Display Format:	

Settings:

Refer to P1-40 for explanation.

-82	VCMLPF Switching Filter Time P1-81	between P1-40 and	Address: 01A4H 01A5H
	Operation Interface: Keypad/Software	Communication	Related Section: P1-40, P1-81
	Default: 0		
	Control S Mode: S		
	Unit: ms		
	Range: 0 ~ 1000		
	Data Size: 16-bit		
	Display Format:		
	Settings: (0: Disabled)		-

VCMLPF	Abnormal Analog Inpu	Address: 01A6H 01A7H	
Operat Interfa	ion ace: Keypad/Software	Related Section: P1-40	
Defa	ult: 0		
Con Mo	trol de: S		
U	nit: mV		
Ran	ge: 0 ~ 12000		
Data S	ize: 16-bit		
Disp Forn	olay nat: Decimal		

Settings: (0: Disabled)

When analog input voltage is higher than the value of P1-83 over 50ms, the fault, AL042 (Analog input voltage error) will occur. The compare level for this parameter is the original analog input voltage which has not been added by an offset value via parameter P4-22, Analog Speed Input Offset.

8-106 Revision September 2012

Group 2: P2-xx Extension Parameters

2-00	KPP	Proportional Position	Loop Gain	Address: 0200H 0201H
	Operat	ion Ice: Keypad/Software	Communication	Related Section:
:	Interfa	ice: (Cypad) Software	e: Communication	Section 6.2.8
	Defa	ult: 35		
	Cont Mo	trol de: PT, PR		
	U	nit: rad/s		:
	Ran	ge: 0 ~ 2047		
	Data Si	ze: 16-bit		
	Disp Form	olay nat: Decimal		

Settings:

This parameter is used to set the position loop gain. It can increase stiffness, expedite position loop response and reduce position error. However, if the setting value is over high, it may generate vibration or noise.

P2-01	PPR	Position Loop Gain Sv	Address: 0202H 0203H	
	Opera Interfa	tion ace: Keypad/Software	Communication	Related Section: Section 6.2.8
	Defa	ult: 100		
	Control Mode: PT, PR Unit: %			
	Rar	nge: 10 ~ 500		
	Data Size: 16-bit			
	Dis _l Forr	play nat: Decimal		

Settings:

This parameter is used to set the position gain switching rate when the gain switching condition is satisfied. Please refer to P2-27 for gain switching control selection settings and refer to P2-29 for gain switching condition settings.

P2-02

PFG	Position Feed Forwar	Address: 0204H 0205H	
Opera Interf	tion ace: Keypad/Software	Communication	Related Section: Section 6.2.8
Defa	ault: 50		
Cor Mo	otrol pr, PR		
	Jnit: %		:
Raı	nge: 0 ~ 100		:
Data S	ize: 16-bit		
Dis Forr	play nat: Decimal		

Settings:

This parameter is used to set the feed forward gain when executing position control command. When using position smooth command, increase gain can improve position track deviation. When not using position smooth command, decrease gain can improve the resonance condition of mechanical system.

P2-03	PFF	Smooth Constant of P Gain	Address: 0206H 0207H	
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: N/A
	Default: 5			
	Control Mode: PT, PR		: : : :	
	Unit: ms			
	Range: 2 ~ 100			
	Data Size: 16-bit		7 2 3 4 2	
	Disp Forn	olay nat: Decimal		

Settings:

When using position smooth command, increase gain can improve position track deviation. When not using position smooth command, decrease gain can improve the resonance condition of mechanical system.

8-108 Revision September 2012

P2-04

	KVP F	Proportional Speed Lo	Address: 0208H 0209H	
	Operation of the second of the	on e: Keypad/Software	Communication	Related Section: Section 6.3.6
:	Defau	lt: 500		
	Contr Mod	ol le: ALL		
:	Un	it: rad/s		
	Rang	je: 0 ~ 8191		•
:	Data Siz	e: 16-bit		
	Displ Forma	ay at: Decimal		

Settings:

This parameter is used to set the speed loop gain. When the value of proportional speed loop gain is increased, it can expedite speed loop response. However, if the setting value is over high, it may generate vibration or noise.

P2-05	SPR	SPR Speed Loop Gain Switching Rate		Address: 020AH 020BH
	Operation Interface: Keypad/Software Communication		Related Section: N/A	
	Defa	ult: 100		-1 : :
	Control Mode: ALL			
	Unit::%			
	Ran	nge: 10 ~ 500		1 1 1
	Data Size: 16-bit			
	Disp Forn	olay nat::Decimal		

Settings:

This parameter is used to set the speed gain switching rate when the gain switching condition is satisfied. Please refer to P2-27 for gain switching control selection settings and refer to P2-29 for gain switching condition settings.

P2-06	KVI	Speed Integral Compe	Address: 020CH 020DH	
	Opera	tion ace: Keypad/Software	Communication	Related Section:
	Interf	ace:		Section 6.3.6
	Defa	ault: 100		
	Control Mode: ALL Unit::rad/s			
	Rar	nge: 0 ~ 1023		
	Data Size::16-bit			
	Display Format:			

This parameter is used to set the integral time of speed loop. When the value of speed integral compensation is increased, it can improve the speed response ability and decrease the speed control deviation. However, if the setting value is over high, it may generate vibration or noise.

P2-	0	7
-----	---	---

KVF	Speed Feed Forward (Gain	Address: 020EH 020FH
Opera Interf	tion ace: Keypad/Software	Related Section: Section 6.3.6	
Defa	ıult: 0		
Con	trol ode: ALL		
L	Jnit: %		<u>:</u>
Rar	nge: 0 ~ 100		
Data S	ize: 16-bit		
Dis _l Forr	play nat: Decimal		

Settings:

This parameter is used to set the feed forward gain when executing speed control command.

When using speed smooth command, increase gain can improve speed track deviation.

When not using speed smooth command, decrease gain can improve the resonance condition of mechanical system.

P2-08

PCTL	Special Factory Settin	Address: 0210H 0211H	
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		** : :
Con Mo	trol de: ALL		
U	nit::N/A		
Ran	ge: 0 ~ 65535		
Data Si	ze: 16-bit		•
Disp Form	olay nat: Decimal		

Settings:

This parameter can be used to reset all parameters to their original factory settings and enable some parameters functions.

Reset parameters settings:

10: Users can reset all parameter values to factory defaults. All parameter values will be reset after re-power the servo drive. (Before perform this settings, ensure that the status of the servo drive is "Servo Off".)

8-110 Revision September 2012

Enable parameters functions:

20: If P2-08 is set to 20, then the parameter P4-10 is enabled.

22: If P2-08 is set to 22, then the parameters P4-11~P4-19 are enabled.

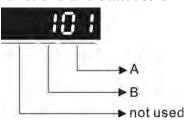
406: If P2-08 is set to 406, then the Digital Output (DO) signal can be forced to be activated and the drive will enter into Force Output Control operation mode.

400: If P2-08 is set to 400, it can switch the Force Output Control operation mode to normal Digital Output (DO) Control operation mode.

Please note:

ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P2-09	DRT	Bounce Filter		Address: 0212H 0213H
	Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
	Defa	ult: 2		
	Con Mo	trol ode: ALL		
	U	nit: 2ms		•
	Ran	ige: 0 ~ 20		% : :
	Data S	ize: 16-bit		· · ·
	•	olay nat: Decimal		
	Input Va Exam	lue 4 = 8 ms		


Settings:

For example, if P2-09 is set to 4, the bounce filter time is $4 \times 2ms = 8ms$.

When there are too much vibration or noises around environment, increasing this setting value (bounce filter time) can improve reliability. However, if the time is too long, it may affect the response time.

P2-10	DII	Digital Input Termina	l 1 (DI1)	Address: 0214H 0215H
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Table 8.A
	Defa	ult: 101		
	Control Mode: ALL			
	Unit: N/A			
	Rar	nge: 0 ~ 015Fh		
	Data S	ize: 16-bit		7
	Dist Forn	olay nat: Hexadecimal		

The parameters from P2-10 to P2-17 and P2-36 are used to determine the functions and statuses of DI1 \sim DI8.

A: DI (Digital Input) Function Settings:

For the setting value of P2-10 ~ P2-17 and P2-36, please refer to Table 8.A.

B: DI (Digital Input) Enabled Status Settings:

0: Normally closed (contact b)

1: Normally open (contact a)

For example, when P2-10 is set to 101, it indicates that the function of DI1 is SON (Servo On, setting value is 0x01) and it requires a normally open contact to be connected to it.

Please re-start the servo drive after parameters have been changed.

Please note:

The parameter P3-06 is used to set how the Digital Inputs (DI) accept commands and signals through the external terminals or via the communication which is determined by parameter P4-07.

P2-11	DI2	Digital Input Termina	l 2 (DI2)	Address: 0216H 0217H
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Table 8.A
	Defa	ult: 104		
	Con Mc	trol ode: ALL		
	U	Init: N/A		
	Ran	nge: 0 ~ 015Fh		* : : : : : : : : : : : : : : : : : : :
	Data S	ize: 16-bit		:
	Disp Forn	olay nat::Hexadecimal		

Settings: Refer to P2-10 for explanation.

8-112 Revision September 2012

P2-12	DI3	Digital Input Termina	Address: 0218H 0219H	
	Operation Keypad/Software Communication		Communication	Related Section:
				Table 8.A
		nult: 116		: : -i
	Control Mode: ALL			
	L	Jnit: N/A		:
	Rar	nge∷0 ~ 015Fh		:
	Data S	ize: 16-bit		
	Dis _l Forr	play mat::Hexadecimal		

Settings: Refer to P2-10 for explanation.

P2-13	DI4 Digital Input Terminal 4 (DI4)	Address: 021AH 021BH
	Operation Interface: Keypad/Software Communication	n Related Section: Table 8.A
	Default: 117	
	Control Mode: ALL	
	Unit: N/A	
	Range: 0 ~ 015Fh	
	Data Size: 16-bit	
	Display Format: Hexadecimal	

Settings: Refer to P2-10 for explanation.

P2-14	DI5 Digital Input Terminal 5 (DI5)			Address: 021CH 021DH
	Operation Interface: Keypad/Software Communication		Related Section: Table 8.A	
	Defa	ult: 102		
	Control Mode: ALL			
	Unit: N/A			
	Range::0 ~ 015Fh			
	Data S	ize: 16-bit		:
	Disp Forn	olay nat: Hexadecimal		

Settings: Refer to P2-10 for explanation.

P2-15	DI6	Digital Input Termina	Address: 021EH 021FH	
	Operation Interface: Keypad/Software Communication		Related Section: Table 8.A	
	Default: 22			
	Control Mode: ALL			
	U	nit: N/A		
	Ran	ge: 0 ~ 015Fh		
	Data Si	ize: 16-bit		· · · · · · · · · · · · · · · · · · ·
	Disp Form	olay nat: Hexadecimal		

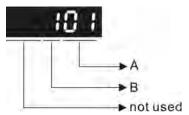
Settings: Refer to P2-10 for explanation.

P2-16	DI7 Digital Input Terminal 7 (DI7)	Address: 0220H 0221H
	Operation Interface: Keypad/Software Communication	Related Section: Table 8.A
	Default: 23	
	Control Mode: ALL	
	Unit: N/A	
	Range: 0 ~ 015Fh	
	Data Size: 16-bit	
	Display Format: Hexadecimal	

Settings: Refer to P2-10 for explanation.

P2-17	DI8	Digital Input Termina	Address: 0222H 0223H	
	Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: Table 8.A
	Default: 21		Table 6.A	
	Control Mode: ALL			
	Unit: N/A			
	Ran	ige: 0 ~ 015Fh		<u>:</u>
		ize: 16-bit		<u>:</u>
	Disp Form	olay nat: Hexadecimal		

Settings: Refer to P2-10 for explanation.


8-114 Revision September 2012

P2-18

DO1	Digital Output Termin	Address: 0224H 0225H	
Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: Table 8.B
Defa	ult: 101		7 1 1
Con Mo	trol ode: ALL		
U	nit: N/A		: :
Ran	ige: 0 ~ 013Fh		•
Data S	ize: 16-bit		7
Disp Forn	olay nat: Hexadecimal		₹ : : : :

Settings:

The parameters from P2-18 to P2-22 and P2-37 are used to determine the functions and statuses of DO1 \sim DO5.

A: DO Function Settings:

For the setting value of P2-18 ~ P2-22 and P2-37, please refer to Table 8.B.

B: DO Enabled Status Settings:

0: Normally closed (contact b)

1: Normally open (contact a)

For example, when P2-18 is set to 101, it indicates that the function of DO1 is SRDY (Servo ready, setting value is 0x01) and it requires a normally open contact to be connected to it.

Please re-start the servo drive after parameters have been changed.

P2-19	DO2 Digital Output Terminal 2 (DO2)		Address: 0226H 0227H	
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Table 8.B
	Defa	ult: 103		
	Control Mode: ALL			
	Unit::N/A			
	Rar	nge: 0 ~ 013Fh		
	Data S	ize: 16-bit		-
	Disp Forn	olay nat: Hexadecimal		

Settings: Refer to P2-18 for explanation.

P2-20	DO3	Digital Output Terminal 3 (DO3)		Address: 0228H 0229H
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Table 8.B
:	Defa	ıult: 109		
	Control Mode: Unit: N/A			
	Rar	nge: 0 ~ 013Fh		:
:	Data Size: 16-bit			
	Disp Forn	olay nat::Hexadecimal		

Settings: Refer to P2-18 for explanation.

P2-21	DO4	Digital Output Terminal 4 (DO4)		Address: 022AH 022BH
	Operat Interfa	ion Ace: Keypad/Software	Communication	Related Section: Table 8.B
	Defa	ult: 105		
	Con Mo	trol ode:		
	U	nit: N/A		
	Ran	ge: 0 ~ 013Fh		
	Data S	ize: 16-bit		
	Disp Form	olay nat: Hexadecimal		

Settings: Refer to P2-18 for explanation.

P2-22	DO5	Digital Output Termin	nal 5 (DO5)	Address: 022CH 022DH
	Opera	tion ace: Keypad/Software	Communication	Related Section:
	Interf	ace: "C' pau, sortware	:	Table 8.B
	Defa	ault: 7		
	Con Mo	itrol ode: ^{ALL}		
	L	Jnit: N/A		- - -
	Rar	nge: 0 ~ 013Fh		 : :
	Data S	ize: 16-bit		T
	Dis _l Forr	play mat: Hexadecimal		

Settings: Refer to P2-18 for explanation.

8-116 Revision September 2012

P2-23

NCF1	Notch Filter 1 (Resonance Suppression)		Address: 022EH 022FH
Operat Interfa	.' . Kevpad/Software Communication		Related Section: Section 6.3.7
Defa	ult: 1000		
Con Mo	trol de: ALL		
U	nit::Hz	:	
Ran	ge: 50 ~ 1000		
Data S	ize: 16-bit		
Disp Forn	olay nat::Decimal		

Settings:

This parameter is used to set first resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system and reduce the vibration of mechanical system.

If P2-24 is set to 0, this parameter is disabled.

The parameters P2-23 and P2-24 are the first group of notch filter parameters and the parameters P2-43 and P2-44 are the second group of notch filter parameters.

P2-24	DPH1	Notch Filter Attenuation Rate 1 (Resonance Suppression)		Address: 0230H 0231H
	Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: Section 6.3.7
	Defa	ult: 0		
	Control Mode: ALL			
	Unit: dB			
	Ran	ge::0 ~ 32 (0: Disabled))	
	Data Si	ize: 16-bit		
	Disp Form	olay nat::Decimal		

Settings:

This parameter is used to set magnitude of the resonance suppression that is set by parameter P2-23. If P2-24 is set to 0, the parameters P2-23 and P2-24 are both disabled.

The parameters P2-23 and P2-24 are the first group of notch filter parameters and the parameters P2-43 and P2-44 are the second group of notch filter parameters.

	_	_
כם	_	
Г	-2	0

II NIP I	ow-pass Filter Time Co Resonance Suppression		Address: 0232H 0233H
Operation Interfac	on e: Keypad/Software	Communication	Related Section: Section 6.3.7
	lt: 0.2 (1kW and below models) or 0.5 (other models)	models) or 5 (other	
Contr Mod	ol e: ALL		
Un	it: 1 ms	0.1 ms	•
Rang	e: 0.0 ~ 100.0	0 ~ 1000	7 1 1
Data Siz	e::16-bit		· ·
Displa Forma	^{ay} nt: One-digit	Decimal	
Input Valu Exampl	ue e: 1.5 = 1.5 ms	15 = 1.5 ms	

This parameter is used to set low-pass filter time constant of resonance suppression.

If P2-25 is set to 0, this parameter is disabled.

J	26	
\mathbf{P}	- / n	

DST	ST External Anti-Interference Gain		Address: 0234H 0235H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa			
Cont Mo	trol de:		
U	Unit: 1		
Ran	ge: 0 ~ 1023 (0: Disabl		
Data Si	ze::16-bit		
Disp Form	llay nat: Decimal		

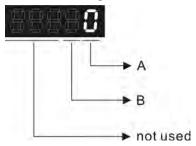
Settings:

If P2-26 is set to 0, this parameter is disabled.

This parameter is used to increase the damping factor of speed loop. It is recommended to set the setting value of P2-26 to be equal to the setting value of P2-06.

Please note:

- 1. In speed mode, increasing the parameter value of P2-26 can reduce speed overshoot.
- 2. In position mode, decreasing the parameter value of P2-26 can reduce position overshoot.


8-118 Revision September 2012

P2-27

GCC	Gain Switching Control Selection		Address: 0236H 0237H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		1 1 1
Con Mo	trol de: ALL		
U	nit: N/A		
Ran	ge: 0 ~ 4		•
Data S	ze: 16-bit		7 : : :
Disp Form	olay nat: Hexadecimal		

Settings:

Gain Switching Condition Settings:

A: Gain Switching Condition Settings:

- 0: Disabled
- 1: Gain switching DI (Digital Input) signal (GAINUP) is On. (see Table 8.A)
- 2: In position mode, position deviation is higher than the setting value of P2-29.
- 3: Position command frequency is higher than the setting value of P2-29.
- 4: Servo motor speed is higher than the setting value of P2-29.
- 5: Gain switching DI (Digital Input) signal (GAINUP) is Off. (see Table 8.A)
- 6: In position mode, position deviation is lower than the setting value of P2-29.
- 7: Position command frequency is lower than the setting value of P2-29.
- 8: Servo motor speed is lower than the setting value of P2-29.
- B: Gain Switching Control Settings:
- 0: Gain multiple switching
- 1: P → PI switching

Setting	P mode	S mode	Status
	P2-00 x 100% P2-04 x 100%	P2-04 x 100%	Before switching
0	P2-00 x P2-01 P2-04 x P2-05	P2-04 x P2-05	After switching
_	P2-06 x 0% P2-26 x 0%		Before switching
		x 100% x 100%	After switching

2-28	GUT	Gain Switching Time	Constant	Address: 0238H 0239H
	Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
	Default: 10		1 1 1 1	
	Con Mo	trol ode: ALL		
	U	nit: 10ms		
	Ran	ige: 0 ~ 1000 (0: Disabl	ed)	- - - -
		ize: 16-bit		1 : : :
	Disp Forn	olay nat: Decimal		
	Input Va Examı	alue ple: 15 = 150 ms		

This parameter is used to set the time constant when switching the smooth gain.

P2-29	GPE	Gain Switching Condi	Address: 023AH 023BH	
	Operation Interface: Keypad/Software		Communication	Related Section: N/A
	Default::1280000			
	Control Mode: ALL			
	U	nit: pulse, Kpps, r/min		
	Ran	ige: 0 ~ 3840000		
	Data Size: 32-bit			
	Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to set the value of gain switching condition (pulse error, Kpps, r/min) selected in P2-27. The setting value will be different depending on the different gain switching condition.

P2-30	INH	INH Auxiliary Function		Address: 023CH 023DH	
	Operation Interface: Keypad/Software		Communication	Related Section: N/A	
	Default: 0		1 : :		
	Control Mode: ALL				
	Unit::N/A			· ·	
	Ran	ige::-8 ~ +8			
	Data Size: 16-bit				
	Disp Forn	olay nat: Decimal			

8-120 Revision September 2012

- 0: Disabled all functions described below.
- 1: Force the servo drive to be Servo On (upon software)
- 2~4: Reserved
- 5: After setting P2-30 to 5, the setting values of all parameters will lost (not remain in the EEPROM) at power-down. When the parameters data are no more needed, using this mode can allows users not to save parameters data into the EEPROM without damaging the EEPROM. P2-30 should be set to 5 when using communication control function.
- 6: After setting P2-30 to 6, the servo drive will enter into Simulation mode. At this time, DO signal SON (Servo on) will be disabled, and the value of DSP Error (0x6F) will be regarded as zero. The servo drive can accept commands in each mode and monitor the commands via Data Scope function provided by ASDA-Soft software program. But, the servo motor will not run when the servo drvie in Simulation mode. This setting is only used to check and ensure the command is correct. It indicates the external Servo On signal is disabled in this mode, and therefore the motor fault messages such as overcurrent, overload, or overspeed, etc. will not display. The paraemeter P0-01 displays external fault messages such as reverse inhibit limit, forward inhibit limit, or emergency stop, etc. only.
- 7: (available in firmware version V1.013 and later models only)

After setting P2-30 to 7, the servo drive will enter into high-speed oscilloscope function. At this time, time out function will be disabled (this setting is for the usage of PC Software).

8: (available in firmware version V1.013 and later models only)

After setting P2-30 to 8, the setting values of all parameters (current setting values) can be backuped into the EEPROM. At this time, LCD display will display "to.rom". The setting values of all parameters will not be lost (remain in the EEPROM) at powerdown. When repower the servo drive, the setting values of all parameters are retained. This function can be executed when Servo On.

- -1: Diable the function of setting P2-30 to 1(available in firmware version V1.013 and later models only).
- -5: Diable the function of setting P2-30 to 5 (available in firmware version V1.013 and later models only).
- -6: Diable the function of setting P2-30 to 6 (available in firmware version V1.013 and later models only).
- -7: Diable the function of setting P2-30 to 7 (available in firmware version V1.013 and later models only).
- -2, -4, -8: Reserved

Please note:

- 1. Please set P2-30 to 0 during normal operation.
- 2. The setting value of P2-30 will return to 0 automatically after re-power the servo drive.

AUT1	Speed Frequency Res and Semi-Auto Mode	ponse Level in Auto	Address: 023EH 023FH
Operat	ion Ace: Keypad/Software	Communication	Related Section:
interia	ice.:	: 	Section 5.6,
Defa	ult: 80	Section 6.3.6	
Con	trol ode: ALL		
U	nit: Hz	1 1 1	
Ran	ige: 1 ~ 1000	•	
Data S	ize∷16-bit	· · ·	
Disp Forn	olay nat: Hexadecimal		

Settings:

This parameter allows the users to set the speed frequency response level of auto-tuning and semi-auto tuning mode. The speed frequency response settings are as follows:

1 ~ 50Hz : Low stiffness and low frequency response

51 ~ 250Hz : Medium stiffness and medium frequency response

251 ~ 850Hz: High stiffness and high frequency response

 $850 \sim 1000 Hz$: Extremely High stiffness and extremely high frequency response Please note:

- 1. The servo drive will set the position frequency response according to the setting value of P2-31.
- 2. This parameter is activated by P2-32. Please refer to Section 5.6 for the tuning procedure and the related settings.

כם	3	2	Λ
Р/	-		, ,

on	Address: 0240H 0241H	
Communication	Related Section:	
<u>:</u>	Section 5.6,	
	Section 6.3.6	
	:	
Data Size: 16-bit		
	<u>:</u>	

Settings:

0: Manual mode

1: Auto Mode [Continuous adjustment]

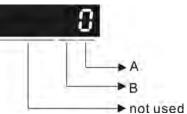
2: Semi-Auto Mode [Non-continuous adjustment]

8-122 Revision September 2012

Explanation of manual mode:

1. When P2-32 is set to mode#0, the setting value of P2-00, P2-02, P2-04, P2-06, P2-07, P2-25 and P2-26 can be user-defined. When switching mode #1 or #2 to #0, the setting value of P2-00, P2-02, P2-04, P2-06, P2-07, P2-25 and P2-26 will change to the value that measured in #1 auto-tuning mode or #2 semi-auto tuning mode.

Explanation of auto-tuning mode:


The servo drive will continuously estimate the system inertia, save the measured load inertia value automatically and memorized in P1-37 every 30 minutes by referring to the frequency response settings of P2-31.

- 1. When switching mode #1 or #2 to #0, the servo drive will continuously estimate the system inertia, save the measured load inertia value automatically and memorized in P1-37. Then, set the corresponding parameters according to this measured load inertia value.
- 2. When switching mode#0 or #1 to #2, enter the appropriate load inertia value in P1-37.
- 3. When switching mode#1 to #0, the setting value of P2-00, P2-04 and P2-06 will change to the value that measured in #1 auto-tuning mode.

Explanation of semi-auto tuning mode:

- 1. When switching mode #2 to #0, the setting value of P2-00, P2-04, P2-06, P2-25 and P2-26 will change to the value that measured in #1 auto-tuning mode.
- 2. After the system inertia becomes stable (The displau of P2-33 will show 1), it will stop estimating the system inertia, save the measured load inertia value automatically, and memorized in P1-37. However, when P2-32 is set to mode#1 or #2, the servo drive will continuously perform the adjustment for a period of time.
- 3. When the value of the system inertia becomes over high, the display of P2-33 will show 0 and the servo drive will start to adjust the load inertia value continuously.

Semi-Auto Mode Inertia Adjustment Address: 0242H P2-33 A AUT3 Selection 0243H Operation Keypad/Software Related Section: N/A Communication Default: 0 Control Mode: Unit: N/A Range: 0 ~ 1 Data Size: 16-bit Display Decimal

When the setting value of A is set to 0 or display is 0, it indicates that the load inertia estimation of semi-auto tuning mode has been executed but not been completed yet.

When the setting value of A is set to 1, it indicates that the load inertia estimation of semi-auto tuning mode has been completed. The measured load inertia is memorized in P1-37. If P2-33 is reset to 0, the servo drive will perform continuous adjustment for estimating the load inertia (P1-37) again.

B: Reserved.

P)	-3	4

SDEV	Overspeed Warning C	ondition	Address: 0244H 0245H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 5000		- - - -
Con Mo	trol de: S		
U	nit: r/min		1 : :
Ran	ge: 1 ~ 5000		
Data Si	ze: 16-bit		•
Disp Form	olay nat: Decimal		7 1 1 1 1 1 1

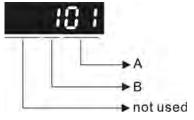
Display Format: Decimal

Settings:

This parameter is used to set the over speed threshold that is used to determine the over speed fault condition. When the difference in speed between the desired speed and actual motor speed is over than the setting value of parameter P2-34, the servo fault, Overspeed (AL007) will be activated.

8-124 Revision September 2012

PDEV	Excessive Error Warni	Address: 0246H 0247H	
Operat Interfa	ion Ice: Keypad/Software	Related Section: N/A	
Defa	ult: 480000	1 1 1	
Con Mo	trol de: PT		
U	nit: pulse		
Ran	ge: 1 ~ 16000000		
Data Si	ze: 32-bit		
Disp Form	olay nat: Decimal		


Settings:

This parameter is used to set the position deviation excessive error threshold that is used to determine the escessive deviation fault condition. When the difference in pulse number between the desired position and actual motor position is over than the setting value of parameter P2-35, the servo fault, Excessive Deviation (AL009) will be activated.

P2-36	EDI9	External Digital Input	Terminal 9 (EDI9)	Address: 0248H 0249H
	Operati Interfa	ion ce: Keypad/Software	Communication	Related Section: Table 8.A
	Defai	ult::0		
	Cont Mo	rol de: ^{ALL}		
	Uı	nit: N/A		1 1 1
	Ran	ge: 0 ~ 015Fh		
	Data Si	ze: 16-bit		•
:	Disp Form	lay at: Hexadecimal		

Settings:

The parameters from P2-36 to P2-41 are used to determine the functions and statuses of external EDI9 \sim EDI14.

A: DI (Digital Input) Function Settings:

For the setting value of P2- 36 ~ P2-41, please refer to Table 8.A.

- B: External DI (Digital Input) Enabled Status Settings:
 - 0: Normally closed (contact b)
 - 1: Normally open (contact a)

For example, when P2-36 is set to 101, it indicates that the function of EDI9 is SON (Servo On, setting value is 0x01) and it requires a normally open contact to be connected to it.

Please re-start the servo drive after parameters have been changed.

7	EDI10	External Digital Input	Terminal 10 (EDI10)	Address: 024AH 024BH
	Operati	Operation Interface: Keypad/Software Comm		Related Section:
	Interfac	e::	Table 8.A	
:	Defau	ilt::0		
: : :	Cont Mod	rol le: ALL		
	Ur	it: N/A		
	Rang	je: 0 ~ 015Fh		
:	Data Siz	ze: 16-bit		
	Displ Form	ay at: Hexadecimal		

Settings:

Refer to P2-36 for explanation.

P2-38	EDI11 External Digital Input Terminal 11 (EDI11)			Address: 024CH 024DH
	Operat	tion ace: Keypad/Software	Communication	Related Section:
	Interfa	ace: Reypud/Sortware	:	Table 8.A
	Default: 0			
	Con Mo	trol ode: ALL		
	U	Init: N/A		- ¬- - - - - - - - - -
	Ran	nge: 0 ~ 015Fh		
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Hexadecimal		

Settings:

Refer to P2-36 for explanation.

8-126 Revision September 2012

39	EDI12 Ex	ternal Digital Input	Terminal 12 (EDI12)	Address: 024EH 024FH
	Operation Interface:	Keypad/Software	Communication	Related Section: Table 8.A
	Default:	N/A		: : : :
	Control Mode:	ALL		
	Unit:	N/A		
	Range:	0 ~ 015Fh		- - -
	Data Size:	16-bit		7 : :
	Display Format:	Hexadecimal		*

Refer to P2-36 for explanation.

P2-40	EDI13 External Digital Input Ter	rminal 13 (EDI13)	Address: 0250H 0251H
	Operation Interface: Keypad/Software C	Lommunication	Related Section: Table 8.A
	Default: N/A		· · ·
	Control Mode: ALL		
	Unit: N/A		
	Range: 0 ~ 015Fh		
	Data Size: 16-bit		
	Display Format: Hexadecimal		

Settings:

Refer to P2-36 for explanation.

P2-41	EDI14 External Digital Input	t Terminal 14 (EDI14)	Address: 0252H 0253H
	Operation Interface: Keypad/Software	Communication	Related Section: Table 8.A
	Default: N/A		
	Control Mode: ALL		
	Unit: N/A		
	Range: 0 ~ 015Fh		
	Data Size: 16-bit		
	Display Format:		

Settings:

Refer to P2-36 for explanation.

P2-42	Reserved (Do Not Use)		Address: 0254H 0255H	
P2-43	NCF2	Notch Filter 2 (Resona	ance Suppression)	Address: 0256H 0257H
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Section 6.3.7
	Defa	ult::1000		
	Con Mo	trol ode: ALL		
	U	nit: Hz		
	Ran	nge: 50 ~ 2000		
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		

This parameter is used to set second resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system and reduce the vibration of mechanical system.

If P2-44 is set to 0, this parameter is disabled.

The parameters P2-23 and P2-24 are the first group of notch filter parameters and the parameters P2-43 and P2-44 are the second group of notch filter parameters.

P2-44

DPH2	Notch Filter Attenuati (Resonance Suppressi		Address: 0258H 0259H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: Section 6.3.7
Defa	ult: 0		• • •
Con Mo	trol de: ALL		
U	Unit: dB		, , , ,
Ran	Range::0 ~ 32		· ·
Data S	ze: 16-bit		7 1 1
Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to set magnitude of the resonance suppression that is set by parameter P2-43. If P2-44 is set to 0, the parameters P2-43 and P2-44 are both disabled.

8-128 Revision September 2012

NCF3 Notch Filter 3 (Resona	ance Suppression)	Address: 025AH 025BH
Operation Interface: Keypad/Software	Communication	Related Section:
Interface: (10, pad, 50, that e		Section 6.3.7
Default: 1000		
Control Mode: ALL		
Unit: Hz		
Range: 50 ~ 2000		
Data Size: 16-bit		
Display Format: Decimal		

Settings:

This parameter is used to set third resonance frequency of mechanical system. It can be used to suppress the resonance of mechanical system and reduce the vibration of mechanical system.

If P2-46 is set to 0, this parameter is disabled.

P2-46

DPH3	Notch Filter Attenuati (Resonance Suppress		Address: 025CH 025DH
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: Section 6.3.7
Defa	ult: 0		
	trol de: ALL		
U	nit: dB		
Ran	ge: 0 ~ 32		
Data Si	ze: 16-bit		
Disp Form	olay nat: Decimal		

Settings:

This parameter is used to set magnitude of the resonance suppression that is set by parameter P2-45. If P2-46 is set to 0, the parameters P2-45 and P2-46 are both disabled.

ANCF	Auto Resonance Supp Selection	ression Mode	Address: 025EH 025FH
Operat Interfa	Operation Interface: Keypad/Software Communication		Related Section: N/A
Defa	ult: 1		
Con Mo	Control Mode: ALL		
U	Unit::N/A		
Ran	Range: 0 ~ 2		; ; ;
Data S	Data Size: 16-bit		· · ·
Disp Forn	olay nat: Decimal		

Settings:

0: Disable Auto Resonance Suppression Mode.

The setting value of P2-23~P2-24 and P2-43~P2-46 will be fixed and will not be changed.

- 1: Auto Resonance Suppression Mode 1 [Non-continuous adjustment]
 After the resonance is suppressed, the setting value of P2-23, P2-24, P2-43, P2-44, P2-45 and P2-46 will be fixed and will not be changed.
- 2: Auto Resonance Suppression Mode 2 [Continuous adjustment]
 The servo drive will perform the resonance suppression continuously (will not stop). The setting value of P2-23, P2-24, P2-43, P2-44, P2-45 and P2-46 will not be fixed.

When P2-47 is set to 1, the resonance suppression will be enabled automatically. After the mechanical system becomes stable, the setting value of P2-47 will return to 0. When the mechanical system is stable, the resonance suppression point will be memorized. When the mechanical system is not stable, if the servo drive is restarted or P2-47 is set to 1, the servo drive will estimate the resonance suppression point again.

When P2-47 is set to 2, the servo drive will perform the resonance suppression continuously. When the mechanical system becomes stable, the resonance suppression point will be memorized. When the mechanical system is not stable, if the servo drive is restarted, the servo drive will estimate the resonance suppression point again.

When switching the mode#1 or #2 to #0, the setting values of P2-43, P2-44, P2-45 and P2-46 will be saved automatically.

8-130 Revision September 2012

ANCL	Auto Resonance Supp Level	ression Detection	Address: 0260H 0261H
Operation Interface: Keypad/Software Communication			Related Section: N/A
	ult: 100		:
Con Mo	Control Mode: ALL		
U	nit: N/A		
Ran	Range: 1 ~ 300%		
Data Size: 16-bit			
Disp Forn	olay nat: Decimal		

Settings:

When the setting value is smaller, the system will become more sensitive to detect and find the resonance.

When the value of ↑

The setting value of P2-48 \uparrow , the sensitivity of detecting resonance \downarrow .

The setting value of P2-48 \downarrow , the sensitivity of detecting resonance \uparrow .

P2-49

	Speed Detection Filter Suppression	r and Jitter	Address: 0262H 0263H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: Section 6.2.5
Defa	ult: 0		
Con Mo	Control Mode: ALL		
U	Unit:sec		· ·
Ran	Range∷0 ~ 1F		
Data S	Data Size: 16-bit		* .
Disp Forn	Display Format:		

Settings:

Setting Value of P2-49	Cutoff Frequency of Speed Loop Feedback (Hz)
00	2500
01	2250
02	2100
03	2000
04	1800
05	1600
06	1500
07	1400
08	1300

Setting Value of P2-49	Cutoff Frequency of Speed Loop Feedback (Hz)
09	1200
0A	1100
OB	1000
0C	950
0D	900
0E	850
0F	800
10	750
11	700
12	650
13	600
14	550
15	500
16	450
17	400
18	350
19	300
1A	250
1 B	200
1C	175
1D	150
1E	125
1F	100

DCLR Pulse Deviation Cle	ar Mode	Address: 0264H 0265H
Operation Interface: Keypad/Software	Communication	Related Section: N/A
Default: 0		
Control Mode: PT, PR		
Unit: N/A		
Range: 0 ~ 2		
Data Size::16-bit		
Display Format: Hexadecimal		

Settings:

For digital input function (DI function), please refer to Table 8.A.

8-132 Revision September 2012

This pulse deviation clear function is enabled when a digital input is set to pulse clear function (CCLR mode, DI (Digital Input) setting value is 0x04). When this input is triggered, the position accumulated pulse number will be clear to 0. (available in PT and PR mode only)

0: CCLR is triggered by rising-edge

1: CCLR is triggered bu level

P2-51	Reserved (Do Not Use)			Address: 0266H 0267H
P2-52	IDXS Ind	exing Coordinates	Scale	Address: 0268H 0269H
	Operation Interface:	Keypad/Software	Communication	Related Section:
		1000000000		:
	Control Mode:	ALL		
	Unit:	PUU		<u> </u>
	Range:	0 ~ 1000000000		:
	Data Size:	32-bit		
	Display Format:	Decimal		

Settings:

This parameter is used to set the scale of the indexing coordinates, indexing command position and indexing feedback position. If the setting value is too low, it may cause the indexing coordinates is in error.

The range of setting value of P2-52 is defined as follows:

$$P2-52>1.05\times Max.\ Motor\ Speed\ (r/min) \times \frac{1280000}{60000} \times \frac{P1-45}{P1-44}$$
 > 22.4×Max. Motor\ Speed\ (r/min) \times \frac{P1-45}{P1-44}

P2-53	KPI	Position Integral Com	Address: 026AH 026BH	
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: Section 6.3.6
	Defa	ıult: 0		
	Con Mo	trol ode: ALL		
	U	Init::rad/s		
	Rar	nge: 0 ~ 1023		· · · · · · · · · · · · · · · · · · ·
	Data S	ize: 16-bit		
	Dist Forn	olay nat: Decimal		

This parameter is used to set the integral time of position loop. When the value of position integral compensation is increased, it can decrease the position control deviation. However, if the setting value is over high, it may generate position overshoot or noise.

P2-	54	ı
-----	----	---

SVP	Synchronous Speed Loop Gain		Address: 026CH 026DH
Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		
Con Mo	trol ode: ALL		
U	nit: rad/s		
Ran	ıge:∶0 ~ 8191		
Data S	ize: 16-bit		
Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to set the synchronous speed loop gain. When the value of synchronous speed loop gain is increased, it can expedite speed loop response of two motors. However, if the setting value is over high, it may generate vibration or noise.

P2-55

SVI	Synchronous Speed In	ntegral Compensation	Address: 026EH 026FH
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		
Cont Mo	trol de: ALL		
U	nit::rad/s		-
Ran	ge: 0 ~ 1023		
Data Si	ze: 16-bit		 - - -
Disp Form	olay nat: Decimal		

Settings:

This parameter is used to set the synchronous integral time of speed loop. When the value of synchronous speed integral compensation is increased, it can improve the speed response ability and decrease the speed control deviation of two motors. However, if the setting value is over high, it may generate vibration or noise.

8-134 Revision September 2012

SPI	Synchronous Position Compensation	Integral	Address: 0270H 0271H
Opera Interf	tion ace: Keypad/Software	Communication	Related Section: N/A
Defa	ault: 0		· · · · · · · · · · · · · · · · · · ·
Con Mo	itrol ode: ALL		
L	Jnit: rad/s		
Rar	nge: 0 ~ 1023		
Data S	ize::16-bit		
Dis Forr	play nat: Decimal		

Settings:

This parameter is used to set the synchronous integral time of position loop. When the value of synchronous position integral compensation is increased, it can improve the position response ability and decrease the position control deviation of two motors. However, if the setting value is over high, it may generate vibration or noise. It is recommended to set P2-56 and P2-06 to the same values.

D7.57				
P/-5/		-	_	_
	-	_		_

SBW	Synchronous Speed F	requency Response	Address: 0272H 0273H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0		7
Con Mo	trol de: ALL		
U	nit: Hz		
Ran	ge: 0 ~ 1023		
Data Si	ize: 16-bit		- -
Disp Form	olay nat: Decimal		

Settings:

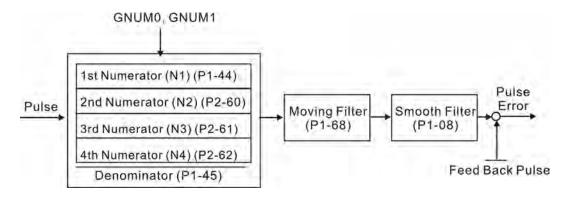
When the users do not know how to determine the setting values of parameters P2-54~P2-56, it is recommended to use this parameter to set synchronous speed frequency response. The setting value of this parameter corresponds to setting values of parameters P2-54~P2-56. If the value of synchronous speed frequency response is higher than the value of servo frequency response, the performance of synchronous response ability is better. However, if the speed frequency response plus synchronous speed frequency response is higher than system allowable frequency response, it may generate system resonance. Thus when increasing the setting values of speed frequency response and synchronous speed frequency response, the setting value of P2-25 should be faster than the setting values of these two frequency responses.

P2-58	SVL Low-pass Filter Time Constant of Synchronous Speed Error		Address: 0274H 0275H	
	Operatio Interface	n Keypad/Software	Communication	Related Section: N/A
	Defaul	t::0		
	Contro Mode	Ol: a:: ALL		
	Uni	t::0.1 ms		7 1 1
	Range	e: 0 ~ 1000		· · · · · · · · · · · · · · · · · · ·
	Data Size			- - -
	Displa Forma	ly t: Decimal		7 1 1 1 1
	Input Valu Example	e 15 = 1.5 ms		

When synchronous speed is affected due to low resolution and generates noises (not a high-pitched but a rough sound), the users can use this parameter to set low-pass filter time constant to solve the problem. Please note that the the frequency response of low-pass filter must be faster than synchronous speed frequency response.

P2-59 Re	eserved (Do Not Use)		0277H
			ess: 0278H

GR4 Electronic Gea	ar Ratio (2nd Numerator) (N2) Address: 0278H 0279H
Operation Interface: Keypad/So	ftware Communication	Related Section: N/A
Default: 128		:
Control Mode: PT		
Unit: pulse		
Range: 1 ~ (2 ²⁹ -1)		
Data Size: 32-bit		:
Display Format: Decimal		


Settings:

The electronic gear numerator value can be set via GNUM0, GNUM1 (refer to Table 7.A).

When the GNUM0, GNUM1 are not defined, the default of gear numerator value is set by P1-44.

When the users wish to set the gear numerator value by using GNUM0, GNUM1, please set P2-60 ~ P2-62 after the servo motor has been stopped to prevent the mechanical system vibration.

8-136 Revision September 2012

P2-61	GR5	Electronic Gear Ratio	Address: 027AH 027BH	
	Operation Interface: Keypad/Software		Operation Interface: Keypad/Software Communication	
	Default: 16			
	Con Mo	trol [:] PT ode::		
	U	nit: pulse		7 : :
	Ran	nge: 1 ~ (2 ²⁹ -1)]
	Data S	ize: 32-bit]
	Disp Forn	olay nat: Decimal		: : : : :

Refer to P2-60 for explanation.

P2-62	GR6	Electronic Gear Ratio	Address: 027CH 027DH	
	Operation Interface: Keypad/Software Communication Default: 128		Communication	Related Section: N/A
			7	
	Con Mc	trol ode: PT		
	U	Init: pulse		
	Ran	nge: 1 ~ (2 ²⁹ -1)		<u>:</u>
	Data S	ize: 32-bit		:
	Disp Forn	olay nat: Decimal		

Settings:

Refer to P2-60 for explanation.

P2-63	Reserved (Do Not Use)	Address: 027EH 027FH
P2-64	Reserved (Do Not Use)	Address: 0280H 0281H

GBIT Special Function 1

Operation Interface: Keypad/Software Communication
Default: 0

Control Mode: PT, PR, S

Unit: N/A

Range: 0 ~ 0xFFFF

Data Size: N/A

Display Format: N/A

Address: 0282H
0283H

Related Section: N/A

Related Section: N/A

Settings:

Bit15	Rit14	Rit13	Rit12	Rit11	Rit10	Rit 9	Rit 8	Rit7	Rit6	Rit5	Rit4	Rit3	Rit2	Rit1	Rit∩
BICLO	DICIT	כ ו זום	DICIZ	DICII	DICTO	Dits	Dito	DIC	Dito	Dito	DICT	DIC	DICZ	DICI	Dito

Bit5 Bit4 Bit3 Bit2

Bit2 ~ Bit5: Reserved. Must be set to 0.

Bit6

Bit6: Abnormal pulse command detection

0: enable abnormal pulse command detection

1: disable abnormal pulse command detection

Bit8

Bit8: U, V, W wiring error detection

1: enable U, V, W wiring error detection

Bit9

Bit9: U, V, W wiring cut-off detection

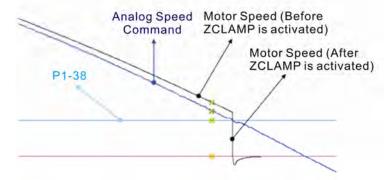
1: enable U, V, W wiring cut-off detection

Bit10

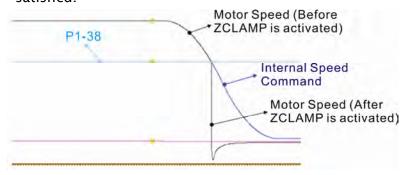
Bit 10: DI ZCLAMP function selection

When the following conditions are all met, ZCLAMP function will be activated.

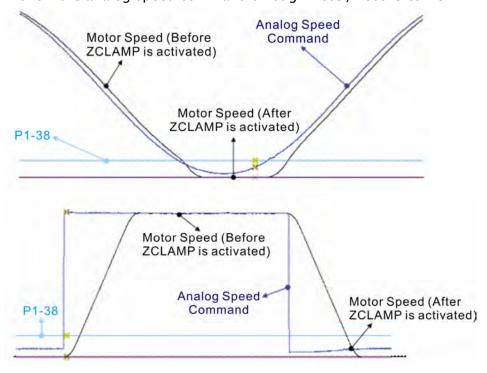
Condition1: Speed mode

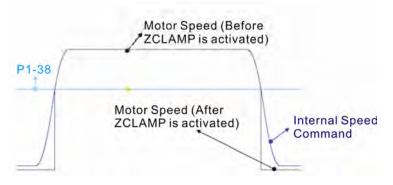

Condition2: DI ZCLAMP is activated.

Condition3: External analog speed command or internal registers speed


command is less than parameter P1-38.

0: When the command source is an analog speed command, the users can use ZCLAMP DI signal to stop the motor at the desire position and do not care the acceleration and deceleration speed curve of the analog speed command. The motor will be locked at the position when ZCLAMP conditions are satisfied.


8-138 Revision September 2012


0: When the command source is an internal speed command, the users can use ZCLAMP DI signal to stop the motor at the desire position and keep the the acceleration and deceleration speed curve of the internal speed command. The motor will be locked at the position when ZCLAMP conditions are satisfied.

1: When the command source is an analog speed command, the users can use ZCLAMP DI signal to stop the motor at the desire position and do not care the acceleration and deceleration speed curve of the internal speed command. When ZCLAMP conditions are satisfied, the speed command is decreased to 0 r/min. When ZCLAMP conditions are not satisfied, the speed command will follow the analog speed command through Accel/Decel S-curve.

1: When the command source is an internal speed command, the users can use ZCLAMP DI signal to stop the motor at the desire position and keep the acceleration and deceleration speed curve of the analog speed command. When ZCLAMP conditions are satisfied, the speed command is forced to 0 r/min directly.

B11

Bit11: NL(CWL)/PL(CCWL) pulse input inhibit function

- 0: Disable NL(CWL)/PL(CCWL) pulse input inhibit function. In PT mode, no matter NL or PL exists or not, external position pulse command will be input into the servo drive.
- 1: Enable NL(CWL)/PL(CCWL) pulse input inhibit function. In PT mode, if NL exists, the external NL pulse input into the servo drive will be inhibited and PL pulse input will be accepted. On the one hand, in PT mode, if PL exists, the external PL pulse input into the servo drive will be inhibited and PL pulse input will be accepted.

Please note:

If NL and PL both exist, NL and PL pulse input into the servo drive will be both inhibited.

Bit12

Bit 12: Input power phase loss detection function

0: Enable Input power phase loss (AL022) detection function

1: Disable Input power phase loss (AL022) detection function

Bit13

Bit 13: Encoder output error detection function

0: Enable encoder output error (AL018) detection function

1: Disable encoder output error (AL018) detection function

Bit15 Bit14

Bit14 ~ Bit15: Reserved. Must be set to 0.

8-140 Revision September 2012

Operation Interface:

Default: 0

Control Mode:

Unit: N/A

Range: 0 ~ 0xFFFF

Data Size: 16-bit

Display Format:

Address: 0284H
0285H

Related Section: N/A

Hexadecimal

Settings:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit1 Bit0

Bit0 ~ Bit1: Reserved. Must be set to 0.

Bit2

Bit2: Undervoltage (Servo Drive Fault, AL003) clear mode selection

0: The fault, Undervoltage will not be cleared automatically.

1: The fault, Undervoltage will be cleared automatically.

Bit3

Bit3: Reserved. Must be set to 0.

Bit4

Bit4: ALE44 disable selection

Bit4=0: The fault, ALE44 is not disabled.

Bit4=1: The fault, ALE44 is disabled.

Bit5

Bit5: ALE41 disable selection (only available when full-close control function is enabled)

Bit5=0: The fault, ALE41 is disabled.

Bit5=1: The fault, ALE41 is not disabled.

Bit7 Bit6

Bit6 ~ Bit7: Reserved. Must be set to 0.

JSL Stable Inertia Estimat	Stable Inertia Estimating Time			
Operation Keypad/Software Interface:	Communication	Related Section: N/A		
Default: 1.5	15			
Control ALL Mode:				
Unit: 1 times	0.1 times			
Range: 0 ~ 200.0	0 ~ 2000			
Data Size: 16-bit				
Display Format: One-digit	Decimal			
nput ValueE xample: Hexadecimal				

Settings:

In semi-auto tuning mode, after the servo drive continuously perform the adjustment for a period of time which is determined by P2-67, the system will consider that the system inertia has become stable and finish the operation of

P2-68	TEP	Tracking Error Comp	Address: 0288H 0289H	
	Operation Interface: Keypad/Software		Communication	Related Section: N/A
	Defa	ault: 0		
:	Cor M	ntrol ode: ALL		
	ι	Jnit: N/A		
:	Rai	nge: 0000h ~ 0001h		
	Data S	Size: 16-bit		
	Dis Fori	play mat: Hexadecimal		

Settings:

X: Tracking error compensation selection

X=0: When P1-36>1, tracking error compensation is disabled.

X=1: When P1-36>1, tracking error compensation is enabled.

(This function is available in firmware version V1.036 sub00 and later models only)

Y: JOG function selection

Y=0: When E-Cam is engaged, JOG function cannot work.

Y=1: When E-Cam is engaged, JOG function can work.

(This function is not available now, will be available soon)

Z: Digital input, STP trigger selection

0: STP is triggered by rising-edge

1: STP is triggered bu level

(This function is available in firmware version V1.042 sub00 and later models only)

8-142 Revision September 2012

ABS	Absolute Encoder Sett	Address: 028AH 028BH	
Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: N/A
Defa	ult: 0x0		- - - -
Con Mo	trol ode: ALL		
U	nit: N/A		
Ran	ige: 0 ~ 1		• • •
Data S	ize: 16-bit		1 : : :
Disp Forn	HEXAUECHIIAI		

Settings:

This parameter should be set when the servo motor with absolute encoder need to be operated as an incremental motor.

- 0: Incremental mode. Servo motor with absolute encoder can be operated as incremental motor.
- 1: Absolute mode. (This setting is only available for the servo motor with absolute encoder. When an incremental servo motor is connected, if P2-69 is set to 1, a fault will be detected and the fault code, AL069 will be displayed on the drive's LCD display.)

Please note:

This parameter is effective only after the servo drive is restarted (after switching power off and on).

-70	MRS	Read Data Format Sele	Address: 028CH 028DH	
	Operat Interfa	ion ce: Keypad / Software	Communication	Related Section: N/A
	Defa	ult::0x0		- - -
:	Con Mo	trol de: ALL		
:	U	nit: N/A		: : :
	Ran	ge: 0x00 ~ 0x07		· ·
	Data Si	ize: 16-bit		- - -
:	Disp Form	Hexagecimai		
3	1 0111	ιαι.,		:

Settings:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8

Bit0: Data unit setting of digital input/output (DI/DO)

Bit0=0: PUU Bit0=1: Pulse

Bit1: Communication data unit setting

Bit0=0: PUU Bit0=1: Pulse

Bit2: Overflow warning

Bit0=0: Without overflow warning

Bit0=1: With overflow warning AL289 (for PUU counting), AL062 (for Pulse

counting)

Bit3 ~ Bit15: Reserved. Must be set to 0.

P2-71■	CAP	Absolute Position Hon	ning	Address: 028EH 028FH		
	Operat Interfa	ion ace: Keypad / Software	Related Section: N/A			
	Defa	ult::0x0	0x0			
	Con ⁻ Mo	trol de: ALL	ALL			
	U	nit: N/A	N/A			
	Ran	ge: 0 ~ 1	0 ~ 1			
	Data S	ize: 16-bit				
	Disp Forn	Hexadecimai		1 1 1 1 1 1 1 1 1		

Settings:

When P2-71 is set to 1, the current position will be set as home position. This function is the same as the digital input, ABSC. This function can be enabled only when parameter P2-08 is set to 271.

D2 72	Pasaryod (Da Not Usa)	Address: 0290H
PZ-7Z	Reserved (Do Not Use)	0291H

P2-73	ALOP E-Cam Alignment - Operation Setting			Address: 0292H 0293H		
	Operat Interfa	tion ace: Keypad/Software	Communication	Related Section: N/A		
	Defa	ult: 00000000h				
	Control PR Mode:					
	U	Init: N/A				
	Range: 00000000h ~ 5F3F6F5 Data Size: 32-bit format = DCBA Display Format: Hexadecimal		6F5Fh			
			BA : UZYX			

Settings:

(This function is available in firmware version V1.038 sub26 and later models only)

YX: Range of filter (0 ~ 95%)

UZ: Max. allowable correction rate (0 ~ 100%)

BA: PR number $(0 \sim 63)$

DC: Masking range setting (0 ~ 95%)

YX: Range of filter (0 ~ 95%)

When digital input, ALGN is triggered, E-Cam alignment function is enabled. The system will detect the current E-Cam position. When the error between current E-Cam position and the last alignment position is less than this setting range (%), filter function is enabled and the system will average the errors before correction to avoid noise. If the error is bigger than filter threshold, the system will use the new position to do the correction.

YX	00	01 ~ 05F
Function	Disabled	Error <= (1~YX) % : Enabled

Please note: Using filter will allow the alignment action to be more stable and reduce position error caused by digital input noise.

UZ: Max. Max. allowable correction rate (0 ~ 100%)

When alignment correction is enabled, the limitation of max. correction rate (C) for each correction is defined as follows:

$$|C| \le (P5-84/P5-83) \times P2-73 UZ \%$$

Please note:

When the alignment error is too big, to correct this error with one time may cause the motor vibration or overloading. Using this parameter will break the alignment correction into several smaller actions to smooth the correction action. But it may need more time to finish the alignment correction.

BA: PR number $(0 \sim 63)$

After each alignment action is done, the shortage of pulse numbers of slave axis will be stored in this specified PR. Using this PR can compensate the slave position at appropriate timing.

Please note:

If BA is set to (), it will not store the shortage of pulse numbers to PR.

DC: Masking range setting (0 ~ 95%)

When digital input, ALGN is triggered, no another alignment action is allowed before the increasing pulse numbers of master axis exceeds the masking distance (M). After the increasing pulse numbers of master axis is greater than the distance (M) masking, the next alignment action is allowed.

The masking distance (M) is defined as follows:

$$M >= (P5-84/P5-83) \times P2-73 DC \%$$

Please note:

This masking function only allows increasing pulse input. This function will not work for decreasing pulse input.

	E-Cam Alignment - DI Compensation	Delay Time	Address: 0294H 0295H
Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0.000		
Con Mo	trol de: PR		
U	nit: ms with fraction do	wn to usec	1 1 1
Ran	ge: -25.000 ~ +25.000,	with 3 fraction digits	• • •
Data S	Data Size::16-bit		- · ·
Disp Forn	olay nat: Decimal		

Settings:

(This function is available in firmware version V1.038 sub26 and later models only) This parameter is used to set for the compensation of delay time from digital input.

P2-75

ALTG	E-Cam Alignment - Ali Position	gnment Target	Address: 0296H 0297H
Operat Interfa	ion ace: Keypad/Software	Communication	Related Section: N/A
Defa	ult::0		
Con Mo	trol de: PR		
U	nit: The pulse unit of M	aster axis	· · ·
Ran	ge: 0 ~ (P5-84 /P5-83)-	1	
Data Si	ize: 32-bit		•
Disp Form	olay nat: Decimal		

Settings:

(This function is available in firmware version V1.038 sub26 and later models only)

Note: When the input value is over the setting range, an error will occur and display on LCD display. Then, the user cannot input the setting value.

Note: When a correct value is already set in P2-75 and does not exceed the setting range, if a change on P5-84 or P5-83 cause the value to exceed the setting range, this parameter will be reset to 0 automatically.

New value of P2-75 = 0 if P2-75 >= (P5-84 /P5-83)

8-146 Revision September 2012

ALCT	E-Cam Alignment - So	urce Setting	Address: 0298H 0299H
Operat Interfa	ion Ice: Keypad/Software	Communication	Related Section: N/A
Defa	ult: 0000h		1 1 1
Con Mo	trol de: PR		
U	nit: N/A		
Ran	ge: 0000h ~ 6FF7h		- - -
Data Si	ze: 16-bit		7 : : :
Disp Form	olay nat: Hexadecimal		

Settings:

(This function is available in firmware version V1.038 sub26 and later models only) Format=UZYX. The functions are listed below.

X: E-CAM Alignment Control

Bit	Bit 3	Bit 2	Bit 1	Bit 0
Function	Reserved	Phase Alignment Category	Trigger PR immediately	Enable Alignment
Explanation	-	Set 0 to cutter-like control. Set 1 to film-like control. What kind of application to make alignment should be selected here. Cutter control only has affection to current cycle when phase of cutter shifted where the film will has affection for the following cycles after when a distance on file is pulled.	Set 1 to enable. When the alignment DI is triggered, the error for correcting will be calculated and stored in the PR specified by P2-73. If this bit is set to 1, trigger the correction PR immediately after DI activated, otherwise the user should trigger the correction PR manually or can use P5-88.BA to call the PR when E-Cam disengaged, for example.	Set 0 to disable. Set 1 to enable. If enable, the E-CAM alignment correction will be executed when DI:ALGN ON.

Y: Filter intensity

I	Υ	0	1 ~ F	
	Function	Disabled	Average of 2^Z: Enabled	

When the value of Y is increased, the change of correction is getting slow and it can expedite the performance of the filter function. This can avoid the disturbance caused by a sensor noise and a big error to be corrected within one time. Setting P2-76 too big will cause the alignment not able to work properly. The recommendatory value is 3.

UZ: Alignment path definition. Forward direction as setting reference here (0 \sim 100%)

0: Backward alignment only

30: Forward 30%, Backward 70%

50: Alignment with the shortest distance

80: Forward 80%, Backward 20%

>=100: Forward alignment only

CMSK E-Cam Master Axis - I	Pulse Masking Setting	Address: 029AH 029BH
Operation Interface: Keypad/Software	Communication	Related Section: N/A
Default: 0000h		
Control Mode: PR		
Unit: N/A		7 : :
Range∷0000h ~ FF7Dh		
Data Size: 16-bit		
Display Format:		

Settings:

(This function is available in firmware version V1.038 sub54 and later models only) Format=UZYX. The functions are listed below.

X: Pulse masking function of master axis / JOG function of master axis / INCH function of master axis

Y: Correction of lead command length (P5-87) for pulse masking

Y3	Y2	Y1	Y0
-	Extra 1 Cycle	Write to ROM	CALC
-	Calculate the value of P5-87 and plus a cycle of a resolution of pulse command, i.e. (P5-84/P5-83).	Calculate the value of P5-87 and write the value of P5-87 into EEPROM at the same time to ensure the correct position of E-Cam after the servo drive is restarted (after switching power off and on).	Calculate the value of P5-87.

 $Y=0 \rightarrow 1$: Calculate the value of P5-87 correctly according to actual making pulse number and additional virtual pulse number.

Y=0 \Rightarrow 2: Calculate the value of P5-87 correctly according to actual making pulse number and additional virtual pulse number. Then, write the revised value of P5-87 into EEPROM to keep the same phase after the servo drive is restarted.

8-148 Revision September 2012

Y=0 \rightarrow 7: Calculate the value of P5-87 correctly according to actual making pulse number and additional virtual pulse number. But, the revised value of P5-87 will plus a value of (P5-84/P5-83) to make lead pulse wait for an E-Cam cycle.

UZ: Pulse data when the master axis performs JOG or INCH function

For example:

Start masking \rightarrow UZYX = 0x0001 JOG +3Kpps \rightarrow UZYX = 0x0302 JOG +20Kpps \rightarrow UZYX = 0x1402 JOG -32Kpps \rightarrow UZYX = 0x2003 INCH +255 PLS \rightarrow UZYX = 0xFF04 INCH -18 PLS \rightarrow UZYX = 0x1205

Complete and correct lead pulse \rightarrow UZYX = 0x0020 (Write into EEPROM)

Disable this function \rightarrow UZYX = 0x0000 (This step can be ignored)

P2-78

СМАР	E-Cam: Area Number #	2 + (Polarity is Positive)	Address: 029CH 029DH
Operat Interfa	ion Ace: Keypad/Software	Communication	Related Section: N/A
1	ult: 270		: : :
Con Mo	trol de: PR		
U	nit: degree (it becomes version V1.038 sub	degree in firmware 25 and later models)	
Ran	ge: 0 ~ 360		- - - -
Data S	ize: 16-bit		1 1 1
Disp Forn	olay nat: Decimal		

Settings:

P2-78 <= P2-79:

E-Cam degree	O°	~	P2-78	۲	P2-79	~	360°
DO: CAM_AREA2	OFF	OFF	ON	ON	ON	OFF	OFF

P2-78 > P2-79:

E-Cam degree	O°	~	P2-79	~	P2-78	~	360°
DO: CAM_AREA2	ON	ON	OFF	OFF	OFF	ON	ON

Please note:

When the Electronic Cam (E-Cam) is not engaged, the status of digital output, CAM_AREA2 is always OFF.

Cam: Area Number #	2 - (Polarity is Negative)	Address: 029EH 029FH
Keypad/Software	Communication	Related Section: N/A
: 360		: : :
PR		
: 0 ~ 360		
: 16-bit		74 3 3 4
Decimal		
	Keypad/Software 360 PR degree (it becomes	Reypad/Software Communication 360 PR degree (it becomes degree in firmware version V1.038 sub25 and later models) 0 ~ 360 16-bit

Settings:

P2-78 <= P2-79:

E-Cam degree	O°	~	P2-78	~	P2-79	~	360°
DO: CAM_AREA2	OFF	OFF	ON	ON	ON	OFF	OFF

P2-78 > P2-79:

E-Cam degree	O°	~	P2-79	~	P2-78	~	360°
DO: CAM_AREA2	ON	ON	OFF	OFF	OFF	ON	ON

Please note:

When the Electronic Cam (E-Cam) is not engaged, the status of digital output, CAM_AREA2 is always OFF.

8-150 Revision September 2012

P3-00

Group 3: P3-xx Communication Parameters

	ADR	Communication Addre	Address: 0300H 0301H	
	Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: Section 9.2
	Defa	ult::0x7F		
	Cont Mo	trol de: ^{ALL}		: : :
	U	nit: N/A		
-	Ran	ge: 0x01 ~ 0x7F		
-	Data Si	ze: 16-bit		
	Displ Form	Hexadecimai		

Settings:

This parameter is used to set the communication slave address in hexadecimal format.

Display	0	0	Y	X
Range	-	-	0 ~ 7	0 ~ F

X: Axis number which indicates the value must be within the range from 0 through F.

Y: Group number which indicates the value must be within the range from 0 to through 7

When using RS-232/485 communication, this parameter is used set the communication address in hexadecimal format. If the AC servo drive is controlled by RS-232/485 communication, each drive (or device) must be uniquely identified. One servo drive only can set one address. If the address is duplicated, there will be a communication fault. This address is an absolute address which represents the servo drive on a RS-232/485 and CANbus network.

Please note:

1. When the address of host (external) controller is set to 0xFF, it is with autorespond function. Then, the servo drive will receive from and respond to host (external) controller both no matter the address is matching or not. However, the parameter P3-00 cannot be set to 0xFF.

P3-01

BRT	Transmission Speed		Address: 0302H 0303H
Operat	ion Ace: Keypad / Software	Communication	Related Section:
Interfa	ce:: Teypua / Bortmare		Section 9.2
Defa	ult: 0x0203		
Con Mo	trol de: ALL		
	nit: bps		
Ran	ge: 0x0000 ~ 0x0405		
Data S	ize: 16-bit		7 : : :
Disp Forn	Hexadecimal		

Settings:

This parameter is used to set the baud rate and data transmission speed of the communications.

	0	Z	Y	Х
COM Port	-	CANopen	-	RS-232/485
Range	0	0 ~ 4	0	0 ~ 5

Settings:

X: Baud rate setting

0: Baud rate 4800

1: Baud rate 9600

2: Baud rate 19200

3: Baud rate 38400

4: Baud rate 57600

5: Baud rate 115200

Y: Reserved. Must be set to 0.

Z: Data transmission speed setting.

0: 125K bits / second

1: 250K bits / second

2: 500K bits / second

3: 750K bits / second

4: 1.0M bits / second

Please note:

- 1. When setting this parameter via CANopen communication, only the setting of Z (data transmission speed setting) can be configured and other settings.
- 2. The communication transmission speed for USB can be set to 1.0M bits / second only and cannot be changed.

8-152 Revision September 2012

P3-02

PTL	Communication Protoc	Address: 0304H 0305H	
Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: Section 9.2
 Defa	ult: 6		3000001 3.2
Con Mo	trol de: ALL		
U	nit: N/A		
Ran	ge: 0 ~ 8		· · ·
Data Si	ze: 16-bit		: : : :
Disp Form	Hexadecimal		

Settings:

This parameter is used to set the communication protocol. The alphanumeric characters represent the following: 7 or 8 is the number of data bits; N, E or O refers to the parity bit, Non, Even or Odd; the 1 or 2 is the numbers of stop bits.

- 0: Modbus ASCII mode, <7,N,2>
- 1: Modbus ASCII mode, <7,E,1>
- 2: Modbus ASCII mode, <7,0,1>
- 3: Modbus ASCII mode, <8,N,2>
- 4: Modbus ASCII mode, <8,E,1>
- 5: Modbus ASCII mode, <8,0,1>
- 6: Modbus RTU mode, <8,N,2>
- 7: Modbus RTU mode, <8,E,1>
- 8: Modbus RTU mode, <8,0,1>

P3-03	FLT	Transmission Fault Tr	Address: 0306H 0307H			
	Operat Interfa	tion ace: Keypad / Software	Related Section: Section 9.2			
	Defa	ult: 0	:			
	Control Mode: ALL					
	U	lnit: N/A		:		
	Range: 0 ~ 1		7			
	Data S	ize: 16-bit				
	Disp Forn	Hexadecimal				

Settings:

This parameter is used to determine the operating sequence once a communication fault has been detected. If '1' is selected, the drive will stop operating upon detection the communication fault. The mode of stopping is set by parameter P1-32.

0: Display fault and continue operating

1: Display fault and decelerate to stop operating (deceleration time is determined by parameter P5-03)

	CWD (Communication Time	munication Time Out Detection	
	Operation Interface: Keypad / Software Communication		Related Section: Section 9.2	
	Defau	lt: 0		
	Contr Mod	ol le: ALL		
	Un	it: sec		
:	Rang	je: 0 ~ 20		
:	Data Siz	e: 16-bit		:
:	Displa Forma	Decimai		

Settings:

This parameter is used to set the maximum permissible time before detecting a fault due to communication time out. When P3-04 is set to a value over than 0, it indicates this parameter is enabled. However, if not communicating with the servo in this period of time, the servo drive will assume the communication has failed and show the communication error fault message.

When P3-04 is set to 0, this parameter is disabled.

P3-05	СММ	Communication Select	ommunication Selection		
	Operat Interfa	tion Ace: Keypad / Software	Communication	Related Section:	
	Defa	: ult::0	. <u>:</u>	Section 9.2	
	Con Mo	trol ode:			
	U	lnit: N/A		· · ·	
	Ran	nge: 0x00 ~ 0x01			
	Data S	ize: 16-bit		•	
	Disp Forn	Hexadecimal			

Settings:

Communication interface selection

0: RS-232 1: RS-485

Multiple communication modes RS232 and RS-485 cannot be used within one communication ring. Point-to-point connection or multidrop connection can be selected.

8-154 Revision September 2012

DA-AZ			<i>C/</i>	iupter o servo i ur umeters	
P3-0 6 ■	SDI	Digital Input Commun	gital Input Communication Function		
	Operation Keypad / Software Communication		Communication	Related Section: Section 9.2	
:	Default: 0			7 : :	
	Con Mc	trol ode: ALL			
	Unit::N/A			·	
	Range::0x0000 ~ 0x3FFF			- - -	
: : :	Data S	ize: 16-bit		7 : :	
	Disp Forn	lay Hexadecimal			
:	FULL	ııaı.			

The setting of this parameter determines how the Digital Inputs (DI) accept commands and signals.

The setting of this parameter determines how the Digital Inputs (DI) accept commands and signals.

Bit 0 \sim Bit 7 corresponds with DI1 \sim DI8. The least significant bit (Bit0) shows DI1 status and the most significant bit (Bit7) shows DI8 status.

Bit8 ~ Bit14 corresponds with EDI9 ~ EDI14.

Bit settings:

0: Digital input is controlled by external command (via CN1)

1: Digital input is controlled by parameter P4-07

For the settings of DI1 ~ DI8, please refer to P2-10 ~ P2-17.

For the settings of EDI9 ~ EDI14, please refer to P2-36 ~ P2-41.

This parameter P3-06 also works in conjunction with the parameter P4-07 which has several functions. Please see section 9.2 for details.

P3-07	CDT	Communication Respo	Address: 030EH 030FH	
	Operation Interface: Keypad / Software Communic		Communication	Related Section:
			:	Section 9.2
	Default: 0			<u>:</u>
	Control Mode: ALL			
	Unit: 1 ms			
	Range: 0 ~ 1000			
	Data Size: 16-bit			
	Disp Forn	1 lacimal		

Settings:

This parameter is used to delay the communication time that servo drive responds to host controller (external controller).

P3-08

MNS	Monitor Mode		Address: 0310H 0311H
Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: Section 9.2
	ult: 0000		• • • • • • • • • • • • • • • • • • •
Con Mo	Control Mode: ALL		
U	Unit::N/A		
Ran	ge: refer to the descripti	on of Settings	•
Data S	ze: 16-bit		1 : : :
: _	Display Hexadecimal Format:		

Settings:

This parameter is used to monitor the data of the servo drive via communication. The monitor data can be displayed on PC upon the data scope function provided by ASDA-Soft software.

Word	-	-	Low	High
Function	-	-	Monitor time at low speed	Monitor mode
Range	0	0	0 ~ F	0 ~ 3

- H: Monitor mode, the value must be within the range from 0 through 3.
 - 0: Disabled, i.e. disable monitor function.
 - 1: Low-speed monitor mode. The sampling time is determined by the setting value of L and 4 channels can be monitored.
 - 2: High-speed monitor mode. The sampling time is 8000 times per second and 4 channels can be monitored.
 - 3: High-speed monitor mode. The sampling time is 16000 times per second and 2 channels can be monitored.
- L: Sampling time in low-speed monitor mode (units: millisecond)

When the setting value of L is set (more than 0), the system will send a monitor message via USB device every L milliseconds to host controller so as to monitor the status of the servo drive. Each monitor message includes the data of 4 channels (16 bits \times 4).

If the setting value of L is set to 0, it indicates that low-speed monitor function is disabled. Low-speed monitor function is enabled only when the setting value of H is set to 1.

8-156 Revision September 2012

P3-09

SYC	SYC CANopen Synchronization Setting		Address: 0312H 0313H
Operat Interfa	ion Ace: Keypad / Software	Communication	Related Section: Section 9.2
Defa	ult: 0x57A1		:
Con Mo	trol ode: ALL		
U	Unit::N/A		
Ran	ge: refer to the descript	ion of Settings	- - -
Data S	ize: 16-bit	7 : : :	
Disp Forn	Hexadecimal		

Settings:

This parameter is used to set the CANopen slave to be synchronized with the CANopen master through synchronization signal. Although this parameter allows the users to execute manual adjustment, if not necessary, we do not recommend users to change the default setting manually.

Display	E	Т	D	М
Function	SYNC error range	Target value	Dead zone range	Clock correction setting
Range	1 ~ 9	0 ~ 9	0 ~ F	1 ~ F

M: Clock correction setting, the value must be within the range from 1 through F, and the unit is usec.

When setting the CANopen slave to be synchronized with the CANopen master, the clock of the servo drive must be corrected. This function is used to set the maximum correction everytime.

D: Dead zone range, the value must be within the range from 0 through F, and the unit is usec.

When the difference between actual value and target value of SYNC signal reach time does not exceed the dead zone range, the clock correction does not need to be changed.

T: Target value of SYNC signal reach time, the value must be within the range from 0 through 9, and the standard value of SYNC signal reach time is 500 usec.

Target reach time of synchronization signal = $400 + 10 \times \text{setting value of T}$. For example:

When T is set to 5, the target reach time of synchronization signal = $400 + 10 \times 5 = 450$

There should be a buffer between the target value and the standard value. The target value should be less than the standard value. If the target value is above than the standard value, an error may occur.

E: SYNC error range, the value must be within the range from 1 through 9, and the unit is 10 usec.

When the difference between actual value and target value of SYNC signal reach time is below this range, it indicates that the CANopen slave synchronize with the CANopen master through synchronization signal.

P3-10	Reserved (Do Not Use)	Address: 0314H 0315H
P3-11	Reserved (Do Not Use)	Address: 0316H 0317H

Group 4: P4-xx Diagnosis Parameters

P4-00★	ASH1 Fault Record (N)		Address: 0400H 0401H	
	Operation Interface: Keypad / Software Communication		Related Section: Section 4.4.1	
	Default: 0			
	Control Mode: ALL			
:	L	Unit: N/A		
	Rar	Range::N/A		
<u>-</u>	Data S	Data Size: 32-bit		
	Disp Forr	olay Hexadecimal mat:		

Settings:

This parameter is used to set the most recent fault record.

Display of Low Word: LXXXX: It indicates the fault code, i.e. alarm code

Display of High Word: hYYYY: It indicates the corresponding CANopen error code.

P4-01★	ASH2	Fault Record (N-1)		Address: 0402H 0403H
	Operation Interface: Keypad / Software Communication		Related Section:	
		· .	· · · · · · · · · · · · · · · · · · ·	Section 4.4.1
	Default::0			
	Con Mo	trol ode: ALL		
	U	Init: N/A		
	Ran	nge: N/A		
	Data S	ize: 32-bit		
	Disp Forn	Hexagecimai		

Settings:

This parameter is used to set the second most recent fault record.

Display of Low Word: LXXXX: It indicates the fault code, i.e. alarm code.

Display of High Word: hYYYY: It indicates the corresponding CANopen error code.

ASH3 Fa	alt Record (N-2)		Address: 0404H 0405H
Operatio	n Keypad / Software	Communication	Related Section:
Default::0		Section 4.4.1	
Control Mode: ALL			
Unit: N/A			
Range	Range: N/A		
Data Size: 32-bit			:
Display Hexadecimal Format:			
	Operatio Interface Default Contro Mode Unit Range Data Size	Operation Interface: Default: 0 Control Mode: Unit: N/A Range: N/A Data Size: 32-bit Display Hexadecimal	Operation Interface: Keypad / Software Communication Default: 0 Control Mode: ALL Unit: N/A Range: N/A Data Size: 32-bit Display Hexadecimal

This parameter is used to set the third most recent fault record.

Display of Low Word: LXXXX: It indicates the fault code, i.e. alarm code.

Display of High Word: hYYYY: It indicates the corresponding CANopen error code.

P4-03★	ASH4 Fault Record (N-3)	Address: 0406H 0407H
	Operation Interface: Keypad / Software Communication	Related Section:
	}	Section 4.4.1
	Default: 0	
	Control Mode: ALL	
	Unit: N/A	
	Range: N/A	
	Data Size: 32-bit	
	Display Hexadecimal Format:	

Settings:

This parameter is used to set the fourth most recent fault record.

Display of Low Word: LXXXX: It indicates the fault code, i.e. alarm code.

Display of High Word: hYYYY: It indicates the corresponding CANopen error code.

8-160 Revision September 2012

P4-0

04★	ASH5	Fault Record (N-4)		Address: 0408H 0409H
	Operat Interfa	ion Ace: Keypad / Software	Communication	Related Section: Section 4.4.1
:		ult: 0		Jection 4.4.1
	Con Mo	trol ode: ALL		
	U	nit: N/A		· · · · · · · · · · · · · · · · · · ·
	Ran	ige: N/A		
:	Data S	ize: 32-bit		
	Disp Forn	Hexadecimal		

Settings:

This parameter is used to set the fifth most recent fault record.

Display of Low Word: LXXXX: It indicates the fault code, i.e. alarm code.

Display of High Word: hYYYY: It indicates the corresponding CANopen error code.

P4-05	JOG Operation	Address: 040AH 040BH
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface: No pad 7 Software	Section 4.4.2
	Default: 20	
	Control Mode: ALL	
	Unit::r/min	:
	Range: 0 ~ 5000	
	Data Size::16-bit	:
	Display Decimal Format:	

Settings:

JOG operation command:

- 1. Operation Test
 - (1) Press the SET key to display the JOG speed. (The default value is 20 r/min).
 - (2) Press the UP or DOWN arrow keys to increase or decrease the desired JOG speed. (This also can be undertaken by using the SHIFT key to move the cursor to the desired unit column (the effected number will flash) then changed using the UP and DOWN arrow keys).
 - (3) Press the SET when the desired JOG speed is displayed. The Servo Drive will display "JOG".
 - (4) Press the UP or DOWN arrow keys to jog the motor either P(CCW) or N(CW) direction. The motor will only rotation while the arrow key is activated.
 - (5) To change JOG speed again, press the MODE key. The servo Drive will display "P4 05". Press the SET key and the JOG speed will displayed again. Refer back to #(2) and #(3) to change speed.

- (6) In JOG operation mode, if any fault occurs, the motor will stop running. The maximum JOG speed is the rated speed of the servo motor.
- 2. DI Signal Control

Set the value of DI signal as JOGU and JOGD (refer to Table 8.A). Users can perform JOG run forward and run reverse control.

3. Communication Control

To perform a JOG Operation via communication command, use communication addresses 040AH and 040BH.

- (1) Enter 1 ~ 5000 for the desired JOG speed
- (2) Enter 4998 to JOG in the P(CCW) direction
- (3) Enter 4999 to JOG in the N(CW) direction
- (4) Enter 0 to stop the JOG operation

Please note that when using communication control, please set P2-30 to 5 to avoid that there are excessive writes to the system flash memory.

P4-06	

FOT	Force Output Contact	Control	Address: 040CH 040DH
	tion ace:: Keypad / Software ault::0	Communication	Related Section: Section 4.4.3
	ntrol ode:		
Ĺ	Jnit: N/A		
Rai	nge: 0 ~ 0xFF		
Data S	Size: 16-bit		
Disp Forr	olay Hexadecimal nat:		

Settings:

The function of Digital Outout (DO) is determined by the DO setting value. The user can set DO setting value (0x30 \sim 0x3F) via communication and then write the values into P4-06 to complete the settings.

Bit00 corresponds with DO setting value 0x30

Bit01 corresponds with DO setting value 0x31

Bit02 corresponds with DO setting value 0x32

Bit03 corresponds with DO setting value 0x33

Bit04 corresponds with DO setting value 0x34

Bit05 corresponds with DO setting value 0x35

Bit06 corresponds with DO setting value 0x36

Bit07 corresponds with DO setting value 0x37

Bit08 corresponds with DO setting value 0x38

Bit09 corresponds with DO setting value 0x39

Bit10 corresponds with DO setting value 0x3A

Bit11 corresponds with DO setting value 0x3B

Bit12 corresponds with DO setting value 0x3C

Bit13 corresponds with DO setting value 0x3D

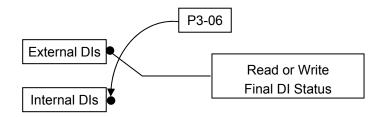
Bit14 corresponds with DO setting value 0x3E

Bit15 corresponds with DO setting value 0x3F

For example:

When P2-18 is set to 0x0130, it indicates that the state of DO1 is the Bit00 state of P4-06.

This parameter can also be used to force the state of DO signal. Please refer to $P2-18 \sim P2-22$ to assign the functions of digital outouts (DO signals) and section 4.4.3 for the Force Outputs Operation.


PΔ	ŀ-0	7	

ITST	Input Status		Address: 040CH 040DH
Operat	ion .ce: Keypad / Software	Communication	Related Section:
interra	.ce.;	3.;	Section 4.4.4
Defa			Section 9.2
Cont Mo	rol de: ALL		
U	nit::N/A		·
Ran	ge::0 ~ 3fFF		7 1 1
Data Si	ze: 16-bit		
Displ Form	Hexadecimal		

Settings:

The control of digital inputs can be determined by the external terminals (DI1 \sim DI8, EDI9 \sim EDI14) or by the internal software digital inputs SDI1 \sim SDI14 (corresponds to Bit0 \sim Bit13 of P4-07) via communication (upon software).

Please refer to P3-06 and section 9.2 for the setting method.

Read P4-07: Display the final status of DI input signal.

Write P4-07: Write the status of software digital inputs SDI1 ~ SDI14

(No matter the servo drive is controller through digital keypad or communication control, the function of this parameter is the same.)

For example:

External Control: Display the final status of DI input signal

When the read value of P4-07 is 0x0011, it indicates that DI1 and DI5 are ON.

Communication Control (Internal DIs): Read the status of input signal (upon software).

For example:

When the write value of P4-07 is 0×0011 , it indicates that software digital inputs SDI1 and SDI5 are ON.

Bit0 \sim Bit7 corresponds with DI1 \sim DI8. Bit8 \sim Bit14 corresponds with EDI9 \sim EDI14.

For the settings of DI1 \sim DI8, please refer to P2-10 \sim P2-17. For the settings of EDI9 \sim EDI14, please refer to P2-36 \sim P2-41.

P4-08★	PKEY	PKEY Digital Keypad Input of Servo Drive		Address: 0410H 0411H
	Operation Interface: Keypad / Software Communication Default: N/A Control Mode: ALL Unit: N/A		Related Section: N/A	
5 5 7 8				
	Rar	nge: Read only		
:	Data Size: 16-bit			
	Disp Forn	Hexadecimal		

Settings:

This parameter is used to check if MODE, UP, DOWN, SHIFT, and SET keys on the drive keypad being pressed or not. It is used to examine if these five keys work normally via communication during production.

P4-09★	МОТ	Output Status		Address: 0412H 0413H
:	Operation Keypad / Software Communication		Related Section:	
: 5 :		nult: N/A	·	Section 4.4.5
	Con Mc	trol ode:		
	U	Jnit: N/A		
: :	Rar	nge: 0 ~ 0x1F		
	Data S	ize: 16-bit		
	Disp Forn	Hexagecimai		

Settings:

There is no difference when reading DO output signal via the drive keypad or the communication. For the status of DO output signal, please refer to P2-18 ~ P2-22.

8-164 Revision September 2012

P4-10

	CEN	Adjustment Function		Address: 0414H 0415H
	Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: N/A
:		ult: 0		7 : : :
	Con Mo	trol de: ALL		
	U	nit::N/A		
	Ran	ge::0 ~ 6		
:	Data Si	ze: 16-bit		7 : : :
	Disp Form	1)ecimal		

Settings:

- 0: Reserved
- 1: Execute analog speed input drift adjustment
- 2: Execute analog torque input drift adjustment
- 3: Execute current detector (V phase) drift adjustment
- 4: Execute current detector (W phase) drift adjustment
- 5: Execute drift adjustment of the above 1~4
- 6: Execute IGBT NTC calibration

Please note:

- 1. This adjustment function is enabled after parameter P2-08 is set to 20.
- When executing any adjustment, the external wiring connected to analog speed or torque must be removed and the servo system should be off (Servo off).

P4-11	SOF1	Analog Speed Input Di	rift Adjustment 1	Address: 0416H 0417H
	Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: N/A
	Defa	ult: Factory setting		7 : : :
	Cont Mo	trol de: ALL		
	Uı	nit: N/A		
	Ran	ge: 0 ~ 32767		: : :
	Data Si	ze: 16-bit		
	Displ Form	Decimal		

Settings:

The adjustment functions from P4-11 through P4-19 are enabled after parameter P2-08 is set to 22. Although these parameters allow the users to execute manual adjustment, we still do not recommend the users to change the default setting value of these parameters (P4-11 \sim P4-19) manually.

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

-12	SOF2	Analog Speed Input Di	rift Adjustment 2	Address: 0418H 0419H
	Operat Interfa	ion ce: Keypad / Software	Communication	Related Section: N/A
	Defai	ult: Factory setting		7 : :
	Cont Mo	rol de: ALL		
	Uı	nit: N/A		
	Ran	ge:∶0 ~ 32767		• • •
	Data Si	ze: 16-bit		7 : :
	Displ Form	Decimal		

Refer to P4-11 for explanation.

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

P4-13	TOF1	Analog Torque Drift A	djustment 1	Address: 041AH 041BH
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Default::Factory setting			
	Control Mode: ALL			
	Unit::N/A			7
	Rar	nge: 0 ~ 32767		7 : : :
	Data Size: 16-bit		- - - -	
	Disp Forn	lay Decimal nat:		

Settings:

Refer to P4-11 for explanation.

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

P4-14	TOF2	Analog Torque Drift A	djustment 2	Address: 041CH 041DH
	Operation Keypad / Software Communication		Related Section: N/A	
	Defa	ult: Factory setting		:
	Con Mo	trol ode: ^{ALL}		
	U	Init: N/A		
	Rar	nge∷0 ~ 32767		:
	Data S	ize: 16-bit		
	Disp Forn	:Decimai		

8-166 Revision September 2012

Refer to P4-11 for explanation.

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

P4-15	(() -	Current Detector Drift (V1 phase)	Adjustment	Address: 041EH 041FH
	Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: N/A
	Default: Factory setting			
	Control Mode: ALL			
	Unit::N/A			
	Ran	ge: 0 ~ 32767		7 : : :
	Data Si	ze::16-bit		
	Displ Form	Decimai		- 1 1

Settings:

Refer to P4-11 for explanation.

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

P4-16	COF2	COF2 Current Detector Drift Adjustment (V2 phase)		Address: 0420H 0421H
	Operation Interface: Keypad / Software Communication		Related Section: N/A	
	Default: Factory setting			7 1 1
	Control Mode: ALL			
	Unit::N/A			
	Rar	nge: 0 ~ 32767		
	Data S	Size: 16-bit		· ·
	Disp Forr	Decimal mat:		

Settings:

Refer to P4-11 for explanation.

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

P4-17	COF3	(W1 phase)	•			
	Operat Interfa	tion ace: Keypad / Software	Related Section: N/A			
		ult: Factory setting] :			
	Con Mc	trol ode:				
	U	Jnit: N/A				
	Rar	nge: 0 ~ 32767		; ; ;		
	Data S	ize: 16-bit	- · ·			
	Disp Forn	Decimal				

Refer to P4-11 for explanation.

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

P4-18	(() – 4	Current Detector Drift (W2 phase)	Adjustment	Address: 0424H 0425H
	Operat Interfa	tion ace: Keypad / Software	Related Section: N/A	
	-	ult: Factory setting		
	Con Mo	trol ode: ALL		
	U	Jnit: N/A		7: 1 :
	Rar	nge∷0 ~ 32767		
	Data S	ize: 16-bit	7 1 1	
	Disp Forn	Decimal		

Settings:

Refer to P4-11 for explanation.

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

TIGB	IGBT NTC Calibration		Address: 0426H 0427H
Operation Interface: Keypad / Software Communication		Related Section: N/A	
Default: Factory setting			
Con ⁻ Mo	trol ode: ALL		
U	nit: N/A		
Ran	ige: 1 ~ 3		
Data Size: 16-bit			
	:Decimal		
	Defa Con Mo U Rar Data S	Default: Factory setting Control ALL Mode: Unit: N/A Range: 1 ~ 3 Data Size: 16-bit	Default: Factory setting Control ALL Mode: Unit: N/A Range: 1 ~ 3 Data Size: 16-bit Display Decimal

8-168 Revision September 2012

Refer to P4-11 for explanation.

When executing this auto adjustment, please ensure to cool the servo drive to 25° C.

P4-20	DOF1	Analog Monitor Outpu (MON1)	ıt Drift Adjustment	Address: 0428H 0429H
	' ' Keypad / Software Communication		Related Section: Section 6.4.4	
	Default::Factory setting			
	Con Mo	trol ode: ALL		
	L	Jnit: mV		
	Rar	nge::-800 ~ 800		
	Data S	ize: 16-bit		
	Disp Forr	Decimai		

Settings:

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

P4-21	DOF2	Analog Monitor Outpu (MON2)	Analog Monitor Output Drift Adjustment (MON2)		
	Keypad / Software Communication		Related Section: Section 6.4.4		
	Defa	ıult: 0	: : :		
	Control Mode: ALL				
	Unit:imV				
	Rar	nge: -800 ~ 800		† : :	
	Data Size::16-bit		7 : :		
	Disp Forn	Decimal			

Settings:

Please note that when P2-08 is set to 10, the users cannot reset this parameter.

24-22	SAO An	alog Speed Input Of	Address: 042CH 042DH	
	Operation Interface:	Keypad / Software	Communication	Related Section: N/A
	Default:	0		- - - -
	Control Mode:			
	Unit:	mV		
	Range:	-5000 ~ 5000		• • •
	Data Size:	16-bit		7 : :
	Display Format:	Decimal		

In speed mode, the users can use this parameter to add an offset value to analog speed input.

P4-23	TAO	Analog Torque Input (Address: 042EH 042FH	
	Operation Interface: Keypad / Software Communication			Related Section: N/A
	Defa	ıult: 0		
	Con Mo	trol T ode: T		
	U	Init: mV		
	Range: -5000 ~ 5000 Data Size: 16-bit			
			•	
	Disp Forn	i Decimal		

Settings:

In speed mode, the users can use this parameter to add an offset value to analog speed input.

8-170 Revision September 2012

220V Series

P4-24	LVL	Undervoltage Error Le	Indervoltage Error Level		
	Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: N/A	
	Default::160				
	Con Mo	trol ode: ALL			
	U	nit: V (rms)		- 	
	Ran	ıge∷140 ~ 190			
	Data S	ize: 16-bit			
	Disp Forn	Decimal		7-7 1 1 1 1 1 1 1 1 1 1	

Settings:

When DC Bus voltage is lower than the value of P4-24 x $\sqrt{2}$, the fault, Undervoltage will occur.

400V Series

P4-24	LVL	Undervoltage Error Le	Jndervoltage Error Level			
	Operation Interface: Keypad / Software Communication		Related Section: N/A			
	Default::320					
	Control Mode: ALL					
	U	Jnit: V (rms)	- - -			
	Ran	nge: 140 ~ 380		7 1 1 1		
	Data Size: 16-bit		· · ·			
	Disp Forn	Decimai				

Settings:

When DC Bus voltage is lower than the value of P4-24 x $\sqrt{2}$, the fault, Undervoltage will occur.

Group 5: P5-xx Motion Control Parameters

P5-00	Reserved (Do Not Use)	Address: 0500H 0501H
P5-01	Reserved (Do Not Use)	Address: 0502H 0503H
P5-02	Reserved (Do Not Use)	Address: 0504H 0505H
P5-03	PDEC Deceleration Time of Protectin Function	Address: 0506H 0507H
	Operation Interface: Keypad / Software Communication	Related Section: N/A
	Default: 0XE0EFEEFF	:
	Control Mode: ALL	
	Unit::N/A	:
	Range: 0x00000000 ~ 0xF0FFFFF	
	Data Size: 32-bit	
	Display Hexadecimal Format:	

Settings:

Display	High Word				Low Word			
Display	D	С	В	Α	W	Z	Y	X
Function	STP	Reserved	СТО	OVF	SNL	SPL	NL	PL
Range	0 ~ F	-	0 ~ F	0 ~ F	0 ~ F	0 ~ F	0 ~ F	0 ~ F

This parameter is used to set motor deceleration when protection functions, such as STOP (Motor stop), OVF (Position command overflow), SNL (Reverse software limit), SPL (Forward software limit), NL (Reverse inhibit limit) or PL (Forward inhibit limit), etc. are activated.

- Deceleration time of protection functions include: OVF, CTO(AL020), SPL, SNL, PL, NL
- 2. Deceleration time of motor stop command: STP

When entering P5-03, Lower Word display will show first. After pressing SHIFT key on the drive keypad, the High Word display will show next.

The values from 0 through F correspond with the setting values from P5-20 through P5-35.

For example, when the setting value X is set to A, it indicates that the motor PL deceleration time is determined by parameter P5-30.

8-172 Revision September 2012

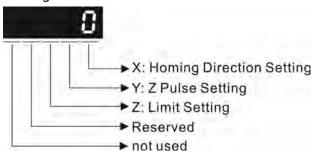
P5-04

HMOV Homing Mode

Operation Interface: Keypad / Software Communication

Default: 0

Control Mode: PR


Unit: N/A

Range: 0 ~ 0x128

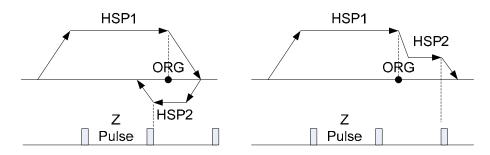
Data Size: 16-bit

Display Format: Hexadecimal

Settings:

This parameter is used to determine the homing characteristics of the servo motor.

Display	W	Z	Y	X
Function	Reserved	Limit setting	Z pulse setting	Homing direction setting
Range	-	0 ~ 1	0 ~ 2	0 ~ 8
Settings		-	Y=0: Stop and return to Z pulse. Y=1: Go forward to Z pulse. Y=2: Ingore Z pulse	X=0: Move forward to PL(CCWL) used as home. X=1: Move reverse to NL(CWL) used as home.
		When there is a limit: Z=0: After reaching the limit, activate		X=2: Move forward to dedicated home sensor (ORGP: OFF → ON)
	the limit signal. Z=1: After reaching the limit, the motor will run in the		X=3: Move reverse to dedicated home sensor (ORGP: OFF → ON)	
		reverse direction.	-	X=4: Move forward and regard Z pulse as home sensor.


Display	W	Z	Y	X
Function	Reserved	Limit setting	Z pulse setting	Homing direction setting
Range	-	0 ~ 1	0 ~ 2	0 ~ 8
				X=5: Move reverse and regard Z pulse as home sensor.
			Y=0: Stop and return to Z pulse. Y=1: Go forward to Z pulse. Y=2: Ingore Z pulse	X=6: Move forward to dedicated home sensor (ORGP: ON → OFF)
				X=7: Move reverse to dedicated home sensor (ORGP: ON → OFF)
		-	-	X=8: Regard current position as home sensor

P5-05	HSPD1	1st Speed Setting of H	Address: 050AH 050BH	
	Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ult: 100.0	1000	:
	Con Mo	trol ode: ALL		
	U	nit: 1 r/min	0.1 r/min	· · · · · · · · · · · · · · · · · · ·
	Ran	ige: 0.1 ~ 2000.0	1 ~ 20000	
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		
	Input Va Exam	lue ple: 1.5 = 1.5 r/min	15 = 1.5 r/min	

This parameter is used to set the initial (high speed) homing speed.

The homing operation of the servo motor involves two homing speed settings. When homeing is triggered, the servo motor will proceed at a high speed speed until a home sensor is detected. The servo motor will then move reverse at a low speed speed until off of the home sensor, and finally will stop at the next Z pulse.

8-174 Revision September 2012

P5-06	HSPD2 2nd Speed Setting of	Address: 050CH 050DH	
	Operation Interface: Keypad / Software	Communication	Related Section: N/A
	Default: 20.0	200	
	Control Mode: ALL		
	Unit: 1 r/min	0.1 r/min	
	Range: 1 ~ 500.0	10 ~ 5000	
	Data Size: 16-bit		
	Display Format:		
	Input Value Example: 15 = 15 r/min	150 = 1.5 r/min	

This parameter is used to set the secondary (low speed) homing speed. Refer to P5-05 for explanation.

P5-07■	PRCM Trigger Position Command (PR mode only)	Address: 050EH 050FH
	Operation Interface: Keypad / Software Communication	Related Section: N/A
	Default: 0	
	Control Mode: PR	
	Unit: N/A	
	Range: 0 ~ 1000	
	Data Size::16-bit	
	Display Decimal Format:	

Settings:

There are 64 stored positions can be programmed via a combination of the POSO ~ POS5 commands. This parameter is used to trigger the dedicated position command in PR mode and command the motor to move to the dedicated position instead of using DI (Digital Input) CTRG and POSO ~ POS5.

0: Start homing function.

When entering P5-07, the default setting value 0 will display. Pressing SET key on the drive keypad, the servo motor will start homing operation.

 $1 \sim 63$: Trigger Position Command (This function is equivalent to the function of DI CTRG signal + POSn signal).

When P5-07 is set to $1 \sim 63$, the dedicated position command can be triggered and the servo drive will command the motor move to the the dedicated position. For example, when P5-07 is set to 1, the position command P1 is triggered and the servo drive will command the motor to move to the position which correspond the position command P1.

64 ~ 9999: Write inhibit (Invaild setting value)

1000: Stop positioning.

When P5-07 is set to 1000, the motor stop command will be activated. This function is equivalent to the function of DI STOP signal.

The display value of P5-07:

- 1. When the motor does not receive the drive command (the motor is not running), if the users read P5-07 at this time, the display value of P5-07 will be the setting value of P5-07
- 2. When the position command is triggered and the motor start runningbut does not reach the dedicated position (during positioning, the motor is running), if the users read P5-07 at this time, the display value of P5-07 will be setting value of P5-07 plus 10000.
- 3. When the position command is triggered and the motor reachs the dedicated position (the positioning is completed and the motor stop running), if the users read P5-07 at this time, the display value of P5-07 will be setting value of P5-07 plus 20000.

For example, when P5-07 is set to 3, it indicates that the position command P3 will be triggered.

- 1. If the display value of P5-07 is 3, it indicates that the motor does not receive the drive command and the motor is not running.
- 2. If the display value of P5-07 is 100003, it indicates that the position command is triggered but the positioning is not completed.
- 3. If the display value of P5-07 is 200003, it indicates that the position command is triggered and the positioning is completed.

8-176 Revision September 2012

8	SWLP	Forward Software Limit		Address: 0510H 0511H
	Operat Interfa	ion Ice: Keypad / Software	Related Section: N/A	
		ult: 2147483647		7 : : :
	Control Mode: PR			
	U	nit::PUU		
	Ran	ge::-2147483648 ~ +21	47483647	
	Data S	ize: 32-bit		7 : : :
	Disp Forn	:Decimal		

In PR mode, this parameter is used to set the threshold of forward software limit. When the motor operates in forward direction, if the position command is equal to or more than this parameter, i.e. the setting value of P5-08 is reached, the fault AL283 (forward software limit) will be activated.

P5-09			Reverse Software Limit		
	Operat Interfa	tion ace: Keypad / Software	n Keypad / Software Communication		
	Defa	ıult: -2147483648			
	Control PR Mode:				
	Unit::PUU				
	Rar	nge:-2147483648 ~ +21	47483647		
	Data Size: 32-bit				
	Disp Forn	Decimal			

Settings:

In PR mode, this parameter is used to set the threshold of reverse software limit. When the motor operates in reverse direction, if the position command is equal to or more than this parameter, i.e. the setting value of P5-09 is reached, the fault AL285 (reverse software limit) will be activated.

P5-10★	AYSZ	Data Array: Data Amo	Address: 0514H 0515H	
	Operat	tion ace: Keypad / Software	Communication	Related Section:
	Interfa	ace:		Section 7.2
		ult: N/A		· · ·
	Con Mo	trol ode:		
	Unit::N/A			
	Ran	ange∷Read only		
:	Data Size: 16-bit			7 : :
	Disp Forn	Decimal		

This parameter is used to set the data amount of data arrady (N \times 32 bits). N is the capacity of the data array.

P5-11■	AYID Data Array: Read / Write Address	Address: 0516H 0517H
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface:	Section 7.2
	Default: 0	:
	Control Mode: ALL	
	Unit: N/A	
	Range: 0 ~ (P5-10-1)	
	Data Size::16-bit	
Display Format:		:

Settings:

This parameter is used to set the data address when reading and writing data array.

P5-12■	AYD0 Data Array: Read / Write Data Block 1	Address: 0518H 0519H
	Operation Interface: Keypad / Software Communication	Related Section:
	Default::0	Section 7.2
	 	
	Control Mode: ALL	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

8-178 Revision September 2012

This parameter is used to read the data block 0 of data arrady (Array[P5-11++]). For example, when P5-11 is set to 100, the first read data displayed by P5-12 is the 100th data, the secondary read data is 101+1=102th data, the third read data is 102+1=103th data and vise versa. By the same logic, when P5-11 is set to 100, the first written data displayed by P5-12 is the 100th data, the secondary written data is 101+1=102th data, the third written data is 102+1=103th data and vise versa. However, if P5-12 is read via the drive keypad, only the 101th data will be read.

P5-13■	AYD1 D	Data Array: Read / Wri	Address: 051AH 051BH	
	Operatio Interfac	n e: Keypad / Software	Communication	Related Section: Section 7.2
:	Defaul	lt::0		
	Contr Mod	ol e: ALL		
:	Uni	it: N/A		1 : : :
:	Rang	e:-2147483648 ~ +21		
	Data Siz	e: 32-bit	32-bit	
; ; ; ;	Display Format:			

Settings:

This parameter is used to read the data block 2 of data arrady (Array[P5-11++]).

The usage of this parameter is the same as the parameter P5-12. Only one function is different. When P5-12 is read via the drive keypad, the first read data displayed by P5-12 is the 100th data, the secondary read data is 101+1=102th data, the third read data is 102+1=103th data and vise versa. It indicates that using P5-13 can read more than one data via the drive keypad. Please note that using P5-13 can not write data via the drive keypad.

5-14	Reserved (Do Not Use)	Address: 051CH 051DH
5 	PMEM PATH 1 ~ PATH 2 Data Not Retained Setti	Address: 051EH 051FH
	Operation Interface: Keypad / Software Communication	Related Section: N/A
	Default: 0x0	
	Control Mode: ALL	
	Unit::N/A	
	Range::0x0 ~ 0x0011	
	Data Size::16-bit	
	Display Hexadecimal Format:	

This parameter is designed for the users who need to change the positioning point frequently via communication.

Display	0	0	Y	X
Range	-	-	0 ~ 1	0 ~ 1

X=0: The data of PATH 1 (P6-02 ~P6-03) will be retained (memorized) when the power goes off.

X=1: The data of PATH 1 (P6-02 \sim P6-03) will not be retained (memorized) when the power goes off.

Y=0: The data of PATH 2 (P6-04 ~P6-05) will be retained (memorized) when the power goes off.

Y=1: The data of PATH 2 (P6-04 \sim P6-05) will not be retained (memorized) when the power goes off.

Other settings: Reserved

D5.1	7
5	_

AXEN	Axis Position: Motor E	Address: 0520H 0521H	
Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: Section 7.3
Defa	ult:[0		
Con Mo	trol de: ALL		
U	nit: PUU (user unit)		
Ran	ge:-2147483648 ~ +21	47483647	
Data S	ize: 32-bit		
Disp Form	Decimal		

Settings:

Read function: This parameter is used to read the actual position of the motor encoder, i.e. the monitor variable V000 + deviation value.

Write function (available in firmware version V1.015 and later models only):

The users can write any value and doing this will no change the value of monitor variable V000 and will not affect the position coordinate either.

8-180 Revision September 2012

P5-1 <i>7</i>		xis Position: Auxiliar Pulse Command Feed	•	Address: 0522H 0523H
	Operatio Interface	n Keypad / Software	Communication	Related Section: Section 7.3
	Default	t::N/A		· ·
	Contro Mode	ALL		
	Unit	t: pulse		7 1 1
	Range::-2147483648 ~ +2147483647		· · · · · · · · · · · · · · · · · · ·	
	Data Size	e: 32-bit		
	Display Format	il)ecimal		

This parameter is used to send back the pulse counts of the auxiliary encoder (linear scale).

P5-18	AXPC	Axis Position: Pulse Co	Address: 0524H 0525H	
	Operati Interfa	Keypad / Software Communication		Related Section: Section 7.3
	Defau			
	Control Mode: ALL			
	Unit: pulse			
	Rang	ge:-2147483648 ~ +21	47483647	
	Data Size: 32-bit			
	Displa Form	Decimal		

Settings:

This parameter is used to send back the pulse counts of pulse command.

P5-19	TBS	E-Cam Curve Scaling	Address: 0526H 0527H	
	Operat	tion Keypad / Software	Communication	Related Section:
	Operation Interface: Keypad / Software Communication			Section 7.3
	Defa	ult: 1.000000		
	Con Mo			
	U	Init: 0.000001 times, i.e.		
	Range: -2147.000000 ~ +2147.000000			
	Data S	ize: 32-bit	:	
	Disp Forn	´ :Decimal		
	Input Va Exam	lue : ple::1100000 = 1.1 time	S	

Settings: (available in firmware version V1.017 and later models only)

This parameter is used to magnify or minify the E-Cam table without changing the setting value of the E-Cam table.

For example:

When the data of the table is 0,10,20,30,40,20, if the magnification is set to 2.000000, it is equal to the data 0,20,40,60,80,40 which the magnification is set to 1.000000.

When using the same pulse frequency of master axis to drive E-Cam operation, increasing the setting value of P5-19 will magnify the route of E-Cam operation and increase the operation speed as well.

Please note:

- 1. This parameter can be set any time. However, it is effective only when the electronic gear is engaged.
- 2. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-20	AC0	Accel / Decel Time 0	Address: 0528H 0529H	
	Operat	tion Ace: Keypad / Software	Communication	Related Section:
	Interra	ace:	: 	Section 7.10
	Defa	ult: 200	· · ·	
	Control Mode: PR			
	U	lnit: ms		- - -
	Ran	nge: 1 ~ 65500		1 : :
	Data S	ize: 16-bit		
	Disp Forn	· Decimal		7

Settings:

In PR mode, this parameter is used to set the acceleration and deceleration time, i.e. the necessary time when the motor reachs the speed of 3000 r/min from 0.

P5-21	AC1	Accel / Decel Time 1		Address: 052AH 052BH
	Operat	tion Ace: Keypad / Software	Communication	Related Section:
	interra	ace:	: :	Section 7.10
	Defa	ult: 300		: : :
	Con Mo	trol ode:		
	U	lnit: ms		:
	Ran	nge: 1 ~ 65500		
		ize: 16-bit		
	Disp Forn	lay Decimal nat:		74 4 4 5 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Settings:	Refer to P5-20 for expla	nation.	

8-182 Revision September 2012

P5-22	AC2	Accel / Decel Time 2	Address: 052CH 052DH	
	Opera	tion ace: Keypad / Software	Communication	Related Section:
	Interf	ace:		Section 7.10
	Defa	ult: 500	:	
	Control Mode: PR			
	Unit::ms			
	Range::1 ~ 65500		:	
	Data Size::16-bit			
	Disp Forn	Decimai		

P5-23	AC3 Accel / Decel Time 3	Address: 052EH 052FH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 600	
	Control Mode: PR	
:	Unit: ms	
	Range::1 ~ 65500	
	Data Size: 16-bit	
	Display Format:	: : : : : :

Settings: Refer to P5-20 for explanation.

P5-24	AC4 Accel / Decel Time 4	Address: 0530H 0531H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 800	Section 7.10
	Control Mode: PR	
	Unit: ms	
	Range: 1 ~ 65500	
	Data Size: 16-bit	
	Display Format:	

Settings: Refer to P5-20 for explanation.

P5-25	AC5	Accel / Decel Time 5		Address: 0532H 0533H
	'. c Keypad / Software Communication		Related Section: Section 7.10	
	Default: 900			
	Con Mo			
	U			
	Ran	nge: 1 ~ 65500		
	Data S	ize: 16-bit		7 : : :
	Disp Forn	Decimal		

P5-26	AC6	Accel / Decel Time 6		Address: 0534H 0535H
	' ' Keypad / Software Communication		Related Section: Section 7.10	
	Defa			
	Cont Mo			
	Uı	7 1 1		
	Ran	ge::1 ~ 65500		
	Data Si	ze: 16-bit		
	Displ Form	Decimal		

Settings: Refer to P5-20 for explanation.

P5-27	AC7 Accel / Decel Time 7	Address: 0536H 0537H
	Operation Keypad / Software Communication	Related Section:
	Default: 1200	Section 7.10
	Control Mode: PR	
	Unit: ms	
	Range: 1 ~ 65500	
	Data Size: 16-bit	
	Display Format:	

Settings: Refer to P5-20 for explanation.

8-184 Revision September 2012

P5-28	AC8	Accel / Decel Time 8		Address: 0538H 0539H
	Operat	tion ace: Keypad / Software	Communication	Related Section:
	Interf	ace:		Section 7.10
	Defa	ıult: 1500		
	Control Mode: PR			
	U	Init: ms		
	Rar	nge: 1 ~ 65500		
	Data Size: 16-bit			
	Disp Forn	Decimai		

P5-29	AC9	Accel / Decel Time 9		Address: 053AH 053BH
	Operation of the contract of t	on: ce::Keypad / Software	Communication	Related Section: Section 7.10
	Default::2000			
	Contr Mod	rol de:: ^{PR}		
:	Un	nit: ms		
	Rang	ge::1 ~ 65500		
	Data Siz	ze::16-bit		
	Displa Forma	Decimal		

Settings: Refer to P5-20 for explanation.

P5-30	AC10 Accel / Decel Time 10	Address: 053CH 053DH
	Operation Interface: Keypad / Software Communic	Related Section: Section 7.10
	Default: 2500	
	Control Mode: PR	
	Unit: ms	
	Range: 1 ~ 65500	
	Data Size: 16-bit	
	Display Decimal Format:	

Settings: Refer to P5-20 for explanation.

P5-31	AC11	Accel / Decel Time 11		Address: 053EH 053FH
	Keypad / Software Communication		Related Section: Section 7.10	
				Section 7.10
	Control PR Mode:			
	Unit::ms			
	Range::1 ~ 65500			
	Data Size: 16-bit		7 : :	
	Disp Forn	Decimal		

P5-32	AC12 Accel / Decel Time 12	Address: 0540H 0541H
	Operation Interface: Keypad / Software Communication	Related Section:
	Default::5000	Section 7.10
	+	-
	Control Mode: PR	
	Unit: ms	
	Range: 1 ~ 65500	<u>:</u>
	Data Size: 16-bit	
	Display Format:	

Settings: Refer to P5-20 for explanation.

P5-33	AC13 Accel / Decel Time 13	Address: 0542H 0543H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 8000	Jection 7.10
	Control Mode: PR	
	Unit: ms	
	Range: 1 ~ 65500	
	Data Size: 16-bit	
	Display Pormat:	

Settings: Refer to P5-20 for explanation.

8-186 Revision September 2012

1	AC14	Accel / Decel Time 14		Address: 0544H 0545H
	Operat	ion Ace: Keypad / Software	Communication	Related Section:
	Interfa	ace: 'Co'paa', sortmare		Section 7.10
	Defa	ult: 50		· · ·
	Control PR Mode:			
	U	nit: ms		
	Ran	ige::1 ~ 65500		-
	Data Size: 16-bit			7 : :
	Disp Forn	:Decimai		

The default setting value of this parameter is smaller and it is for the deceleration setting when protection function is activated.

P5-35	AC15 Accel / Decel Time 15			Address: 0546H 0547H
	Operat	tion ace: Keypad / Software	Communication	Related Section:
			; 	Section 7.10
	Defa	ult: 30		:
	Con Mo	trol ode: PR		
	U	nit: ms		- - -
	Ran	nge: 1 ~ 65500		7 1 1 1
	Data S	ize: 16-bit		:
	Disp Forn	· Decimal		

Settings: Refer to P5-20 for explanation.

The default setting value of this parameter is smaller and it is for the deceleration setting when the motor stops in high speed.

P5-36	CAST	CAPTURE: Start Addres	ss of Data Array	Address: 0548H 0549H
	Operat	tion ace: Keypad / Software	Communication	Related Section:
	;	;		Section 7.11.1
	Defa	ult::0		
	Control Mode: ALL			
	Unit: N/A			
	Range: 0 ~ (P5-10-1)			
	Data Size::16-bit			
	Disp Forn	TITECHINAL		

This parameter is used to specify the start address which captures the first point data and save it into data array.

Please note:

This parameter can be set only when capture operation is stopped (Refer to P5-39).

P5-37■	CAAX	CAPTURE: Axis Positio	n CNT	Address: 054AH 054BH
	Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: Section 7.11.1
	Defa	ult: 0		
	Cont Mo	trol de: ALL		
	U	nit: N/A		· • • • • • • • • • • • • • • • • • • •
	Range: -2147483648 ~ +2147483647 Data Size: 32-bit		47483647	
			- • •	
	Displ Form	Decimal		

Settings:

This parameter can be set only when capture operation is stopped (Refer to P5-39).

Please note:

- 1. Do not change this parameter when the capture source is the motor encoder.
- 2. When the capture source is the motor encoder, the value of this parameter is reset to the motor encoder feedback position (monitor variable is 00h).

P5-38 ■	CANO CAPTURE: Capture Amount	Address: 054CH 054DH
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface:	Section 7.11.1
	Default: 1	
	Control Mode: ALL	
	Unit: N/A	:
	Range: 1 ~ (P5-10 - P5-36)	
	Data Size: 16-bit	:
	Display Format:	

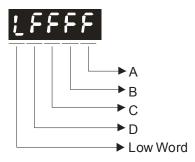
Settings:

When the compare function is not enabled, using this parameter can set the estimated capture amount (able to read and write).

Once the capture function is enabled, everytime when one position is captured, the setting value of P5-38 will decrease 1. When the setting value of P5-38 is equal to 0, it indicates that the capture operation has finished.

8-188 Revision September 2012

P5-391


Please note:

- 1. The total amount of COMPARE, CAPTURE and E-Cam data can not exceed the number of 800.
- 2. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

CACT	CAPTURE: Capture Sou	Address: 054EH 054FH	
Operation Interface: Keypad / Software Commu		Communication	Related Section: Section 7.11.1
Default: 0x2010			7 : :
 Cont Mo	trol de: ALL		
U	nit::N/A		
 Ran	ge: 0x0000 ~ 0xF13F		
Data Size: 16-bit			
Displ Form	Hexadecimai		

Settings:

This parameter is used to determine the capture source and enable the capture function.

A: Capture function settings:

Please refer to the following table and descriptions:

Bit	3	2	1	0
Function	Execute PR command when capture function has finished.	After first position is captured, the system will enable the compare function	After first position is captured, the position will be reset.	Start capture function
Explanation	After capture function has finished, execute PR # 50 command.	The compare function is enabled already, and this setting will become ineffective.	When the first point is captured, the position coordinate will be reset.	Setting Bit0 to 1 will enable the capture function. When capture function has finished, the value of Bit0 will be reset to 0 automatically.

Bit0: When the value of P5-38 is higher than 0, setting Bit0 to 1 will enable the capture function and the DO signal, CAP_OK is inactivated. Once the capture function is enabled, everytime when one position is captured, the setting value of P5-38 will decrease 1. When the setting value of P5-38 is equal to 0, it indicates that the capture operation has finished. Then, DO signal, CAP_OK will be activated and the value of Bit0 will be reset to 0 automatically.

When the value of P5-38 is equal to 0, setting Bit0 to 1 will not enable the capture function, the DO signal, CAP_OK will be inactivated and then the value of Bit0 will be reset to 0 automatically. If Bit0 is set to 1 already, the new setting value cannot be 1. The users only can set Bit0 to 0 to disable the capture function.

Bit1: When Bit1 is set to 1, after first position is captured, the system will set the value of the current position as the value of the parameter P5-76.

Bit2: When Bit2 is set to 1, after first position is captured, the system will enable the compare function (Bit0 of P5-59 is set to 1 and the value of P5-58 is set to the last compare amount). If the compare function is enabled already, this setting will become ineffective.

Bit3: When Bit3 is set to 1, after capture operation is completed (all positions has been captured), the position command P50 will be triggered immediately.

B: Capture source settings

- 0: Capture function is disabled.
- 1: Auxiliary encoder (linear scale).
- 2: Pulse command.
- 3: Motor encoder
- C: Activate state settings
- 0: Normally open (use N.O. contact)
- 1: Normally closed (use N.C. contact)
- D: Trigger time settings (unit: ms)

P5-40	DLY0	Delay Time 0		Address: 0550H 0551H
	Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: Section 7.10
	Defa	ult: 0		
	Cont Mo	trol de: PR	PR	
	U	nit: ms		
	Ran	ge: 0 ~ 32767		
	Data Si	ize::16-bit		· ·
	Displ Form	Decimai		

Settings:

In PR mode, this parameter is used to set the delay time for the first position.

8-190 Revision September 2012

P5-41	DLY1	Delay Time 1		Address: 0552H 0553H
	Operat	tion ace: Keypad / Software	Communication	Related Section:
	-			Section 7.10
	Defa	ult: 100		:
	Con Mo	trol ode: PR		
	U	nit: ms		
	Ran	ige: 0 ~ 32767		• • •
	Data S	ize: 16-bit		1 : : :
	Disp Forn	Decimal		

In PR mode, this parameter is used to set the delay time for the second position.

P5-42	DLY2	Delay Time 2		Address: 0554H 0555H
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section:
		ult: 200	. <u>:</u>	Section 7.10
	Control PR Mode: Unit::ms Range::0 ~ 32767			
	Data S	ize: 16-bit		7 1 1
	Disp Forn	:Decimal		

Settings:

In PR mode, this parameter is used to set the delay time for the third position.

DLY3 Delay Time 3	Address: 0556H 0557H
Operation Interface Keypad / Software Communication	Related Section:
Default: 400	Section 7.10
Control Mode: PR	
Unit: ms	
Range: 0 ~ 32767	
Data Size: 16-bit	:
Display Decimal Format:	
	Operation Interface: Keypad / Software Communication Default: 400 Control Mode: PR Unit: ms Range: 0 ~ 32767 Data Size: 16-bit Display Decimal

Settings:

In PR mode, this parameter is used to set the delay time for the fourth position.

P5-44	DLY4	Delay Time 4		Address: 0558H 0559H
	Operation Keypad / Software Communication		Related Section: Section 7.10	
	Defa	ult: 500		
	Con Mo	trol ode: PR		
	U	lnit: ms		
	Ran	nge: 0 ~ 32767		
	Data S	ize: 16-bit		
	Disp Forn	Decimal		

In PR mode, this parameter is used to set the delay time for the fifth position.

P5-45	DLY5 Delay Time 5	Address: 055AH 055BH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 800	
	Control Mode: PR	
	Unit: ms	
	Range: 0 ~ 32767	
	Data Size: 16-bit	:
	Display Decimal Format:	

Settings:

In PR mode, this parameter is used to set the delay time for the sixth position.

P5-46	DLY6	Delay Time 6		Address: 055CH 055DH
	Opera Interfa	tion ace: Keypad / Software	Communication	Related Section: Section 7.10
	÷	ıult: 1000		Section 7.10
	Con Mo	trol ode: PR		
	U	Jnit: ms		
	Rar	nge: 0 ~ 32767		
	Data S	ize: 16-bit		
	Disp Forr	Decimai		

Settings:

In PR mode, this parameter is used to set the delay time for the seventh position.

8-192 Revision September 2012

P5-47	DLY7	Delay Time 7		Address: 055EH 055FH
	Operat	tion ace: Keypad / Software	Communication	Related Section:
	Interfa	ace:		Section 7.10
	Defa	ıult: 1500		1 1 1 2
	Con Mc	trol ode: PR		
	U	Init: ms		
	Rar	nge: 0 ~ 32767		- - -
	Data S	ize: 16-bit		7 : :
	Disp Forn	Decimal		

In PR mode, this parameter is used to set the delay time for the eighth position.

P5-48	DLY8 Delay Time 8	Address: 0560H 0561H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 2000	
	Control Mode: PR	
	Unit: ms	
	Range: 0 ~ 32767	
	Data Size: 16-bit	:
	Display Decimal Format:	

Settings:

In PR mode, this parameter is used to set the delay time for the ninth position.

P5-49	DLY9 Delay Time 9	Address: 0562H 0563H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 2500	
	Control Mode: PR	
	Unit: ms	
	Range: 0 ~ 32767	
	Data Size: 16-bit	
	Display Decimal Format:	

Settings:

In PR mode, this parameter is used to set the delay time for the tenth position.

P5-50	DLY10 Delay Time 10	Address: 0564H 0565H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 3000	Section 7.10
	Control Mode: PR	
	Unit: ms	
	Range: 0 ~ 32767	
	Data Size: 16-bit	
	Display Format:	

In PR mode, this parameter is used to set the delay time for the eleventh position.

P5-51	DLY11 Delay Time 11	Address: 0566H 0567H
	Operation Interface: Keypad / Software Communication	Related Section:
	Default: 3500	Section 7.10
	Control Mode: PR	
	Unit: ms	
	Range: 0 ~ 32767	
	Data Size: 16-bit	:
	Display Decimal Format:	

Settings:

In PR mode, this parameter is used to set the delay time for the twelfth position.

P5-52	DLY12 Delay Time 12	Address: 0568H 0569H
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface: ' ' '	Section 7.10
	Default: 4000	•
	Control Mode: PR	
	Unit: ms	
	Range: 0 ~ 32767	
	Data Size: 16-bit	
	Display Format:	-
	Settings:	

Settings:

In PR mode, this parameter is used to set the delay time for the thirteenth position.

8-194 Revision September 2012

P5-53	DLY13 Delay Time 13	Address: 056AH 056BH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 4500	:
	Control Mode: PR	
	Unit: ms	
	Range::0 ~ 32767	:
	Data Size::16-bit	
	Display Format:	

In PR mode, this parameter is used to set the delay time for the fourteenth position.

P5-54	DLY14 Delay Time 14	Address: 056CH 056DH
C	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 5000	:
	Control Mode: PR	
	Unit: ms	
	Range: 0 ~ 32767	
	Data Size: 16-bit	
	Display Decimal Format:	

Settings:

In PR mode, this parameter is used to set the delay time for the fifteenth position.

P5-55	DLY15 Delay Time 15	Address: 056EH 056FH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 5500	Section 7.10
	Control Mode: PR	
	Unit: ms	
	Range: 0 ~ 32767	
	Data Size::16-bit	
	Display Decimal Format:	

In PR mode, this parameter is used to set the delay time for the sixteenth position.

P5-56	CMST C	OMPARE: Start Addre	ess of Data Array	Address: 0570H 0571H
	Operatio	n Keypad / Software	: :Communication	Related Section:
	Interface	2::		Section 7.11.2
	Defaul	t: 0		
	Contro Mode	ALL		
	Uni	t: N/A		7 : :
	Range	e::0 ~ (P5-10-1)		:
	Data Size	e::16-bit		- : :
	Display Forma	Decimal		T : : : : : : : : : : : : : : : : : : :

Settings:

This parameter is used to specify the start address which compares the first point data and save it into data array.

Please note:

This parameter can be set only when COMPARE function is disabled (Refer to P5-59).

P5-57■	CMAX COMPARE: Axis Position	Address: 0572H 0573H
	Operation Keypad / Software Communication	Related Section:
	Interface: 107 page / Softmare	Section 7.11.2
	Default::0	
	Control Mode: ALL	
	Unit::N/A	
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Decimal Format:	

Settings:

This parameter can be set only when COMPARE function is disabled (Refer to P5-59).

Please note:

- 1. Do not change this parameter when the compare source is the capture axis and motor encoder.
- 2. The pulse resolution is determined by the parameter P1-46.
- 3. When the setting value Y of the parameter P5-59 is set to 3, i.e. the compare source is the motor encoder, the value of this parameter is reset to the motor encoder feedback position (monitor variable is 00h). If the motor encoder

8-196 Revision September 2012

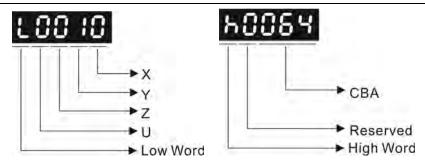
feedback position is different from this parameter because homing operation is enabled or the capture function setting is changed, the users can set the setting value Y of P5-59 to 3 to make this parameter to be equivalent to the motor encoder feedback position.

P5-58■	CMNO	COMPARE: Compare A	Address: 0574H 0575H	
	Operat Interfa	tion ace: Keypad / Software	Related Section: Section 7.11.2	
	Defa	ıult: 1		
	Control Mode: ALL		: : : : : : : :	
	Unit: N/A			
	Rar	nge: 1 ~ (P5-10 - P5-56)		
	Data S	ize: 16-bit		
	Disp Forn	Decimai		

Settings:

When the compare function is not enabled, using this parameter can set the estimated compare amount (able to read and write).

When the compare function is enabled, using this parameter can set the rest compare amount (read-only). When the setting value of P5-58 is equal to 0, it indicates that the compare operation has finished.


Please note:

The total amount of COMPARE, CAPTURE and E-Cam data can not exceed the number of 800.

P5-5 9■	CMCT COMPARE: Compare Source Setting	Address: 0576H 0577H
	Operation Interface: Keypad / Software Communication	Related Section:
	interrace: //	Section 7.11.2
	Default: 00640010h	:
	Control Mode: ALL	
	Unit: N/A	
	Range: 00010000h ~ 0FFF313Fh	:
	Data Size: 32-bit	:
	Display Format:	

Settings:

This parameter is used to determine the compare source and enable the compare function.

X: Compare function settings:

Bit	3	2	1	0
Function	-	After the last position is compared, the system will enable the capture function	Cycle mode	Start compare function
Explanation	-	The capture function is enabled already, and this setting will become ineffective.	The compare operation will not stop.	Setting Bit0 to 1 will enable the compare function. When compare function has finished, the value of Bit0 will be reset to 0 automatically.

Bit0: When the value of P5-58 is higher than 0, setting Bit0 to 1 will enable the compare function. Once the compare function is enabled, everytime when one position is compared, the setting value of P5-58 will decrease 1. When the setting value of P5-58 is equal to 0, it indicates that the compare operation has finished and the value of Bit0 will be reset to 0 automatically.

When the value of P5-58 is equal to 0, setting Bit0 to 1 will not enable the compare function, and then the value of Bit0 will be reset to 0 automatically. If Bit0 is set to 1 already, the new setting value cannot be 1. The users only can set Bit0 to 0 to disable the compare function.

Bit1: When Bit1 is set to 1, after the last position is compared, the setting value of P5-58 will be reset and start the compare operation from the first position again. The compare operation will not stop and the value of Bit0 will be retained as 1.

Bit2: When Bit2 is set to 1, after the last position is compared, the system will enable the capture function (Bit0 of P5-39 is set to 1 and the value of P5-38 is set to the last capture amount). If the capture function is enabled already, this setting will become ineffective.

Bit3: When Bit3 is set to 1, after the last position is compared, the counter, i.e. the setting value of parameter P5-57 will be reset to 0.

For example, when the compare data is set to 3000 pulses (total one compare data only) and the default value of P5-57 is 0, if the input command is 4000 pulses, the compare operation will stop after the input command reaches 3000 pulses. At this time, P5-57 will be clear to 0. When input command reaches 4000 pulses, the setting value of P5-57 will become 1000 (no accumulated error).

8-198 Revision September 2012

- Y: Compare source settings
- 0: Capture axis.
- 1: Auxiliary encoder (linear scale).
- 2: Pulse command.
- 3: Motor encoder
- Z: Activate state settings
- 0: Normally open (use N.O. contact)
- 1: Normally closed (use N.C. contact)
- U: Please refer to the table below

Bit	15	14	13	12
Function	-	-	Folow capture operation	Trigger PR command
Explanation	-	-	The data of compare operation is set by capture function. This function is available in firmware version V1.038 sub19 and later models only.	Setting Bit12 to 1 will trigger PR command #45 after after the last position is compared This function is available in firmware version V1.038 sub09 and later models only.

CBA: Length of output pulse (unit: 1ms)

P5-60	POV0	Moving Speed Setting	Address: 0578H 0579H	
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: Section 7.10
	Defa	ult: 20.0	200	
	Con Mo	trol ode: PR		
	Unit: 1 r/min Range: 0.1 ~ 6000.0		0.1 r/min	
			1 ~ 60000	:
	Data S	Size: 16-bit		
	Display Format: Decimal			
	Input Va Exam	llue ple: 15 = 15 r/min	150 = 15 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the first position.

P5-61	POV1	Moving Speed Setting	of Position 1	Address: 057AH 057BH
	Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: Section 7.10
	Defa	ult: 50.0	500	
	Con Mo	trol de: PR		
	Ū	nit: 1 r/min	0.1 r/min	· · · · · · · · · · · · · · · · · · ·
	Ran	ge: 0.1 ~ 6000.0	1 ~ 60000	
		ze: 16-bit		
	Disp Form	olay nat: Decimal		
	Input Val Examı	ue ble: 1 = 1 r/min	10 = 1 r/min	

In PR mode, this parameter is used to set the moving speed for the second position.

P5-62	POV2	Moving Speed Setting	Address: 057CH 057DH	
	Operation Interface: Keypad / Software Communication			Related Section: Section 7.10
	Default: 100.0 Control PR Mode:		1000	Section 7.10
			0.1 r/min	
	Rar	nge: 0.1 ~ 6000.0	1 ~ 60000	
	Data S	ize: 16-bit		
	Display Format: Decimal			
	Input Va Exam	lue ple: 1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the third position.

8-200 Revision September 2012

P5-63

POV3	Moving Speed Setting	of Position 3	Address: 057EH 057FH
Operat Interfa	ion Ice: Keypad / Software	Communication	Related Section: Section 7.10
Defa	ult: 200.0	2000	:
Cont Mo	trol de: PR		
U	nit::1 r/min	0.1 r/min	
Ran	ge: 0.1 ~ 6000.0	1 ~ 60000	
Data Si	ze: 16-bit		· ·
Disp Form	olay Decimal		
Input Val Examp	ue ble: 1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the fourth position.

P5-64	POV4	Moving Speed Setting	of Position 4	Address: 0580H 0581H
	Operation Interface: Keypad / Software Communica			Related Section:
	Interfa	ace:		Section 7.10
	Defa	ult: 300.0	3000	: : :
	Con Mc	trol ode: PR		
	U	nit: 1 r/min	0.1 r/min	
	Range: 0.1 ~ 600		1 ~ 60000	
	Data S	ize: 16-bit		
	Disp Forn	olay Decimal		
	Input Va Exam	lue : ple::1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the fifth position.

P5-65	POV5	Moving Speed Setting	Address: 0582H 0583H	
	Operati Interfa	on ce: Keypad / Software	Communication	Related Section: Section 7.10
	Defaı	ılt: 500.0	5000	7 : :
	Cont Mod	rol de:		
	Ur	nit: 1 r/min	0.1 r/min	· ·
	Rang	ge: 0.1 ~ 6000.0	1 ~ 60000	
		ze: 16-bit		
	: 101111			
	Input Valı Examp	ue le::1 = 1 r/min	10 = 1 r/min	

In PR mode, this parameter is used to set the moving speed for the sixth position.

P5-66	POV6	Moving Speed Setting	of Position 6	Address: 0584H 0585H
	Opera Interfa	tion ace: Keypad / Software	Communication	Related Section: Section 7.10
		ult: 600.0	6000	
	Con Mo	trol pde: PR		
	U	lnit: 1 r/min	0.1 r/min	
	Rar	nge: 0.1 ~ 6000.0	1 ~ 60000	
	Data S	ize: 16-bit		
	Dis _l Forr	olay nat: Decimal		
	Input Va Exam	lue ple: 1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the seventh position.

8-202 Revision September 2012

P5-67

POV7	Moving Speed Setting	of Position 7	Address: 0586H 0587H
Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: Section 7.10
Defa	ult: 800.0	8000	: : : :
Con Mo	trol ode: PR		
U	nit: 1 r/min	0.1 r/min	
Ran	ige: 0.1 ~ 6000.0	1 ~ 60000	
Data S	ize: 16-bit		
Disp Forn	olay nat: Decimal		
Input Va Exam	lue ple::1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the eighth position.

P5-68	POV8 Moving Speed Setting	of Position 8	Address: 0588H 0589H
	Operation Keypad / Software	Communication	Related Section:
	}	10000	Section 7.10
	Default: 1000.0	10000	:
	Control Mode: PR		
	Unit: 1 r/min	0.1 r/min	
	Range: 0.1 ~ 6000.0	1 ~ 60000	
	Data Size: 16-bit		
	Display Format:		
	Input Value Example: 1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the ninth position.

9	POV9	Moving Speed Setting	of Position 9	Address: 058AH 058BH
	Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: Section 7.10
	Defa	ult: 1300.0	13000	
	Con Mo	trol de: PR		
	U	nit: 1 r/min	0.1 r/min	
	Ran	ge: 0.1 ~ 6000.0	1 ~ 60000	
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		
	Input Va Exam	ue ple::1 = 1 r/min	10 = 1 r/min	

In PR mode, this parameter is used to set the moving speed for the tenth position.

P5-70	POV10	Moving Speed Setting	of Position 10	Address: 058CH 058DH
	Operat Interfa	ion ce: Keypad / Software	Communication	Related Section: Section 7.10
	Defa	ult: 1500.0	15000	
	Cont Mo	rol de: PR		
	Uı	nit::1 r/min	0.1 r/min	
	Ran	ge: 0.1 ~ 6000.0	1 ~ 60000	
	Data Si	ze: 16-bit		
	Disp Form	lay Decimal		
	Input Val Examp	ue ble::1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the eleventh position.

8-204 Revision September 2012

POV11	Moving Speed Setting	of Position 11	Address: 058EH 058FH
Operation Interfac	on e: Keypad / Software	Communication	Related Section: Section 7.10
	lt: 1800.0	18000	: : :
Contr Mod	rol le::PR		
Un	it: 1 r/min	0.1 r/min	
Rang	je∷0.1 ~ 6000.0	1 ~ 60000	•
Data Siz	e: 16-bit		7 : : :
Displ Forma	ay at::Decimal		
Input Valu Examp		10 = 1 r/min	

In PR mode, this parameter is used to set the moving speed for the twelfth position.

P5-72	POV12	Moving Speed Setting	of Position 12	Address: 0590H 0591H
	Operat	ion Keypad / Software	Communication	Related Section:
	;;;;	Section 7.10		
	Defa	ult: 2000.0	20000	
	Con Mo	trol de: PR		
	U	nit: 1 r/min	0.1 r/min	
	Ran	ge: 0.1 ~ 6000.0	1 ~ 60000	
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		
	Input Val Exam	lue ple: 1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the thirteenth position.

-73	POV13	Moving Speed Setting	of Position 13	Address: 0592H 0593H
	Operation of the contract of t	on Re: Keypad / Software	Communication	Related Section: Section 7.10
	Defau	lt: 2300.0	23000	
	Contr Mod	rol le: PR		
	Un	it::1 r/min	0.1 r/min	
	Rang	je∷0.1 ~ 6000.0	1 ~ 60000	
	2	e: 16-bit		
	Displ Forma	ay at: Decimal		
	Input Valu Examp	le: 1 = 1 r/min	10 = 1 r/min	

In PR mode, this parameter is used to set the moving speed for the fourteenth position.

P5-74	POV14	Moving Speed Setting	of Position 14	Address: 0594H 0595H
	Operat	ion Ace: Keypad / Software	Communication	Related Section:
				Section 7.10
	Defa	ult: 2500.0	25000	
	Con Mc	trol ode: PR		
	U	nit: 1 r/min	0.1 r/min	
	Rar	ige: 0.1 ~ 6000.0	1 ~ 60000	
	Data S	ize: 16-bit		
	Disp Forn	olay nat: Decimal		
	Input Va Exam	lue : ple::1 = 1 r/min	10 = 1 r/min	

Settings:

In PR mode, this parameter is used to set the moving speed for the fifteenth position.

8-206 Revision September 2012

POV15	Moving Speed Setting	of Position 15	Address: 0596H 0597H
Operat Interfa	ion ce: Keypad / Software	Communication	Related Section: Section 7.10
Defa	ult: 3000.0	30000	- 1 - 1 - 1 - 1
Cont Mo	rol de:		
Uı	nit: 1 r/min	0.1 r/min	:
Ran	ge∷0.1 ~ 6000.0	1 ~ 60000	:
Data Si	ze: 16-bit		
Disp Form	lay Decimal		
Input Val Examp	ue ble: 1 = 1 r/min	10 = 1 r/min	

In PR mode, this parameter is used to set the moving speed for the sixteenth position.

P5-76★	CPRS Capture 1st Position Reset Data	Address: 0598H 0599H
	Operation Keypad / Software Communication	Related Section:
		Section 7.10
	Default: 0	1 1 1
	Control: Mode: ALL	
	Unit: N/A	
	Range::-1073741824 ~ +1073741823	
	Data Size: 32-bit	:
	Display Format: Decimal	

Settings: Refer to P5-39 for explanation.

CSAX	Position of CAPTURE SYN	IC AXIS	Address: 059AH 059BH
Ope Inte	ation face: Keypad / Software C	Communication	Related Section: N/A
De	fault: 0		
Co N	ontrol ALL		
	Unit: N/A		
R	ange: -2147483648 ~ +2147	483647	!
Data	Size: 32-bit		
D Fo	splay rmat: Decimal		

This position will be synchronized with the capture signal. When capture operation is actived every two times, the offset value of this SYNC axis will be equal to the value of P5-78 (no accumulation errors, for single direction operation only).

This parameter can be used as the position source of E-Cam master axis.

Please note:

ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-78	CSDS	Interval Pulse Number AXIS	of CAPTURE SYNC	Address: 059CH 059DH
	Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ult: 100		
	Con Mo	trol ode: ALL		7 :
	U	nit: pulse		
	Ran	ige: 10 ~ +100000000		· · ·
	Data S	ize: 32-bit		** * *
	Disp Form	olay nat::Decimal		

Settings:

This parameter is used to set the offset value of this SYNC axis when capture operation is activated every two times.

Please note:

- 1. This parameter can be set only when capture operation is stopped (Refer to P5-39).
- 2. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-79■	CSDS	Error Pulse Number of	CAPTURE SYNC AXIS	Address: 059EH 059FH
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Default: 0			
	Con Mc	itrol ode: ALL		
	Unit::pulse			
	Rar	nge: -2147483648 ~ +21	47483647	78 10 10 10 10 10 10 10 10 10 10 10 10 10
	Data Size: 32-bit		· ·	
	Disp Forn	play nat: Decimal		

Settings:

This parameter is used to display the error pulse number of CAPTURE SYNC AXIS operation.

8-208 Revision September 2012

SYNC error pulse number = output value of SYNC axis -ideal value of SYNC axis = P5-77 accumulation amount - (P5-78 x capture times)

When SYNC axis operates after the data is captured, the system will update this parameter once.

This parameter can be set to indicate the offset amount of specified SYNC axis. When the servo system is regarded as the master axis for rotary cutoff application, modifing this parameter is able to shift the cutoff position to left or right every time.

Please note:

1. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-80	CSDS	Max. Correction Rate o	of CAPTURE SYNC AXIS	Address: 05A0H 05A1H
	Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ult: 10		• •
	Con Mo	trol ode: ALL		
	U	nit: %		1 1 1
	Ran	ige: 0 ~ 90		
	Data S	ize: 16-bit		• • •
	Disp Forn	olay nat: Decimal		

Settings:

This parameter is used to limit the correction rate of CAPTURE SYNC AXIS.

Correction rate = output pulses of SYNC axis - input pulses of SYNC axis

(100 - P5-80) % < Correction Rate < (100 + P5-80) %

When the value of the correction rate is higher, the SYNC error value will go towards 0 quickly, i.e. attain the desired position more easily, but the changes of the speed are very fast.

When the value of the correction rate is lower, the SYNC error value will go towards 0 slowly, i.e. attain the desired position more difficultly, but the changes of the speed are very smooth.

For rotary cutoff application, after adjusting P5-79, if the setting value of P5-80 is higher, the system can attain the desired rotary cutoff position quickly but the desired speed can not be easily reached.

Please note:

1. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

ECHD E-	Cam: Start Address o	of Data Array	Address: 05A2H 05A3H
Operation	1 Keypad / Software	Communication	Related Section:
Interface	e:: Communication		Section 7.11
Default	100		· · ·
Contro Mode	PR		
Unit	N/A		
Range	∷0 ~ (800 − P5-82)		•
Data Size	: 16-bit		1 : : :
Displa Format	y: Decimal		*

This parameter is used to set the start address which specifies the first point data of E-Cam table and save it into data array.

Please note:

1. The firmware version V1.015 and earier models:

This parameter can not be changed when E-Cam function is enabled (Refer to P5-88).

2. The firmware version V1.015 and later models:

This parameter can be set any time. However, it is effective only when the electronic gear is engaged.

3. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-82	ECHN	E-Cam: E-Cam Area Number N (at least >=	5) Address: 05A4H 05A5H
	Operat	cion Ace: Keypad / Software Communication	Related Section:
	Interfa	ace:	Section 7.11
	Defa	ult: 5	
	Con Mo	trol pde: PR	
	U	nit: N/A	
	Ran	nge: 5 ~ 720, must be <= (P5-10 - P5-81) and (P5-82 x P5-84) <= 2147483647	
	Data S	ize: 16-bit	
	Disp Forn	olay nat: Decimal	

Settings:

The E-Cam graph is divided into N areas. The E-Cam table should include N+1 data.

Please note:

- 1. This parameter can be set only when E-Cam function is stopped (Refer to P5-88).
- 2. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

8-210 Revision September 2012

P5-83

ЕСММ	E-Cam: E-Cam Cycle Nu	ımber (M)	Address: 05A6H 05A7H
Operat Interfa	ion ice: Keypad / Software	Related Section: Section 7.11	
Defa	Default: 1		
Con Mo	Control Mode: PR		
U	nit: N/A	: :	
Ran	ge::1 ~ 32767		
Data S	ize: 16-bit		
Disp Form	olay nat: Decimal		

Settings:

After receiving the pulse number P of master axis, the shaft of E-Cam will rotate M cycles. It indicates that there are M cycles of the E-Cam table.

Please note:

- 1. This parameter can be set only when E-Cam function is stopped (Refer to P5-88).
- 2. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-84	ЕСМР	E-Cam: Pulse Number	(P) of Master Axis	Address: 05A8H 05A9H
	Operat	ion Ace: Keypad / Software	Communication	Related Section:
	Interfa	ace:		Section 7.11
		ult: 3600		
	Con Mo	trol de: PR		
	U	nit::N/A	N/A	
	Ran	ge: 10 ~ 1073741823, (84 and (P5-82 x P5-		
	Data Si	ize: 32-bit		
	Disp Form	olay nat: Decimal		

Settings:

After receiving the pulse number P of master axis, the shaft of E-Cam will rotate M cycles. It indicates that there are M cycles of the E-Cam table.

Please note:

- 1. This parameter can be set only when E-Cam function is stopped (Refer to P5-88).
- 2. The firmware version V1.018 and later models: This parameter can be set any time.
- 3. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

5-85	ECME E-Cam: Engage Area N	umber	Address: 05AAH 05ABH
	Operation Interface: Keypad / Software	Communication	Related Section:
	Interface: (Ne)pad / 301111411		Section 7.11
	Default: 0		· · ·
	Control Mode: PR		
	Unit: N/A		
	Range: 0 ~ (P5-82 -1)		•
	Data Size: 16-bit		1 : : :
	Display Format: Decimal		

This parameter is used to set the E-Cam area number when the electronic gear is engaged.

Please note:

ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-86■	ECAX	E-Cam: Position of Mas	ster Axis	Address: 05ACH 05ADH
	Operat	tion ace: Keypad / Software	Communication	Related Section:
	Interfa	ace: '''	:	Section 7.11
	Default::0 Control PR Mode: Unit::N/A			
	Rar	Range::-2147483648 ~ +2147483647		
	Data Size: 32-bit			
	Dist Forn	olay nat: Decimal		

Settings:

This parameter is used to set the position of E-Cam master axis.

Please note:

- 1. This parameter can be set only when E-Cam function is stopped (Refer to P5-88).
- 2. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

8-212 Revision September 2012

P5-87

PLED E	-Cam: Lead Command	Length	Address: 05AEH 05AFH
Operation Interfac	on e: Keypad / Software	Communication	Related Section: Section 7.11
Defau		- <u>-</u>	Section 7.11
Contr Mod	Control Mode: PR		
Un	it::N/A		
Rang	e:-1073741824 ~ +107	73741823	· •
Data Siz	e: 32-bit		: : :
Displa Forma	ay at::Decimal		

Settings:

This parameter is used to set the length of the lead command before the electronic gear is engaged. Once E-Cam engage conditions are satisfied (see the Z settings of P5-88), the electronic gear will be engaged truly when the pulse number sent by master axis is higher than the setting value of P5-87. In other words, the electronic gear will be engaged only after the lead command specified by P5-87 is ignored.

Please note:

- 1. If this parameter is a positive value, it indicates that the forward pulses are regarded as lead command. If this parameter is a negative value, it indicates that the reverse pulses are regarded as lead command.
- 2. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-8 8■	ECON E-	Cam: E-Cam Settings		Address: 05B0H 05B1H
	Operatio	n Keypad / Software	Communication	Related Section:
		-4		Section 7.11
	Default	t: 00000000h		:
	Contro Mode	PR		
	Unit::N/A		· ·	
	Range	e: 0 ~ 203FF251h		*
	Data Size	e::32-bit		
	Displa Forma	y Hexadecimal		

Settings:

Display	High Word			Low Word			
	S	0	BA	U	Z	Y	Х
Range	0 ~ 2	-	00 ~ 3F	0 ~ 8	0 ~ 2	0 ~ 5	0 ~ 1

The bit definition is listed below:

BA: Disengage method. The setting value is 00 ~ 3F (00: Disabled).

When the disengage conditions are satisfied (U= 2, 4 and 6 of P5-88), the system will execute PR path (hexadecimal) automatically

- S: Engage status display (read-only)
 - 0: Stop state
 - 1: Engaged state
 - 2: Lead state (before the electronic gear is engaged)
- X: Disable or Enable E-Cam Function. Please see the table below

Bit	3	2	1	0
Function	-	P5-19 is effective immediately	E-Cam does not disengage while Servo OFF	Enable E-Cam function
Explanation	-	For the firmware version V1.038 sub48 and later models only. 0: After modification, the new P5-19 will be enforced after E-Cam re-engage. 1: P5-19 is enforced immediately after modification.	For firmware version V1.038 sub29 and later models only. 0: Disabled 1: After the E-Cam is engaged, if the system stopped due to ALARM or SERVO OFF, the E-Cam remains working. The position of E-Cam is being counted all the time. When re-SERVO ON, the Macro instruction #D can be use to move the slave back to the position before SERVO OFF.	O: Disable E-Cam function 1: Enable E-Cam function (E-Cam is enabled, other functions can not be modified.)

Y: Sources of Master Axis

Y=0: Capture source setting. (Defined by Capture function, P5-39 B settings)

Y=1: Linear Encoder (CN5)

Y=2: Pulse Command (CN1)

Y=3: PR command (Internal signal)

Y=4: 1ms clock (Internal signal)

Y=5: Synchronous Capture Axis (P5-77)

Y=6: Analog channel 1 (Virtual axis, unit: each 10V corresponds to frequency 1Mpulse/s)

Z: Engage timing (only one option can be selected)

0: Immediately

1: DI signal: CAM ON

2. Any point of Capture Axis

8-214 Revision September 2012

U: Disengage timing (the setting value can be added up, but the setting value 2, 4 and 6 can not be selected simultaneously.)

U	Disengage Conditions	State after the electronic gear is disengaged.
0	Do not disengage	-
1	DI signal: CAM OFF	Enter into the state of Stop
2	Master axis reaches the setting value of P5-89. (The polarity sign indicates the direction)	Enter into the state of Stop
6	(available in firmware version V1.009 and later models)	
	The function is the same as the function of U=2, but the differences are that the speed will not change when electronic gear is disengaged and the engage length will exceed the setting value of P5-89 a little.	
	This option is suitable for the application which needs to use PR command immediately after the electronic gear is disengaged.	
4	(available in firmware version V1.009 and later models) Master axis exceeds the setting value of P5-89. (The polarity sign indicates the direction)	Return to the Lead state (befoe the electronic gear is engaged) (The lead command length is set by P5-92).
8	Disable E-Cam function after the electronic gear is disengaged with condition 1, 2, and 6.	Set X=0
	Setting with U=4:	None
	To avoid the jittering when the status switched back to Lead status.	

When Servo Off, if a servo fault occurs, or there is a forward/reverse limit, or PR command is moving to home, the electronic gear will be disengaged (X=0 of P5-88).

Please note:

ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

J	О.	Λ

ECRD E-Car	ECRD E-Cam: Disengage Timing Data					
Operation Interface: Ke	Operation Interface: Keypad / Software Communication					
Default: 0			:			
Control Mode:	Control Mode: PR					
Unit: N,						
Range::-1						
Data Size: 32-bit						
Display Format:	ecimal					

Settings:

Refer to the U settings of P5-88 for explanation.

Please note:

ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-90	CMAP E-C	Cam: Area Number + (Polarity is Positive)	Address: 05B4H 05B5H
	Operation	Keypad / Software Communication	Related Section:
	Interface:	communication	Section 7.11
	Default:	0	
	Control Mode:	PR	
		degree (it becomes degree in firmware version V1.009 and later models)	
	Range:	0 ~ 360	
	Data Size:	16-bit	
	Display Format:	Decimal	4 •

Settings:

This parameter is used to set the start degree of digital output, CAM_AREA (DO code is 0x18) when Electronic Cam (E-Cam) is engaged.

Please note:

ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-91	CMAN E-Ca	am: Area Number - (Polarity is Negative)	Address: 05B6H 05B7H
	Operation _k	Keypad / Software	Communication	Related Section:
	Interface:			Section 7.11
	Default: 0)		· ·
	Control Mode:	PR		
	Unit: degree (it becomes de version V1.009 and lat			
	Range::0	0 ~ 360		
	Data Size: 1	l 6-bit		12 5 4 6
	Display Format:	Decimal		

Settings:

This parameter is used to set the end degree of digital output, CAM_AREA (DO code is 0x18) when Electronic Cam (E-Cam) is engaged.

Please note:

ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

8-216 Revision September 2012

P5-92

PLED E	-Cam: Cyclic Lead Cor	nmand Length	Address: 05B8H 05B9H
 Operatio	n Keypad / Software	Communication	Related Section:
Interface	Reypad / Software Communication	Section 7.11	
Defaul	t: 0		· · ·
Contro Mode	PR		
Uni	t::N/A		
Range	e:-100000000 ~ +100	000000	• • •
Data Size	e: 32-bit		* : :
Displa Forma	ly t::Decimal		

Settings: (available in firmware version V1.006 sub04 and later models only)

This parameter works in conjunction with the function of U=4 set in parameter P5-88.

When the electronic gear is disengaged, it will not enter into Stop state. It will enter into the lead state (before the electronic gear is engaged) and the lead command length at this time is determined by the setting of P5-92.

The electronic gear will be engaged again when the pulse number sent by master axis is higher than the setting value of P5-92. In other words, the electronic gear will be engaged only after the lead command specified by P5-92 is ignored.

Please note:

- 1. If this parameter is a positive value, it indicates that the forward pulses are regarded as lead command. If this parameter is a negative value, it indicates that the reverse pulses are regarded as lead command.
- 2. ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-93	CSDS	Motion Control: Macro	Parameter 4	Address: 05BAH 05BBH
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ault: 0		7 : :
	Control Mode: ALL			
	Unit: N/A			
	Range: -2147483648 ~ +2147483647			
	Data Size: 32-bit		: : :	
	Disp Forn	play nat: Decimal		

Settings:

The definition of this parmater is determined by macro command P5-97. Please refer to P5-97 for explanation.

P5-94	CSDS	Motion Control: Macro	Parameter 3	Address: 05BCH 05BDH
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Default: 0			
	Con Mo	trol ode: ALL		
	U	nit: N/A		· · ·
	Ran	nge: -2147483648 ~ +21	47483647	:
	Data S	ize: 32-bit		'! : : :
	Disp Forn	olay nat::Decimal		

The definition of this parmater is determined by macro command P5-97. Please refer to P5-97 for explanation.

P5-95	CSDS	Motion Control: Macro Pa	arameter 2	Address: 05BEH 05BFH
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ıult: 0		
	Con Mo	trol ode: ALL		
	Unit::N/A			
	Range::-2147483648 ~ +2147483647			
		ize: 32-bit		
	Dist Forn	olay nat: Decimal		

Settings:

The definition of this parmater is determined by macro command P5-97. Please refer to P5-97 for explanation.

P5-96	CSDS Motion Control: Macro Parameter 1	Address: 05C0H 05C1H
	Operation Interface: Keypad / Software Communication	Related Section: N/A
	Default: 0	
	Control Mode: ALL	
	Unit: N/A	
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

8-218 Revision September 2012

The definition of this parmater is determined by macro command P5-97. Please refer to P5-97 for explanation.

P5-97**■**

CSDS	Motion Control: Macro	otion Control: Macro Command			
Operat Interfa	ion Ice: Keypad / Software	Related Section: N/A			
Defa	ult: 100				
Con Mo	trol de: ALL				
U	nit: pulse		** : :		
Ran	ge: 0 ~ 0999h				
Data Si	ze: 16-bit				
Disp Form	olay nat: Hexadecimal				

Settings:

Write function: This parameter can be used to set macro command (OCBAh)
Read function: This parameter can be used to display the execution result of macro command (If the command has succeeded, 1CBAh will be sent back).
When the macro command code is set to 0001, if the command has succeeded, 1001h will be sent back. If the command has failed, Fxxxh will be sent back.
When setting illegal command code, the failure code, F001h will be sent back.
The legal macro commands are listed in the table below:

• The firmware version V1.027 and later models provide the following macro command:

Command code: 0003h	Motion parameter protection function: Set password. Enable parameter protection function.	
Macro Parameters	P5-94: Protection degree of data array (0 ~ 7)	
	P5-95: Set the new password (1 ~ 16777215)	
	P5-96: Confirm the new password (1 ~ 16777215)	
	Please note: The setting value of P5-95 should be equal to the setting value of P5-96 and the setting value should be set correctly within the specifications of P5-95 and P5-96. Otherwise, the password function cannot be enabled.	
This macro command should be excuted before the parameter protection function is enabled. When parameter protection function is enabled, if this marco command is excuted again, the failure code will be sent back.		
Failure code: F031h	The protection function is enabled. Do not execute this macro command again.	
Failure code: F032h	Password setting error. The setting value of P5-95 is not equal to the setting value of P5-96.	
Failure code: F033h	The setting value of password has exceeded the allowable range (1 \sim 16777215).	
Failure code: F034h	The setting value of P5-94 has exceeded the specification (0 \sim 7).	

	Command code: 0003h	Motion parameter protection function: Set password. Enable parameter protection function.
Ī	Success code: 1003h	-

• The firmware version V1.026 and later models provide the following macro command:

Command code: 0004h	Motion parameter protection function: Disable parameter protection function.
Macro Parameters	P5-96: Input the password (1 ~ 16777215)
This macro command should be excuted after the parameter protection function enabled. When parameter protection function is disabled, if this marco command excuted again, the failure code will be sent back.	
If input the incorrect password, the failure code, Ennn will be sent back. The num nnn represents the retry times for password input. The number nnn will decrease every time after inputting the incorrect password. When the number nnn cannot be decreased, it means the password is locked and cannot be removed anymore.	
Failure code: F041h	The protection function is disabled. Do not execute this macro command again.
Failure code: F043h	The input value of password has exceeded the allowable range $(1 \sim 16777215)$.
Failure code: F044h	The retry times for password input have exceeded the limit. The password is locked and cannot be removed anymore.
Failure code: Ennnh	The input password is not correct. The protection cannot be disabled. The number nnn represents the retry times for password input. The number nnn will decrease 1 every time after inputting the incorrect password. When the number nnn cannot be decreased, it means the password is locked and cannot be removed anymore.
Success code: 1004h	-

• The firmware version V1.024 and later models provide the following macro commands:

Command code: 0006h	Create E-Cam table: for rotary cutoff application, including sealing zone (7 areas)
General Parameters	P5-81: Start Address of Data Array for E-Cam table. P5-82: E-Cam Area Number. Set P5-82 to 7 (7 areas, 8 points). P1-44, P1-45: Electronic Gear Ratio (must be set first)
Macro Parameters	P5-94=A (Deceleration Ratio: Numerator) x C (Knife Number) P5-95=B (Deceleration Ratio: Denominator) P5-96= 1000000 x R x V R (Cut Ratio) = L (Cut Length) / ℓ (Knife Circumference) The normal cut ratio is the multiple of 0.3 ~ 2.5. V (Speed Compensation) = (Target Cut Speed) / (Product Speed) When V=1.0, the speed of knife is the same as the product during cutting operation. When V=1.1, the speed of knife will be increased 10%. When V=0.9, the speed of knife will be decreased 10% and so on.

8-220 Revision September 2012

Using this macro command is able to calculate the data of E-Cam table automatically and saved the settings in the data array specified by P5-81.

The above parameters are all essential for E-Cam table. Please complete the settings of these parameters first correctly before executing this macro command. After this macro command is executed, if the settings of the above parameters are changed, please execute this macro command again so as to create the new E-Cam table again.

The data of E-Cam table will be changed after executing this macro command, therefore, do not to execute this macro command when the electronic gear is engaged.

There are many E-Cam parameters, such as P5-83 and P5-84, etc. which are not used for this macro commands.

For more E-Cam parameters and functions, please refer to Chapter 7.

When the execution of this macro command is completed, the data of E-Cam table will not be memorized in EEPROM automatically.

Failure code: F061h	The electronic gear is engaged when creating E-Cam table.
Failure code: F062h	The setting value of P5-94 has exceeded the specification (1 ~ 65535)
Failure code: F063h	The setting value of P5-95 has exceeded the specification (1 ~ 65535)
Failure code: F064h	The setting value of P5-96 has exceeded the specification (300000 ~ 2500000)
Failure code: F065h	The address specified by P5-81 is too big. The space of the data array is not sufficient.
Failure code: F066h	The setting value of P5-82 should be set to 7; otherwise this macro command can not be executed.
Failure code: F067h	Data calculation error. Please decrease the setting value of P1-44 and P1-45.

Command code: 0007h	Create E-Cam table: for rotary cutoff application (free degree)
General Parameters	P5-81: Start Address of Data Array for E-Cam table.
	P5-82: E-Cam Area Number N (30 ~ 72).
	P1-44, P1-45: Electronic Gear Ratio (must be set first)
Macro Parameters	P5-93. H16 (High 16-bit)= S
	P5-93. L16 (Low 16-bit)= W
	S (Curve Level): 1 ~ 4 levels
	W (Waiting Area Degree): -1 ~ 170 degrees
	(W= -1 : available in firmware version V1.038 sub29 and later models)
	P5-94=Y (Sealing Zone Degree)= 0 ~ 330 degrees
	P5-95. H16 (High 16-bit)= A x C
	P5-95. L16 (Low 16-bit)= B
	A (Deceleration Ratio: Numerator), C (Knife Number)
	B (Deceleration Ratio: Denominator)

Command code: 0007h	Create E-Cam table: for rotary cutoff application (free degree)
	P5-96= 1000000 x R x V
	R (Cut Ratio) = L (Cut Length) / ℓ (Knife Circumference)
	The normal cut ratio is the multiple of 0.05 ~ 5.0.
	V (Speed Compensation) = (Target Cut Speed) / (Product Speed)
	When V=1.0, the speed of knife is the same as the product during cutting operation.
	When V=1.1, the speed of knife will be increased 10%.
	When V=0.9, the speed of knife will be decreased 10%
	and so on.
	Note:
	W' = 180 + 360/N - 360/R + Y/2
	When
	1. P5-93.L16 < W´, the E-Cam table is in error (Failure code is F07Ah).
	2. P5-93.L16 = W° , the initial speed is 0 in the E-Cam table.
	3. P5-93.L16 > W´, the initial speed > 0 in the E-Cam table.

Using this macro command is able to calculate the data of E-Cam table automatically and saved the settings in the data array specified by P5-81.

The above parameters are all essential for E-Cam table. Please complete the settings of these parameters first correctly before executing this macro command. After this macro command is executed, if the settings of the above parameters are changed, please execute this macro command again so as to create the new E-Cam table again.

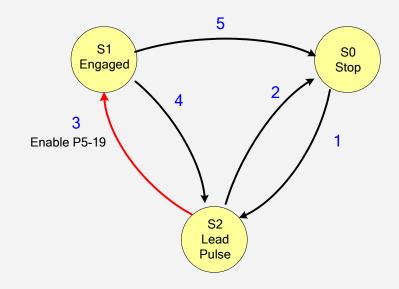
The data of E-Cam table will be changed after executing this macro command, therefore, do not to execute this macro command when the electronic gear is engaged.

There are many E-Cam parameters, such as P5-83 and P5-84, etc. which are not used for this macro commands.

For more E-Cam parameters and functions, please refer to Chapter 7.

When the execution of this macro command is completed, the data of E-Cam table will not be memorized in EEPROM automatically.

Failure code: F071h	The electronic gear is engaged when creating E-Cam table.
Failure code: F072h	The setting value of P5-94 has exceeded the specification (0 \sim 330)
Failure code: F073h	The setting value of P5-93. H16 has exceeded the specification (1 \sim 4)
Failure code: F074h	The setting value of P5-93. L16 has exceeded the specification (0 \sim 170)
Failure code: F075h	The setting value of P5-96 has exceeded the specification (50000 ~ 5000000)
Failure code: F076h	The setting value of P5-82 should be set within 30 ~ 72; otherwise this macro command can not be executed.
Failure code: F077h	The address specified by P5-81 is too big. The space of the data array is not sufficient.
Failure code: F078h	Data calculation error. Please decrease the setting value of P1-44 and P1-45.


8-222 Revision September 2012

Command code: 0007h	Create E-Cam table: for rotary cutoff application (free degree)
Failure code: F079h	Acceleration degree is not enough. Please decrease the setting value of W (Waiting Area Degree), Y (Sealing Zone Degree), or S (Curve Level).
Failure code: F07Ah	Waiting area is too small. Please increase the setting value of W (Waiting Area Degree), or decrease the setting value of Y (Sealing Zone Degree).

• The firmware version V1.042 sub09 and later models provide the following macro command:

Command code: 0008h	P5-19 (E-Cam Curve Scaling) is effective once again immediately.
Macro Parameters	N/A

Using this macro command is able to enable P5-19 once again when E-Cam is engaged. Usually, P5-19 is effective only when the status of E-Cam is changed from S2 (Lead Pulse) to S1 (Engaged), i.e. path 3 as shown as below. P5-19 cannot be changed when E-Cam is engaged. The E-Cam curve scaling can be changed only after E-Cam rotates one cycle. This is used to ensure that E-Cam is able to return the original position and will not accumulate the position errors.

However, if it is needs to change E-Cam curve scaling immediate for the requirement of the application, there are two methods for changing the setting of E-Cam curve scaling, i.e. P5-19.

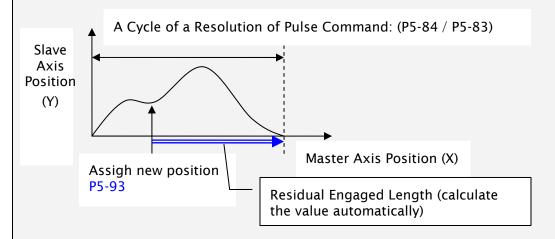
1. P5-88 X2=1:

If P5-88 X2=1 is set, P5-19 will be enforced immediately after modification when E-Cam is engaged.

2. Using this 0008h macro command:

Everytime when this macro command is triggered, P5-19 will be enabled. But, if the setting value of P5-19 is changed and this macro command is not triggered, the new setting value of P5-19 will not be enabled. This macro command must be triggered again. Otherwise, the new setting value of P5-19 will not be enabled.

Failure code	N/A


 The firmware version V1.035 sub00 and later models provide the following macro command:

Command code: 000Ch	Change E-Cam engaged X position: disengage after one forward rotation.
General Parameters	N/A
Macro Parameters	P5-53= New engaged position X. Unit is pulse number of master axis.
	Monitor variable 062(3Eh): Display the engaged position X of master axis

Using this macro command is able to change engaged position, calculate residual engaged length and make E-Cam be disengaged after one forward rotation (at 360°) when E-Cam is engaged. However, please note that E-Cam can be disengaged only when P5-88 U=2, 4, or 6. Ensure P5-88 U=2, 4, or 6 is selected; otherwise E-Cam cannot be disengaged.

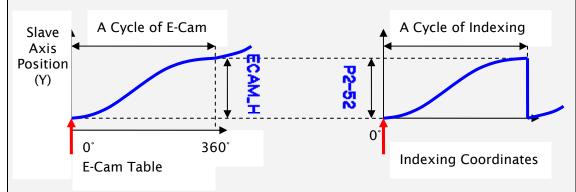
When a fault occurs on the servo drive or the power of the servo drive is shut down, E-Cam will be disengaged. If the system needs that the E-Cam is re-enaged from the disengaged position and continue a cycle of E-Cam movement, it is recommended to record the position X first and use this macro command to change the engaged position. However, the servo position may shift a little distance when E-Cam is disengaged. Please note that a position error may occur when E-Cam is re-engaged.

Engaged direction is in forward direction (forward rotation of master axis):

Note: When using this macro command, it would be proper to execute this macro command first and then operate the master axis. It is not recommended to enable the master axis operation before executing this macro command.

Failure code: F0C1h	The E-Cam is not engaged when executing this marco command. The E-Cam should be engaged before modifying the engaged position.
Failure code: F0C2h	The setting value of P5-93 is in error. It cannot less than 0. It should be equal to or higher than 0.
Failure code: F0C3h	The setting value of P5-93 is in error. It should be less than (P5-84 / P5-83).

8-224 Revision September 2012


 The firmware version V1.038 sub48 and later models provide the following macro command:

Command code: 000Dh	Calculate the errors between E-Cam and indexing coordinates for positioning control of PR command.
General Parameters	N/A
Macro Parameters	P5-93 Low_Word = DCBA : UZYX (8 digits, Hexadecimal) YX: PR number = 0 ~0X3F (0: Disabled) UZ: Must be set to 0. BA: Function of P5-95 0: Use prohibition zone 1: Use for forward rotation allowable rate (1: In firmware version V1.038 sub53 and later models) DC: Inhibit reverse rotation 0: Disabled 1: Reverse rotation is not allowed (1: In firmware version V1.038 sub53 and later models) P5-95: Prohibition zone (the area cannot walk across) = (0 ~ 100)% of a cycle or (0 ~ 100)% of forward rotation allowable rate
Monitor Variable	091(5Bh): display the position of indexing coordinate position (PUU).

When E-Cam is engaged, the servo motor may stop due to Servo Off or a fault (Alarm) and cause the actual position is out of the E-Cam position. After Sevo On, this macro command is able to calculate the correction value automatically and write the correction value into the specified PR for incremental positioning to let the motor return to the perfect E-Cam position.

When using this macro command:

- 1. P5-88. X1=1 must be selected to let the E-Cam is engaged and continue to calculate the E-Cam position even when Servo Off.
- 2. The height of E-Cam and indexing coordinates should be the same. P2-52=ECAM_H (Moving distance of one cycle of E-Cam)
- 3. P5-19 must be set to 1.0 (magnification is set to 1.0 times)
- 4. When E-Cam is engaged at the first time, 0° position of E-Cam table should correspond to 0° position of indexing coordinates.

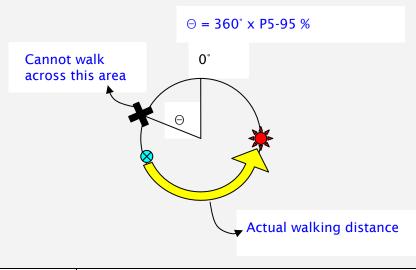
Please note:

- 1. ECAM_H (Height of E-Cam Table) = E-Cam Table (Last point First point)
- 2. Indexing coordinates = (Absolute coordinates / P2-52) take remainder
- 3. Use PR command for incremental positioning control

When the servo motor moves from current position to target position, two kinds of rotations, forward and reverse are available for selection. However, the rotation of the E-Cam is a kind of cyclic motion movement. No matter forward or reverse rotation is selected, the motor will reach the target position. The only difference is that the moving distance is not the same. Using the function of prohibition zone is able to plan the timing for forward and reverse rotation and let the system know when the motor rotates in forward direction and when the motor rotates in reverse direction.

* Prohibition zone: In PR mode, it is the area that cannot walk across.

8


: E-CamCurrent Position

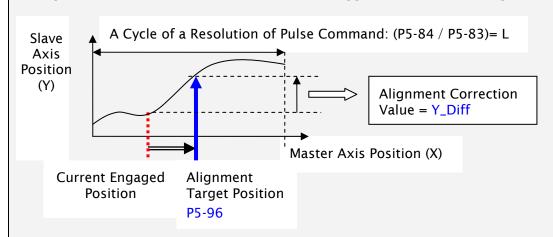
: E-Cam Target Position

: E-Cam Prohibition Zone ⊖, set by P5-95

Failure code: F0D1h	The E-Cam is not engaged when executing this marco command. The E-Cam should be engaged.
Failure code: F0D2h	The setting value of P5-93. YX (PR number) is not within its allowable range. It should be within the range of $1 \sim 0x3F$.
Failure code: F0D3h	The setting value of P5-95 (forward rotation allowable rate) is not within its allowable range. It should be within the range of 0 \sim 100%.
Failure code: F0D5h	The position correction value does not exist. This maco command may be triggered twice.
Failure code: F0D6h	The E-Cam is not engaged at the moment of Servo On.
Failure code: F0D7h	The height (Y Axis) of E-Cam table is not equal to P2-52.
Failure code: F0D8h	The setting value of P5-19 is not equal to 1.0.
Failure code: F0D9h	The setting values of P5-93. BA and P5-95 have exceeded the allowable range. The setting values of P5-93. BA and P5-95 should be within the range of 0 \sim 1.
Failure code: F0DAh	The setting values of P5-93. DC has exceeded the allowable range. The setting values of P5-93. DC should be within the range of 0 \sim 1.
Failure code: F0DBh	The function of Inhibiting reverse rotation has failed. Do not use macro command 000Dh and 0010h consecutively.

8-226 Revision September 2012

 The firmware version V1.038 sub26 and later models provide the following macro command:


Command code: 000Eh	Perform E-Cam alignment immediately and write the correction value into the specified PR.
General Parameters	N/A
Macro Parameters	P5-93 = DCBA : UZYX (8 digits, Hexadecimal) YX: PR number = 0 ~0X3F (0: Disabled) UZ: Max. alignment correction rate = 0 ~ 0x64 (%) A: Trigger the specificed PR 0: ON 1: OFF DCB: Must be set to 0 P5-94: DI delay time compensation = -25000 ~ +25000 (unit: usec) P5-95: Forward rotation allowable rate = (0 ~ 100)% P5-96: Alignment target position (X) = 0 ~ (P5-84/P5-83)-1 (unit: pulse number of master axis)
Monitor Variable	062(3Eh): display the current engaged position (X) of master axis.

When E-Cam is engaged, this macro command is able to move the engaged position to the alignment target position (X) and write the E-Cam alignment correction value into the specified PR.

During E-Cam operation (when E-Cam is engaged), if quickly aligning the E-Cam position and the mechanical reference point is required, using this macro command is able to meet the requirement of this kind of application. The users can use sensor to trigger the digital input, EVx to execute this macro command.

After E-Cam alignment is completed, the engaged position will move to the new position. The alignment correction value is the excess or not enough distance after one cycle of E-Cam operation. This alignment correction value will be written into the PR specified by the setting value of P5-93. YX. The users can use PR incremental command to compensate this correction value and make the final position of E-Cam slave axis remain unchanged. In some applications, there is no need to use PR to do the compensation. At this time. the users can set the setting value of P5-93. YX to 0.

Please note that PR command must be triggered by the host. After completing all the settings of this macro command, it is needed to trigger the PR command again.

Please note:

* P5-93. UZ setting is able to limit the max. alignment correction rate.

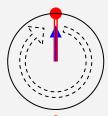
The modified alignment target position ★ and P5-96 may be not the same.

Alignment Target Position ★ - Current Engaged Position | / L <= P5-93.UZ %

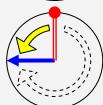
* P5-94 is able to set the DI time delay compensation to overcome the error occurred in different speed operation.

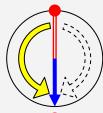
When the servo motor moves from current position to target position, two kinds of rotations, forward and reverse are available for selection. However, the rotation of the E-Cam is a kind of cyclic motion movement. No matter forward or reverse rotation is selected, the motor will reach the target position. The only difference is that the moving distance is not the same. Using the function of forward rotation allowable rate is able to plan the timing for forward and reverse rotation and let the system know when the motor rotates in forward direction and when the motor rotates in reverse direction.

* Forward rotation allowable rate: Max. allowable moving percentage when go distance is in forward rotation. Please refer to the following explanation.

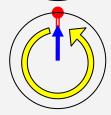


: E-Cam Current Position


: Max. forward rotation limit. In the figures below, Counterclockwise direction is forward rotation


: Target position is within this range (Go trip is in reverse rotation)

Forward rotation allowable rate = 0% (0°) Go trip is in reverse rotation only.


Forward rotation allowable rate = 25%Max. moving degree of go trip is $+90^{\circ}$

Forward rotation allowable rate = 50%Max. moving degree of go trip is $+180^{\circ}$

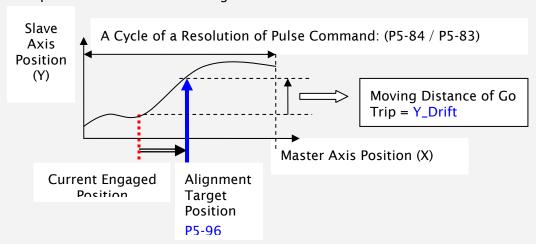
Forward rotation allowable rate = 75%Max. moving degree of go trip is $+270^{\circ}$

Forward rotation allowable rate = 100% (360°) Go trip is in forward rotation only.

Failure code: F0E1h

The E-Cam is not engaged when executing this marco command. The E-Cam should be engaged. Otherwise, the alighment correction cannot be executed.

8-228 Revision September 2012


Failure code: F0E2h	The setting value of P5-93. YX (PR number) is not within its allowable range. It should be within the range of $1 \sim 0x3F$.
Failure code: F0E3h	The setting value of P5-93. UZ (Max. alignment correction rate) is not within its allowable range. It should be within the range of 0 \sim 0x64 (%).
Failure code: F0E4h	The setting value of P5-94 (DI delay time compensation) is not within the range of -10000 \sim +10000.
Failure code: F0E5h	The setting value of P5-95 (forward rotation allowable rate) is not within its allowable range. It should be within the range of 0 \sim 100%.
Failure code: F0E6h	The setting value of P5-96 (alignment target position) is not within its allowable range. It should be within the range of 0 ~ (P5-84/P5-83)-1.

Command code: 000Fh	Calculate the moving distance between E-Cam and target position for positioning control of PR command.
General Parameters	N/A
Macro Parameters	P5-93. Low_Word = UZYX (4 digits, Hexadecimal) YX: PR number of Go trip = 0 ~0X3F (0: Disabled) UZ: PR number of Return trip = 0 ~0X3F (0: Disabled) P5-93. High_Word : Must be set to 0 P5-95: Forward rotation allowable rate = (0 ~ 100)% P5-96: Target position (X) = 0 ~ (P5-84/P5-83)-1 (unit: pulse number of master axis)
Monitor Variable	062(3Eh): display the current engaged position (X) of master axis.

When E-Cam is engaged, this macro command is able to calculate moving distance between the current position and target position (X). Then, write the moving distance value into the specified PR.

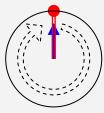
During E-Cam operation (E-Cam is engaged), when the master axis stops and is under the engage status, if the users want to move the master axis to the specified E-Cam position, using this macro command is able to meet the requirement of this kind of application. The users can use this macro command to calculate the correct Go moving distance value (Y_Drift) for incremental positioning control of PR command.

If moving the master axis back to the original position is required, the users can execute another PR command to run the Return moving distance (-Y_Drift). The E-Cam position can remain unchanged.

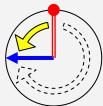
Please note:

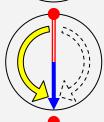
When using PR command, no matter Go trip or Return trip, it must be an incremental command.

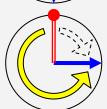
* Forward rotation allowable rate: Max. allowable moving percentage when go distance is in forward rotation. Please refer to the following explanation.

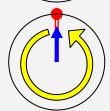


: E-Cam Current Position


: Max. forward rotation limit. In the figures below, Counterclockwise direction is forward rotation


: Target position is within this range (Go trip is in reverse rotation)


Forward rotation allowable rate = 0% (0°) Go trip is in reverse rotation only.


Forward rotation allowable rate = 25%Max. moving degree of go trip is $+90^{\circ}$

Forward rotation allowable rate = 50%Max. moving degree of go trip is $+180^{\circ}$

Forward rotation allowable rate = 75% Max. moving degree of go trip is +270°

Forward rotation allowable rate = 100% (360°) Go trip is in forward rotation only.

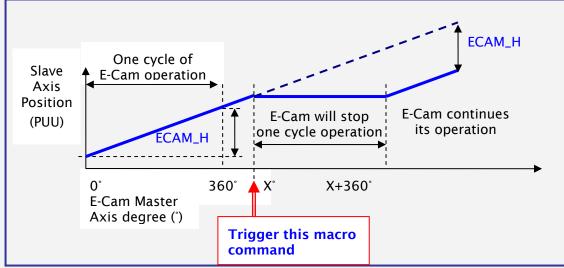
Failure code: F0F1h	The E-Cam is not engaged when executing this marco command. The E-Cam should be engaged. Otherwise, the engaged position cannot be changed.
Failure code: F0F2h	The setting value of P5-93. YX (PR number of Go trip) is not within its allowable range. It should be within the range of 1 \sim 0x3F.
Failure code: F0F3h	The setting value of P5-93. UZ (PR number of Return trip) is not within its allowable range. It should be within the range of 1 \sim 0x3F.

8-230 Revision September 2012

Failure code: F0F5h	The setting value of P5-95 (forward rotation allowable rate) is not within its allowable range. It should be within the range of 0 \sim 100%.
Failure code: F0F6h	The setting value of P5-96 (target position) is not within its allowable range. It should be within the range of 0 ~ (P5-84/P5-83)-1.

 The firmware version V1.042 sub09 and later models provide the following macro command:

Command code: 0010h	Stop one cycle of E-Cam operation. E-Cam will pause and start to operate from next cycle.
General Parameters	N/A
Macro Parameters	P5-93 = Must be set to 0


After E-Cam is engaged, no matter what the degree of E-Cam is, using this macro command is able to stop one cycle operation of slave axis.

When the following conditions are all met, the function of this macro command will be activated.

Condition 1: The E-Cam must be engaged.

Condition 2: The E-Cam curve must be a forward operation curve (including straight line)

Please refer to the figure below. No matter what the degree of E-Cam is, only triggering this macro command, E-Cam will stop one cycle operation.

Please note:

- 1. ECAM_H (E-Cam Pause Distance) = E-Cam Table (Last Point First Point) x P5-19 (E-Cam Curve Scaling).
- 2. The users can stop E-Cam operation for many times. When triggering this macro commands for N times, the E-Cam operation will be stopped for N cycles. Please note that the accumulated pause distance cannot exceed 2^31. If accumulated pause distance >2^31, this macro command will become disabled.
- 3. After E-Cam stops one cycle operation, it will start to operate for next cycle. At this time, the accumulated pause distance will be clear to 0.

Failure code: F101h	The E-Cam is not engaged when executing this marco command. The E-Cam should be engaged when using this macro command.
Failure code: F102h	The setting value of P5-93 is not correct. It must be set to 0.

Failure code: F103h	The E-Cam operation should be in forward direction. Please check the E-Cam table and ensure that the setting value of P5-19 should be higher than 0 (P5-19 > 0).
Failure code: F104h	The accumulated pause distance cannot exceed 2^31. If accumulated pause distance >2^31, this macro command will become disabled. Do not execute this macro command continuously.

Please note:

ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.

P5-98	EVON	Event Rising-edge Trigger Command (OFF → ON)		Address: 05C4H 05C5H
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ult:[0		
	Con Mo	trol ode: PR		
	U	Jnit: N/A		•
	Rar	nge: 0000 ~ DDDDh		
	Data S	ize: 16-bit		
	Disp Forn	play nat: Hexadecimal		

Settings:

This parameter is used to trigger the position command when DI signals, EV1 \sim EV4 (Event trigger command 1 \sim 4) are ON (activated).

Display	U	Z	Y	Х
Range	0 ~ D	0 ~ D	0 ~ D	0 ~ D

X: EV1 settings

0: When EV1 is ON, no position command is triggered.

1 ~ D: When EV1 is ON, position command P51 ~ P63 is triggered.

For example, when the setting value of X is set to 1 while EV1 is ON, the position command P51 is triggered. When the setting value of X is set to 2, the position command P52 is triggered, and so on.

Y: EV2 settings

0: When EV2 is ON, no position command is triggered.

1 \sim D: When EV2 is ON, position command P51 \sim P63 is triggered.

Please note:

The DI signals, EV3 and EV4 are available for the firmware version V1.009 and later models.

Z: EV3 settings

0: When EV3 is ON, no position command is triggered.

 $1 \sim D$: When EV3 is ON, position command P51 \sim P63 is triggered.

8-232 Revision September 2012

- U: EV4 settings
 - 0: When EV4 is ON, no position command is triggered.
 - 1 ~ D: When EV4 is ON, position command P51 ~ P63 is triggered.

P5-99

II FV()F	Event Falling-edge Trig (ON → OFF)	ger Command	Address: 05C6H 05C7H
Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: N/A
Defa	ult: 0		
Con Mo	trol de: PR		
U	nit: N/A		
Ran	ge: 0000 ~ DDDDh		•
Data S	ize: 16-bit		1 1 2
Disp Forn	olay nat::Hexadecimal		

Settings:

This parameter is used to trigger the position command when DI signal, EV1 \sim EV4 (Event trigger command 1 \sim 4) are OFF (inactivated).

Display	U	Z	Y	X
Range	0 ~ D	0 ~ D	0 ~ D	0 ~ D

X: EV1 settings

- 0: When EV1 is OFF, no position command is triggered.
- $1 \sim D$: When EV1 is OFF, position command P51 \sim P63 is triggered.

For example, when the setting value of X is set to 1 while EV1 is OFF, the position command P51 is triggered. When the setting value of X is set to 2, the position command P52 is triggered, and so on.

Y: EV2 settings

- 0: When EV2 is OFF, no position command is triggered.
- 1 ~ D: When EV2 is OFF, position command P51 ~ P63 is triggered.

Please note:

The DI signals, EV3 and EV4 are available for the firmware version V1.009 and later models.

Z: EV3 settings

- 0: When EV3 is OFF, no position command is triggered.
- 1 ~ D: When EV3 is OFF, position command P51 ~ P63 is triggered.

U: EV4 settings

- 0: When EV4 is OFF, no position command is triggered.
- 1 ~ D: When EV4 is OFF, position command P51 ~ P63 is triggered.

P6-00

Group 6: P6-xx PR Path Definition Parameters (Refer to Chapter 7)

ODEF	Homing Definition		Address: 0600H 0601H
Operat	ion ace: Keypad / Software	Communication	Related Section:
	ult::0x00000000	:	Section 7.10
Con Mo	trol pde: PR		•
U	nit: N/A		
Rar	ige: 0x00000000 ~ 0x10)FFFF3F	
Data S	ize: 32-bit		
Disp Forn	olay nat: Hexadecimal		

Settings:

Homing definition:

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
Function	воот	-	DLY	DEC2	DEC1	ACC	PA	ТН

- PATH: Path style (4 bits)
 - 0: Stop mode. Motor stops after homing is completed.
 - 1~63: Auto mode. Motor goes the dedicated path after homing is completed.
- ACC: Acceleration time 0 ~ F, corresponds to P5-20 ~ P5-35.
 - DEC1: 1st deceleration time 0 ~ F, corresponds to P5-20 ~ P5-35.
- DLY: Delay time 0 ~ F, corresponds to P5-40 ~ P5-55.
- BOOT: Boot mode. Disable or enable homing function when the servo drive is applied to power (power on).
 - 0: Disable homing function
 - 1: Enable homing function (when the servo drive is applied to power)
- Other parameters relevant to homing function:
 - 1. P5-04 (Homing mode)
 - 2. P5-05 (1st Speed Setting of High Speed Homing) and P5-06 (2nd Speed Setting of Low Speed Homing)
 - 3. P6-01: ORG_DEF (Homing definition value). P6-01 is used to set the coordinate value of the current home position for the movement of the coordinate system. The coordinate value could be a non-zero value.

In ASDA-A2 series, after detecting "Home" (home sensor or Z pulse), the motor will decelerate to stop the operation.

If the motor does not return to "Home", just set path number to 0.

If the motor must return to "Home", set path number to a non-zero value and set the route PABS = ORG_DEF.

When detecting "Home" (home sensor or Z pulse), if the motor has to go forward for a while (offset value S) and reach the position P, set the path number to a non-zero value and set $ORG_DEF = P - S$ (the absolute position command of this route is P).

8-234 Revision September 2012

P6-01

ODAT	Homing Definition Val	ue	Address: 0602H 0603H
Operati	on ce: Keypad / Software	Communication	Related Section:
Interfa	ce:		Section 7.10
Defaı	ılt: 0		· · · ·
Cont Mo	rol de:		
Ur	nit::N/A		
Ran	ge:-2147483648 ~ +21	47483647	
Data Si	ze: 32-bit		
Disp Form	lay at::Decimal		

Settings:

Homing definition value:

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
Function				ORG_DE	(32-bit)			

ORG_DEF: Homing definition value which is determined by the parameter P6-01. The homing definition value does not necessarily have to be 0.

P6-02	PDEF1	Definition of Path 1	Definition of Path 1			
	Operat Interfa	ion ice: Keypad / Software	Communication	Related Section: Section 7.10		
	Defa	ult::0x00000000				
	Con Mo	trol de: PR				
	U	nit: N/A		•		
	Ran	ge: 0x00000000 ~ 0xFI	FFFFFF	71 : :		
	Data Size: 32-bit			<u>:</u>		
	Disp Form	olay nat: Hexadecimal				

Settings:

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
P6-02	-	-	DLY		-	-	OPT	TYPE
P6-03				DATA ((32-bit)			

TYPE, OPT:

	OPT			TYPE	
Bit7	Bit7 Bit6 Bit5 Bit4		Bit4	Bit3 ~ Bit0	
-	UNIT	AUTO	INS	1: Constant speed control	
	4D	OV/LD	INIC	2: Single positioning control. Motor stops when positioning is completed.	
CMD OVLP INS		LIND	3: Auto positioning control. Motor goes to next dedicated path when positioning is completed.		
-	-	-	INS	7: Jump to the dedicated path.	

	OPT		ТҮРЕ	
-	-	AUTO	INS	8: Write the specified parameter to the dedicated path.

% When the TYPE is set to 1 ~ 3, it can accept DO signals, STP (Motor Stop), SNL(SCWL, Reverse Software Limit), SPL(SCCWL, Forward Software Limit).

INS: Insertion command on PR.

OVLP: Overlap the next PR. This function is not available in speed mode. In position mode, DLY becomes disabled.

AUTO: When current positioning is completed, the motor moves to the next dedicated PR automatically.

CMD: Refer to Section 7.10 in Chapter 7.

DLY: $0 \sim F$. Delay time number (4 bits). The digital output of this PR activates after the delay time. External INS is not valid. The delay time number settings correspond with the parameter P5-40 \sim P5-55.

DLY (4) Index P5-40 ~ P5-55

P6-03

PDAT1	Data of Path 1		Address: 0606H 0607H
Operati Interfa	on ce: Keypad / Software	Communication	Related Section: Section 7.10
Defa	ult: 0		:
Cont Mo			
Uı	nit::N/A		
Ran	ge: -2147483648 ~ +21	47483647	
Data Si	ze: 32-bit		:
Disp Form	lay at: Decimal		

Settings:

Data of path 1:

Bit	31 ~ 28	27 ~ 24	23 ~ 20	19 ~ 16	15 ~ 12	11 ~ 8	7 ~ 4	3 ~ 0
Function				DATA ((32-bit)			

The parameter P6-02 is used to determine the attributes of definition of Path 1 and parameter P6-03 is used to set the data (target position or jump path number) corresponding to P6-02.

8-236 Revision September 2012

P6-04	PDEF2	Definition of Path 2		Address: 0608H 0609H
	Operat	ion Ace: Keypad / Software	Communication	Related Section:
	Interfa	ace: 'C', pau, 'Sortius'		Section 7.10
	Defa	ult: 0x0000000		1 1 1 2
	Con Mo	trol pde:		
	U	nit::N/A		
	Ran	ige::0x00000000 ~ 0xFf	FFFFF	
	Data S	ize: 32-bit		
	Disp Forn	olay nat::Hexadecimal		
				=-

Refer to P6-02 for explanation.

P6-05	PDAT2 Data of Path 2	Address: 060AH 060BH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Cattings	

Settings:

Refer to P6-03 for explanation.

P6-06	PDEF3 Definition of Path 3	Address: 060CH 060DH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cottings	

Settings:

Refer to P6-02 for explanation.

P6-07	PDAT3 Data of Path 3	Address: 060EH 060FH
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface:	Section 7.10
	Default: 0	:
	Control Mode: PR	
	Unit: N/A	:
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:: Decimal	

Refer to P6-03 for explanation.

P6-08	PDEF4 Definition of Path 4	Address: 0610H 0611H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cattiana	

Settings:

Refer to P6-02 for explanation.

P6-09	PDAT4 Data of Path 4	Address: 0612H 0613H
	Operation Interface: Keypad / Software Communication	Related Section:
	Default::0	Section 7.10
	Control Mode: PR	-
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-03 for explanation.

8-238 Revision September 2012

P6-10	PDEF5	Definition of Path 5		Address: 0614H 0615H
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: Section 7.10
	Defa	ult: 0x0000000		7
	Con Mo	trol ode: PR		
	U	Init: N/A		Î: :
	Ran	nge: 0x00000000 ~ 0xFF	FFFFFF	-
	Data S	ize: 32-bit		
	Disp Forn	olay nat: Hexadecimal		

Refer to P6-02 for explanation.

P6-11	PDAT5 Data of Path 5	Address: 0616H 0617H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Cottings	

Settings:

Refer to P6-03 for explanation.

P6-12	PDEF6 Definition of Path 6	Address: 0618H 0619H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	4
	Range: 0x00000000 ~ 0xFFFFFFF	:
	Data Size: 32-bit	
	Display Format:	
	Sottings	

Settings:

Refer to P6-02 for explanation.

P6-13	PDAT6 Data of Path 6	Address: 061AH 061BH
	Operation Interface: Keypad / Software Communication	Related Section:
	Interrace: '' '	Section 7.10
	Default: 0	: : : : : : : : : : : : : : : : : : : :
	Control Mode: PR	
	Unit::N/A	
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

P6-14	PDEF7 Definition of Path 7	Address: 061CH 061DH
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface: ''	Section 7.10
	Default::0x0000000	
	Control Mode:	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size::32-bit	
	Display Format:	

Settings:

Refer to P6-02 for explanation.

P6-15	PDAT7 Data of Path 7	Address: 061EH 061FH
	Operation Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-03 for explanation.

8-240 Revision September 2012

P6-16	PDEF8 Definition of Path 8		Address: 0620H 0621H
	Operation Interface: Keypad / Software	Communication	Related Section:
	Interface: "Topical, Joseph Jo		Section 7.10
	Default: 0x0000000		· · ·
	Control Mode: PR		
	Unit: N/A		
	Range: 0x00000000 ~ 0xF	FFFFFF	•
	Data Size: 32-bit		-1 : : :
	Display Format: Hexadecimal		

Refer to P6-02 for explanation.

P6-17	PDAT8 Data of Path 8	Address: 0622H 0623H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	, : :
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Settings:

Refer to P6-03 for explanation.

P6-18	PDEF9 Definition of Path 9	Address: 0624H 0625H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-19	PDAT9 Data of Path 9	Address: 0626H 0627H
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface: ',' '	Section 7.10
	Default: 0	; ; ;
	Control Mode: PR	
	Unit: N/A	
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

PDEF10 Definition of Path 10	Address: 0628H 0629H
Operation Keypad / Software Communication	Related Section:
Default: 0x0000000	Section 7.10
Control Mode:	
Unit: N/A	
Range: 0x00000000 ~ 0xFFFFFFF	
Data Size::32-bit	
Display Format:	
	Operation Interface: Keypad / Software Communication Default: 0x00000000 Control Mode: PR Unit: N/A Range: 0x00000000 ~ 0xFFFFFFFF Data Size: 32-bit

Settings:

Refer to P6-02 for explanation.

P6-21	PDAT10 Data of Path 10	Address: 062AH 062BH
	Operation Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	į
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-03 for explanation.

8-242 Revision September 2012

P6-22	PDEF11 Definition of Path 11		Address: 062CH 062DH
	Operation Interface: Keypad / Software	Communication	Related Section:
	Default: 0x00000000	<u>:</u>	Section 7.10
	Control Mode: PR		
	Unit: N/A		
	Range: 0x00000000 ~ 0xFI	FFFFFF	
	Data Size: 32-bit		: : :
	Display Format: Hexadecimal		

Refer to P6-02 for explanation.

P6-23	PDAT11 Data of Path 11	Address: 062EH 062FH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	
	Sattings	

Settings:

Refer to P6-03 for explanation.

P6-22	PDEF11 Definition of Path 11	Address: 062CH 062DH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cattings	

Settings:

Refer to P6-02 for explanation.

P6-23	PDAT11 Data of Path 11	Address: 062EH 062FH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	•	

Refer to P6-03 for explanation.

P6-24	PDEF12 Definition of Path 12	Address: 0630H 0631H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-25	PDAT12 Data of Path 12	Address: 0632H 0633H
	Operation Keypad / Software Communication	Related Section:
	Default::0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Settings

Refer to P6-03 for explanation.

8-244 Revision September 2012

P6-24	PDEF12 Definition of Path 12		Address: 0630H 0631H
	Operation Interface: Keypad / Software	Communication	Related Section:
	Interface: (Cypaa / Sortware		Section 7.10
	Default: 0x00000000		· · ·
	Control Mode: PR		
	Unit: N/A		
	Range: 0x00000000 ~ 0xFI	FFFFFF	
	Data Size: 32-bit		71 : :
	Display Format: Hexadecimal		

Refer to P6-02 for explanation.

P6-25	PDAT12 Data of Path 12	Address: 0632H 0633H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	:
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Settings:

Refer to P6-03 for explanation.

P6-26	PDEF13 Definition of Path 13	Address: 0634H 0635H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range::0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cattings	

Settings:

Refer to P6-02 for explanation.

P6-27	PDAT13 Data of Path 13	Address: 0636H 0637H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Refer to P6-03 for explanation.

P6-28	PDEF14 Definition of Path 14	Address: 0638H 0639H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-29	PDAT14 Data of Path 14	Address: 063AH 063BH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	
:	Range::-2147483648 ~ +2147483647	
:	Data Size: 32-bit	
	Display Format:	
	Format: Decimal	

Settings

Refer to P6-03 for explanation.

8-246 Revision September 2012

P6-30	PDEF15 Definition of Path 15	Address: 063CH 063DH
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface:	Section 7.10
	Default::0x0000000	:
	Control Mode: PR	
	Unit: N/A	
	Range::0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-02 for explanation.

P6-31	PDAT15 Data of Path 15	Address: 063EH 063FH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	•
	Display Format: Decimal	
	Sattings	

Settings:

Refer to P6-03 for explanation.

PDEF16 Definition of Path 16	Address: 0640H 0641H
Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
Default: 0x0000000	
Control Mode: PR	
Unit: N/A	
Range: 0x00000000 ~ 0xFFFFFFFF	
Data Size: 32-bit	
Display Format:	
	Operation Interface: Keypad / Software Communication Default: 0x00000000 Control Mode: PR Unit: N/A Range: 0x00000000 ~ 0xFFFFFFFF Data Size: 32-bit Display Heyadecimal

Settings

Refer to P6-02 for explanation.

P6-33	PDAT16 Data of Path 16	Address: 0642H 0643H
	Operation Interface: Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	Control PR Mode:	
	Unit::N/A	
	Range:-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Refer to P6-03 for explanation.

P6-34	PDEF17 Definition of Path 17	Address: 0644H 0645H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-35	PDAT17 Data of Path 17	Address: 0646H 0647H
	Operation Interface: Keypad / Software Communication	Related Section:
	Default::0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Settings

Refer to P6-03 for explanation.

8-248 Revision September 2012

P6-36	PDEF18 Definition of Path 18	Address: 0648H 0649H
	Operation Keypad / Software Communication	Related Section:
	Interface:	Section 7.10
	Default: 0x0000000	:
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-02 for explanation.

P6-37	PDAT18 Data of Path 18	Address: 064AH 064BH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	
	Sattings	

Settings:

Refer to P6-03 for explanation.

P6-38	PDEF19 Definition of Path 19	Address: 064CH 064DH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	

Settings

Refer to P6-02 for explanation.

P6-39	PDAT19 Data of Path 19	Address: 064EH 064FH
	Operation Interface: Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	<u>}</u>	
	Control PR Mode:	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Refer to P6-03 for explanation.

5-40	PDEF20 Definition of Path 20	Address: 0650H 0651H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	:
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cottings	

Settings:

Refer to P6-02 for explanation.

PDAT20 Data of Path 20	Address: 0652H 0653H
Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
Default: 0	
Control Mode: PR	
Unit: N/A	
Range: -2147483648 ~ +2147483647	
Data Size: 32-bit	
Display Format:	
	Operation Interface: Keypad / Software Communication Default: 0 Control Mode: PR Unit: N/A Range: -2147483648 ~ +2147483647 Data Size: 32-bit Display Decimal

Refer to P6-03 for explanation.

8-250 Revision September 2012

P6-42	PDEF21	Definition of Path 21		Address: 0654H 0655H
	Operat	ion Ace: Keypad / Software	Communication	Related Section:
	Interfa	ice: ', p , c		Section 7.10
	Defa	ult: 0x0000000		:
	Con Mo	trol de: PR		
	U	nit: N/A		
	Ran	ge: 0x00000000 ~ 0xFF	FFFFF	
	Data S	ize: 32-bit		
	Disp Form	olay nat: Hexadecimal		

Refer to P6-02 for explanation.

	Address: 0656H 0657H
e Communication	Related Section:
:	Section 7.10
2147483647	
	·i

Settings:

Refer to P6-03 for explanation.

P6-44	PDEF22 Definition of Path 22	Address: 0658H 0659H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	:
	Control Mode: PR	
	Unit: N/A	
	Range::0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cattings	

Settings:

Refer to P6-02 for explanation.

P6-45	PDAT22 Data of Path 22	Address: 065AH 065BH
	Operation Keypad / Software Communication	Related Section:
	: Intertace: '' '	Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

P6-46	PDEF23 Definition of Path 23	Address: 065CH 065DH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-47	PDAT23 Data of Path 23	Address: 065EH 065FH
	Operation Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	Control PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Settings

Refer to P6-03 for explanation.

8-252 Revision September 2012

P6-48	PDEF24 Definition of Path 24	Address: 0660H 0661H
	Operation Interface: Keypad / Software Con	nmunication Related Section:
	Interface: , , , , , , , , , , , , , , , , , , ,	Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit::N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	F
	Data Size: 32-bit	
	Display Format:	

Refer to P6-02 for explanation.

P6-49	PDAT24 Data of Path 24	Address: 0662H 0663H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	•
	Display Format: Decimal	
	Sattings	

Settings:

Refer to P6-03 for explanation.

P6-50	PDEF25 Definition of Path 25	Address: 0664H 0665H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cattings:	

Settings:

Refer to P6-02 for explanation.

P6-51	PDAT25 Data of Path 25	Address: 0666H 0667H
	Operation Interface: Keypad / Software Communication	Related Section:
	· }	Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit::N/A	
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Refer to P6-03 for explanation.

F26 Definition of Path 26		Address: 0668H 0669H
peration terface: Keypad / Software	Communication	Related Section:
	:	Section 7.10
Unit: N/A		
Range: 0x00000000 ~ 0xFF	FFFFF	
nta Size: 32-bit		·i
Display Format: Hexadecimal		
	Default: 0x00000000 Control Mode: PR Unit: N/A	Default: 0x00000000 Control Mode: PR Unit: N/A Range: 0x0000000 ~ 0xFFFFFFFF uta Size: 32-bit

Settings:

Refer to P6-02 for explanation.

P6-53	PDAT26 Data of Path 26	Address: 066AH 066BH
	Operation Interface: Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Settings

Refer to P6-03 for explanation.

8-254 Revision September 2012

P6-54	PDEF27 Definition of Path 27		Address: 066CH 066DH
	Operation Interface: Keypad / Software	Communication	Related Section:
	Interface: Re, pad , Software		Section 7.10
	Default: 0x00000000		:
	Control Mode: PR		
	Unit: N/A		•
	Range: 0x00000000 ~ 0xF	FFFFFF	•
	Data Size: 32-bit		
	Display Format: Hexadecimal		

Refer to P6-02 for explanation.

P6-55	PDAT27 Data of Path 27	Address: 066EH 066FH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Settings:

Refer to P6-03 for explanation.

P6-56	PDEF28 Definition of Path 28	Address: 0670H 0671H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Sattings	

Settings

Refer to P6-02 for explanation.

P6-57	PDAT28 Data of Path 28	Address: 0672H 0673H
	Operation Interface: Keypad / Software Communication	Related Section:
		Section 7.10
	Default: 0	:
	Control Mode: PR	
	Unit::N/A	
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

P6-58	PDEF29 Definition of Path 29	Address: 0674H 0675H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	; ;
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	

Settings:

Refer to P6-02 for explanation.

P6-59	PDAT29 Data of Path 29	Address: 0676H 0677H
	Operation Keypad / Software Communication	Related Section:
	Default::0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-03 for explanation.

8-256 Revision September 2012

P6-60	PDEF30 Definition of Path 30	Address: 0678H 0679H
	Operation Keypad / Software Communication	Related Section:
	Interface: "7Paa /	Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-02 for explanation.

P6-61	PDAT30 Data of Path 30	Address: 067AH 067BH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Settings:

Refer to P6-03 for explanation.

P6-62	PDEF31 Definition of Path 31	Address: 067CH 067DH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Sattings	

Settings

Refer to P6-02 for explanation.

P6-63	PDAT31 Data of Path 31	Address: 067EH 067FH
	Operation Keypad / Software Communication	Related Section:
		Section 7.10
	Default: 0	3
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

P6-64	PDEF32 Definition of Path 32	Address: 0680H 0681H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-65	PDAT32 Data of Path 32	Address: 0682H 0683H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-03 for explanation.

8-258 Revision September 2012

P6-66	PDEF33 Definition of Path 33	Address: 0684H 0685H
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface: (C) pad / Sorting C	Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-02 for explanation.

P6-67	PDAT33 Data of Path 33	Address: 0686H 0687H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	: : : :
	Unit: N/A	:
	Range: -2147483648 ~ +2147483647	:
	Data Size: 32-bit	
	Display Format: Decimal	

Settings:

Refer to P6-03 for explanation.

P6-68	PDEF34 Definition of Path 34	Address: 0688H 0689H
	Operation Keypad / Software Communication	Related Section:
	Interface:	Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-02 for explanation.

8-259 Revision September 2012

P6-69	PDAT34 D	Oata of Path 34		Address: 068AH 068BH
	Operatio	on e: Keypad / Software	Communication	Related Section:
	÷		: 	Section 7.10
	Defaul	lt: 0		: : :
	Contro Mode	ol e:		
	Uni	it::N/A		
	Range	e:-2147483648 ~ +214	47483647	• • •
	Data Siz	e: 32-bit		1 : :
	Displa Forma	Decimal		
				-

Refer to P6-03 for explanation.

P6-70	PDEF35 Definition of Path 35	Address: 068CH 068DH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-71	PDAT35 Data of Path 35	Address: 068EH 068FH
	Operation Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	į
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-03 for explanation.

8-260 Revision September 2012

P6-72	PDEF36 Definition of Path 36		Address: 0690H 0691H
	Operation Interface: Keypad / Software	Communication	Related Section:
	Interface: (C) pad / Sortware		Section 7.10
	Default: 0x00000000		· · ·
	Control Mode: PR		
	Unit: N/A		
	Range: 0x00000000 ~ 0xF	FFFFFF	•
	Data Size: 32-bit		
	Display Format: Hexadecimal		

Refer to P6-02 for explanation.

P6-73	PDAT36 Data of Path 36	Address: 0692H 0693H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	:
	Range: -2147483648 ~ +2147483647	:
	Data Size: 32-bit	
	Display Format:	

Settings:

Refer to P6-03 for explanation.

P6-74	PDEF37 Definition of Path 37	Address: 0694H 0695H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	C-44!	

Settings:

Refer to P6-02 for explanation.

P6-75	PDAT37 Data of Path 37	Address: 0696H 0697H
	Operation Keypad / Software Communication	Related Section:
		Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

P6-76	PDEF38 Definition of Path 38	Address: 0698H 0699H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	·
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-77	PDAT38 Data of Path 38	Address: 069AH 069BH
	Operation Keypad / Software Communication	Related Section:
	\$	Section 7.10
	Default::0	
	Control Mode: PR	
	Unit: N/A	
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	
	Settings:	

Refer to P6-03 for explanation.

8-262 Revision September 2012

P6-78	PDEF39 Definition of Path 39		Address: 069CH 069DH
	Operation Interface: Keypad / Software	Communication	Related Section: Section 7.10
	Default: 0x00000000	-	
	Control PR Mode:		
	Unit: N/A		
	Range: 0x00000000 ~ 0xFF	FFFFFF	
	Data Size: 32-bit		
	Display Format: Hexadecimal		

Refer to P6-02 for explanation.

P6-79	PDAT39 Data of Path 39	Address: 069EH 069FH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	
	Sattings	

Settings:

Refer to P6-03 for explanation.

P6-80	PDEF40 Definition of Path 40	Address: 06A0H 06A1H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Format:	'

Settings

Refer to P6-02 for explanation.

P6-81	PDAT40 Data of Path 40	Address: 06A2H 06A3H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Refer to P6-03 for explanation.

PDEF41 Definition of Path 41	Address: 06A4H 06A5H
Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
Default: 0x0000000	Section 7.10
Control Mode:	
Unit: N/A	,
Range: 0x00000000 ~ 0xFFFFFFF	
Data Size::32-bit	
Display Format::	
	Operation Interface: Keypad / Software Communication Default: 0x00000000 Control Mode: PR Unit: N/A Range: 0x00000000 ~ 0xFFFFFFFF Data Size: 32-bit

Settings:

Refer to P6-02 for explanation.

P6-83	PDAT41 Data of Path 41	Address: 06A6H 06A7H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	Section 7.10
	Control Mode: PR	7777
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-03 for explanation.

8-264 Revision September 2012

P6-84	PDEF42 Definition of Path 42	Address: 06A8H 06A9H
	Operation Interface: Keypad / Software Communication	Related Section:
	Interface:	Section 7.10
	Default::0x0000000	:
	Control Mode:	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	:
	Display Format:	

Refer to P6-02 for explanation.

PDAT42 Data of Path 42	Address: 06AAH 06ABH
Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
Default::0	
Control Mode:	
Unit: N/A	:
Range: -2147483648 ~ +2147483647	
Data Size: 32-bit	
Display Format:	
	Operation Interface: Keypad / Software Communication Default: 0 Control Mode: PR Unit: N/A Range: -2147483648 ~ +2147483647 Data Size: 32-bit

Settings:

Refer to P6-03 for explanation.

P6-86	PDEF43 Definition of Path 43	Address: 06ACH 06ADH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Settings	'

Settings

Refer to P6-02 for explanation.

P6-87	PDAT43	Data of Path 43		Address: 06AEH 06AFH
	Operat	ion Ice: Keypad / Software	Communication	Related Section:
	<u></u>		:	Section 7.10
	Defa	ult: 0		:
	Cont Mo	trol de: PR		
	U	nit::N/A		
	Ran	ge: -2147483648 ~ +21	47483647	* • •
	Data Si	ize: 32-bit		1 : :
	Disp Form	olay nat: Decimal		
				=

Refer to P6-03 for explanation.

P6-88	PDEF44 Definition of Path 44	Address: 06B0H 06B1H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	
	Sattings	

Settings:

Refer to P6-02 for explanation.

P6-89	PDAT44 Data of Path 44	Address: 06B2H 06B3H
	Operation Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Refer to P6-03 for explanation.

8-266 Revision September 2012

P6-90	PDEF45 Definition of Path 45	Address: 06B4H 06B5H
	Operation Keypad / Software Communication	Related Section:
	interface: '' '	Section 7.10
	Default: 0x00000000	
	Control Mode: PR	
	Unit: N/A	
	Range::0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	

Refer to P6-02 for explanation.

P6-91	PDAT45 Data of Path 45	Address: 06B6H 06B7H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	,
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	
	Sattings	

Settings:

Refer to P6-03 for explanation.

P6-92	PDEF46 Definition of Path 46	Address: 06B8H 06B9H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	:
	Data Size: 32-bit	
	Display Format:	
	Settings	:

Settings

Refer to P6-02 for explanation.

P6-93	PDAT46 Data of Path 46	Address: 06BAH 06BBH
	Operation Keypad / Software Communication	Related Section:
		Section 7.10
	Default: 0	:
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

P6-94	PDEF47 Definition of Path 47	Address: 06BCH 06BDH
	Operation Keypad / Software Communication	Related Section:
	Interface: /' /	Section 7.10
	Default::0x00000000	:
	Control Mode: PR	
	Unit: N/A	
	Range::0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	

Settings:

Refer to P6-02 for explanation.

P6-95	PDAT47 Data of Path 47	Address: 06BEH 06BFH	
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10	
	Default::0		
	Control Mode: PR		
	Unit: N/A		
	Range: -2147483648 ~ +2147483647		
	Data Size: 32-bit		
	Display Format:		
	Settings:		

Refer to P6-03 for explanation.

8-268 Revision September 2012

P6-96	PDEF48 Definition of Path 48	Address: 06C0H 06C1H
	Operation Keypad / Software Communication	Related Section:
	Interface: "Toppus / Softman Communication	Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	:
	Data Size: 32-bit	
	Display Format:	

Refer to P6-02 for explanation.

P6-97	PDAT48 Data of Path 48	Address: 06C2H 06C3H	
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10	
	Default: 0		
	Control Mode: PR		
	Unit: N/A	:	
	Range: -2147483648 ~ +2147483647		
	Data Size: 32-bit		
	Display Format: Decimal		

Settings:

Refer to P6-03 for explanation.

PDEF49 Definition of Path 49	Address: 06C4H 06C5H
Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
Default: 0x0000000	
Control Mode: PR	
Unit: N/A	· · · · · · · · · · · · · · · · · · ·
Range: 0x00000000 ~ 0xFFFFFFFF	
Data Size: 32-bit	·;
Display Format:	
	Operation Interface: Keypad / Software Communication Default: 0x00000000 Control Mode: PR Unit: N/A Range: 0x00000000 ~ 0xFFFFFFFF Data Size: 32-bit Display Heyadecimal

Settings

Refer to P6-02 for explanation.

99	PDAT49 Data of Path 49		Address: 06C6H 06C7H	
	Operation Interface:	Keypad / Software	Communication	Related Section: Section 7.10
	Default:	0		
	Control Mode:	PR		
	Unit:	N/A		
Rang		-2147483648 ~ +21	47483647	
	Data Size:	32-bit		
	Display Format:	Decimal		

Refer to P6-03 for explanation.

8-270 Revision September 2012

Group 7: P7-xx PR Path Definition Parameters

P7-00	PDEF50 Definition of Path 50	Address: 0700H 0701H	
	Operation Keypad / Software Communication	Related Section: Section 7.10	
	Default::0x0000000		
	Control Mode: PR		
	Unit: N/A		
	Range: 0x00000000 ~ 0xFFFFFFFF		
	Data Size: 32-bit		
	Display Format:		
	Sattings		

Refer to P6-02 for explanation.

PDAT50 Data of Path 50	Address: 0702H 0703H
Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
Default: 0	
Control PR Mode:	
Unit::N/A	
Range::-2147483648 ~ +2147483647	
Data Size: 32-bit	<u>-</u> : : :
Display Format:	
	Operation Interface: Keypad / Software Communication Default: 0 Control Mode: PR Unit: N/A Range: -2147483648 ~ +2147483647 Data Size: 32-bit

Settings:

Refer to P6-03 for explanation.

PDEF51 Definition of Path 51		Address: 0704H 0705H
Opera Interf	tion ace: Keypad / Software Communicati	on Related Section: Section 7.10
	ault: 0x0000000	
Con Mo	otrol pde: PR	
Ü	Jnit::N/A	
Rar	nge: 0x00000000 ~ 0xFFFFFFF	:
Data S	ize: 32-bit	:
Dis Forr	play nat:	
Settings:		
Refer to P	6-02 for explanation.	

P7-03	PDAT51 Data of Path 51	Address: 0706H 0707H
	Operation Interface: Keypad / Software Communica	tion Related Section:
	÷	Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit::N/A	
	Range::-2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

7-04	PDEF52 Definition of Path 5	52	Address: 0708H 0709H
	Operation Interface: Keypad / Softwa	re Communication	Related Section: Section 7.10
	Default: 0x00000000		
	Control PR Mode:		
	Unit: N/A		· · · · · · · · · · · · · · · · · · ·
	Range: 0x00000000 ~ 0)xFFFFFFF	
	Data Size: 32-bit		
	Display Format: Hexadecimal		

Settings:

Refer to P6-02 for explanation.

P7-05	PDAT52 Data of Path 52	Address: 070AH 070BH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	:
	Data Size: 32-bit	
	Display Format:	
	Settings	

Settings

Refer to P6-03 for explanation.

8-272 Revision September 2012

P7-06	PDEF53 Definition of Path 53	Address: 070CH 070DH
	Operation Keypad / Software Communication	Related Section:
	Interface: "Topad / Softman & Softman & Softman	Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-02 for explanation.

P7-07	PDAT53 Data of Path 53	Address: 070EH 070FH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	
	Sattings	

Settings:

Refer to P6-03 for explanation.

P7-08	PDEF54 Definition of Path 54	Address: 0710H 0711H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cattings:	

Settings:

Refer to P6-02 for explanation.

P7-09	PDAT54 Data of Path 54	Address: 0712H 0713H
	Operation Interface: Keypad / Software Communication	Related Section:
	. }	Section 7.10
	Default: 0	: - -
	Control PR Mode:	
	Unit::N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

7-10	PDEF55 Definition of Path 55	Address: 0714H 0715H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode:	
	Unit: N/A	:
	Range: 0x00000000 ~ 0xFFFFFFF	:
	Data Size: 32-bit	
	Display Format: Hexadecimal	

Settings:

Refer to P6-02 for explanation.

PDAT55 Data of Path 55	Address: 0716H 0717H
Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
Default: 0	
Control Mode: PR	
Unit: N/A	
Range: -2147483648 ~ +2147483647	
Data Size: 32-bit	
Display Format:	
	Default: 0 Control PR Mode: Unit: N/A Range: -2147483648 ~ +2147483647 Data Size: 32-bit Display Decimal

Settings

Refer to P6-03 for explanation.

8-274 Revision September 2012

P7-12	PDEF56	Definition of Path 56		Address: 0718H 0719H
	Operat	ion Ice: Keypad / Software	Communication	Related Section:
	Interfa	ice:		Section 7.10
	Defa	ult: 0x0000000		: : :
	Cont Mo	trol de: PR		
	U	nit: N/A		
	Ran	ge: 0x00000000 ~ 0xFF	FFFFFF	:
	Data Si	ize: 32-bit		7
	Disp Form	olay nat: Hexadecimal		

Refer to P6-02 for explanation.

P7-13	PDAT56 Data of Path 56	Address: 071AH 071BH
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	: : : :
	Unit: N/A	:
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	•
	Display Format: Decimal	

Settings:

Refer to P6-03 for explanation.

P7-14	PDEF57 Definition of Path 57	Address: 071CH 071DH
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	:
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cattings	

Settings:

Refer to P6-02 for explanation.

P7-15	PDAT57 Data of Path 57	Address: 071EH 071FH
	Operation Interface: Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	<u></u>
	Data Size: 32-bit	
	Display Format:	

Refer to P6-03 for explanation.

P7-16	PDEF58 Definition of Path 58	Address: 0720H 0721H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default::0x0000000	
	Control Mode:	
	Unit: N/A	:
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format: Hexadecimal	

Settings:

Refer to P6-02 for explanation.

P7-17	PDAT58 Data of Path 58	Address: 0722H 0723H
	Operation Keypad / Software Communication	Related Section:
	Default: 0	Section 7.10
	\$	
	Control PR Mode:	:
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	
	Settings:	

Settings

Refer to P6-03 for explanation.

8-276 Revision September 2012

P7-18	PDEF59 Definition	on of Path 59		Address: 0724H 0725H
	Operation Keyn	ad / Software	Communication	Related Section:
	Operation Interface: Keypad / Software Communication	Section 7.10		
	Default: 0x00	000000		
	Control Mode: PR			
	Unit: N/A			
	Range: 0x00	0000000 ~ 0xFF	FFFFF	
	Data Size: 32-b	it		
	Display Format: Hexa	decimal		

Refer to P6-02 for explanation.

P7-19	PDAT59 Data of Path 59	Address: 0726H 0727H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	: : : :
	Unit: N/A	:
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Settings:

Refer to P6-03 for explanation.

P7-20	PDEF60 Definition of Path 60	Address: 0728H 0729H
	Operation Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	C-44!	

Settings:

Refer to P6-02 for explanation.

P7-21	PDAT60 Data of Path 60	Address: 072AH 072BH
	Operation Keypad / Software Communication	Related Section:
	Default::0	Section 7.10
	Control Mode: PR	
	Unit: N/A	
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format: Decimal	

Refer to P6-03 for explanation.

P7-22	PDEF61 Definition of Path 61	Address: 072CH 072DH
	Operation Interface: Keypad / Software Communication	Related Section:
	Default: 0x0000000	Section 7.10
	Control Mode: PR	
	Unit: N/A	; ; ;
	Range: 0x00000000 ~ 0xFFFFFFF	
	Data Size: 32-bit	
	Display Format:	

Settings:

Refer to P6-02 for explanation.

PDAT61 Data of Path 61	Address: 072EH 072FH
Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
Default: 0	
Control Mode: PR	
Unit: N/A	
Range: -2147483648 ~ +2147483647	
Data Size: 32-bit	
Display Format:	
	Operation Interface: Keypad / Software Communication Default: 0 Control Mode: PR Unit: N/A Range: -2147483648 ~ +2147483647 Data Size: 32-bit Display Decimal

Settings

Refer to P6-03 for explanation.

8-278 Revision September 2012

P7-24	PDEF62 De	finition of Path 62		Address: 0730H 0731H
	Operation	Keypad / Software	Communication	Related Section:
	Interface:		S	Section 7.10
	Default:	0x0000000		•
	Control Mode:	PR		
	Unit:	N/A		
	Range:	0x00000000 ~ 0xFF	FFFFF	- - -
	Data Size:	32-bit		
	Display Format:	: Hexadecimal :		

Refer to P6-02 for explanation.

P7-25	PDAT62 Data of Path 62	Address: 0732H 0733H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0	
	Control Mode: PR	
	Unit: N/A	· · · · · · · · · · · · · · · · · · ·
	Range: -2147483648 ~ +2147483647	
	Data Size: 32-bit	
	Display Format:	

Settings:

Refer to P6-03 for explanation.

P7-26	PDEF63 Definition of Path 63	Address: 0734H 0735H
	Operation Interface: Keypad / Software Communication	Related Section: Section 7.10
	Default: 0x0000000	
	Control Mode: PR	
	Unit: N/A	
	Range: 0x00000000 ~ 0xFFFFFFFF	
	Data Size: 32-bit	
	Display Format:	
	Cattings	

Settings:

Refer to P6-02 for explanation.

	PDAT63 Data of Path 63		Address: 0736H 0737H
	Operation Interface: Keypad / Software	Communication	Related Section: Section 7.10
:	Default: 0		
	Control PR Mode:		
	Unit: N/A		
	Range::-2147483648 ~ +21	47483647	
	Data Size: 32-bit Display Format:		

Refer to P6-03 for explanation.

8-280 Revision September 2012

Table 8.A Input Function Definition

Setting value: 0x01				
DI Name	DI Function Description	Trigger Method	Control Mode	
SON	Servo On. When this DI is activated, it indicates the servo drive is enabled.	Level Triggered	All	

Setting value: 0x02								
DI Name DI Function Description Trigger Method M								
ARST	A number of Faults (Alarms) can be cleared by activating ARST. Please see table 10-3 for applicable faults that can be cleared with the ARST command. However, please investigate Fault or Alarm if it does not clear or the fault description warrants closer inspection of the drive system.	Rising-edge Triggered	All					

Setting value: 0x03							
DI Name	DI Function Description	Trigger Method	Control Mode				
GAINUP	Gain switching in speed and position mode. When GAINUP is activated (P2-27 is set to 1), the gain is switched to the gain multiplied by gain switching rate.	Level Triggered	PT, PR, S				

Setting value: 0x04							
DI Name	DI Function Description	Trigger Method	Control Mode				
CCLR	When CCLR is activated, the setting parameter P2-50 Pulse Clear Mode is executed. 0: After CCLR is activated (ON), the position accumulated pulse number will be cleared continuously.	Rising-edge Triggered, Level Triggered	PT, PR				

Setting value: 0x05 Control Trigger DI Name **DI** Function Description Method Mode When this signal is On and the motor speed value is lower than the setting value of P1-38, it is used to lock the motor in the instant position while ZCLAMP is On. Speed Command Setting value of P1-38 (Zero speed) Level **ZCLAMP** S Triggered ZCLAMP input signal ON OFF Motor Speed 1 Setting value of P1-38 (Zero speed) Time

Setting value: 0x06							
DI Name	DI Function Description	Trigger Method	Control Mode				
CMDINV	Command input reverse control. When the drive is in the Position, Speed and Torque mode, and CMDINV is activated, the motor is in reverse rotation.	Level Triggered	S, T				

Setting value: 0x07								
DI Name	DI Function Description	Trigger Method	Control Mode					
Reserved								

Setting value: 0x08								
DI Name	DI Function Description	Trigger Method	Control Mode					
CTRG	Command triggered (available in PR mode only). When the drive is in PR mode and CTRG is activated, the drive will command the motor to move the stored position which correspond the POS 0 ~ POS 5 settings. Activation is triggered on the rising edge of the pulse.	Rising-edge Triggered	PR					

8-282 Revision September 2012

Setting value: 0x09								
DI Name	DI Function Description	Trigger Method	Control Mode					
TRQLM	Torque limit enabled. When the drive is in speed and position mode, and TRQLM is activated, it indicates the torque limit command is valid. The torque limit command source is internal parameter or analog voltage.	Level Triggered	PT, PR, S					

Setting value: 0x0A							
DI Name	DI Function Description	Trigger Method	Control Mode				
GTRY	Gantry control function.	Rising-edge Triggered	PT				

Setting value: 0x0B								
DI Name	DI Function Description	Trigger Method	Control Mode					
FHS	Full-closed control mode and semi-closed control mode selection.	Level Triggered	PT, PR, Full- closed control mode					

Setting value: 0x0E								
DI Name	DI Function Description	Trigger Method	Control Mode					
FEC	Clear the errors of linear scale and motor encoder for full-closed control.	Level Triggered	PT, PR, Full- closed control mode					

Setting value: 0x10							
DI Name	DI Function Description	Trigger Method	Control Mode				
SPDLM	Speed limit enabled. When the drive is in torque mode and SPDLM is activated, it indicates the speed limit command is valid. The speed limit command source is internal parameter or analog voltage.	Level Triggered	T				

Setting value: 0x11, 0x12, 0x13, 0x1A, 0x1B, 0x1C

DI Name	DI Function Description									Trigger Method	Control Mode
	Position co When the I positions a POS 5 com	PR Co are pr	ntrol I ogran	Mode	is sel	ected,	the 6	64 stor	ed		
	Position Command	POS5	POS4	POS3	POS2	POS1	POS0	CTRG	Parameters		
	PR1	ON	ON	ON	ON	ON	ON	†	P6-00		
POS0	PKI	ON	ON	ON	ON	OIN	ON	ן אוכ	P6-01		
POS1	PR2 ON	N ON O	ON	ON	N ON	OFF	†	P6-02	Level Triggered	PR	
POS2 POS3	FNZ	ON	ON	ON	OIN	OIN	1 011 1	P6-03			
POS4	~								~	rriggerea	
POS5	PR50	OFF	OFF	ON	ON	OFF	ON	†	P6-98		
	PK5U	OFF	OFF	ON	ON	OFF	ON		P6-99		
	DDE1 OFF OFF ON ON	OFF	OFF	†	P7-00						
	PR51	OFF	OFF	ON	ON	OFF	OFF		P7-01		
	~								~		
	DD 6.2	DDC3 OFF OFF OFF	OFF	OFF	OEE	OFF	†	P7-26			
	PR63 OFF OF	3 OFF OFF OFF O		UFF	OFF OFF			P7-27			

Setting value: 0x1D

DI Name	DI Function Description	Trigger Method	Control Mode
ABSE	When ABSE is activated (ON), it can initialize an Absolute System and enable ABSQ, ABSC, ABSR, and ABSD as well. Please refer to Figure 12.3 and 12.4 for timing diagram. No matter what the original functions of DI4, DO2, and DO3 are, they will be switched to the function of ABSQ, ABSR, and ABSD respectively. DI4 will be changed to ASDQ, DO2 will be changed to ABSR, and DO3 will be changed to ABSD. The ABSC can be set via the parameter setting (DI function setting). When ABSE is ON, the setting value of parameter P2-13 cannot be changed.	Level Triggered	ALL

8-284 Revision September 2012

Setting value: 0x1F Trigger Control DI Name **DI** Function Description Method Mode When ABSC is activated (ON), the pulse number of absolute encoder will be reset to zero, and PUU Rising-edge number will be reset to the setting value of P6-01. ABSC ALL Triggered ABSC is effective only when the digital input, ABSE is ON. Please refer to Figure 12.3 for timing diagram.

Setting Value: When ABSE is activated (ON), DI4 is switched to the function of ABSQ to replace the DI function set by parameter P2-13.

DI Name	DI Function Description	Trigger Method	Control Mode
ABSQ is controlled by DI4	When ABSQ is activated (ON), it indicates that the host controller has read and put its data at ABSD for next bit communication. When ABSQ is OFF, the host controller will send the command for requesting next bit communication. This function is for communication handshaking during digital I/O signal transmission. ABSQ is effective only when the digital input, ABSE is ON. Please refer to Figure 12.4 for timing diagram.	Rising / Falling- edged Triggered	ALL

Setting value: $0x14 \sim 0x15$

DI Name		DI Function Description							Trigger Method	Control Mode				
	Speed com	mand s	electio	า 0 ~	- 1	(Command	l S1 ~ S4)							
	Command No.	DI signal of CN1		•	Command		Content Range							
	NO.	SPD1	SPD0		30	Source								
SPD0 SPD1	S1	S1 (S1 OFF C	OFF OFF	S1 OFF OFF	Mode	S	External analog command	Voltage between V- REF and GND	+/-10 V	Level Triggered	S		
									V	Sz	None	Speed command is 0	0	33.
	S2	OFF	ON				P1-09	-60000						
	S 3	ON	OFF		Internal parameter		P1-10	+60000						
	S4	ON	ON		,		P1-11	r/min						

_				
Settina	value:	0x16	~ (0x17

DI Name		DI Function Description							Trigger Method	Control Mode
	Torque co	mmanc	l select	ion () ~	1 (Comma	nd T1 ~ T4)			
	Command No.	DI sig Cl	nal of N1	Command So		and Source	Content	Range		
	NO.	TCM1	TCM0							
TCM0	T1	T1 OFF OFF	OFF OFF		Analog command	Voltage between V- REF and GND	+/-10 V	Level Triggered	Т	
TemT					Tz	None	Torque command is 0	0		
	T2	OFF	ON				P1-12	-300		
	Т3	ON	OFF	Inte para			P1-13	+300		
	T4	ON	ON	, a. c			P1-14	%		

Setting value: 0x18

DI Name	DI Function Description	Trigger Method	Control Mode
S-P	Speed / Position mode switching. OFF: Speed mode, ON: Position mode	Level Triggered	P, S

Setting value: 0x19

DI Name	DI Function Description	Trigger Method	Control Mode
S-T	Speed / Torque mode switching. OFF: Speed mode, ON: Torque mode	Level Triggered	S, T

Setting value: 0x20

DI Name	DI Function Description	Trigger Method	Control Mode
T-P	Torque / Position mode switching. OFF: Torque mode, ON: Position mode	Level Triggered	P, T

Setting value: 0x21

DI Name	DI Function Description	Trigger Method	Control Mode
EMGS	Emergency stop. It should be contact "b" and normally ON or a fault (AL013) will display.	Level Triggered	All

8-286 Revision September 2012

Setting value: 0x22								
DI Name	DI Function Description	Trigger Method	Control Mode					
NL(CWL)	Reverse inhibit limit. It should be contact "b" and normally ON or a fault (AL014) will display.	Level Triggered	All					

Setting value: 0x23								
DI Name	DI Function Description	Trigger Method	Control Mode					
PL(CCWL)	Forward inhibit limit. It should be contact "b" and normally ON or a fault (AL015) will display.	Level Triggered	All					

Setting valu	Setting value: 0x24							
DI Name	DI Function Description	Trigger Method	Control Mode					
ORGP	Reference "Home" sensor. When ORGP is activated, the drive will command the motor to start to search the reference "Home" sensor. [see P5-04]	Rising-edge/ Falling-edge Triggered	PR					

Setting value: 0x27				
DI Name	DI Function Description	Trigger Method	Control Mode	
SHOM	Move to "Home". When SHOM is activated, the drive will command the motor to move to "Home". [see P5-04]	Rising-edge Triggered	PR	

Setting value: 0x2B			
DI Name	DI Function Description	Trigger Method	Control Mode
PT-PR	Internal position (PR) and external pulse (PT) mode switching. OFF: PT, ON: PR	Level Triggered	PT, PR

Setting value: 0x36				
DI Name	DI Function Description	Trigger Method	Control Mode	
САМ	Electronic CAM function control [see P5-88] Please note: ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.	Rising-edge/ Falling-edge Triggered	PR	

Setting value: 0x37			
DI Name	DI Function Description	Trigger Method	Control Mode
JOGU	Forward JOG input. When JOGU is activated, the motor will JOG in forward direction. [see P4-05]	Level Triggered	All

Setting value: 0x38			
DI Name	DI Function Description	Trigger Method	Control Mode
JOGD	Reverse JOG input. When JOGD is activated, the motor will JOG in reverse direction. [see P4-05]	Level Triggered	All

Setting value: 0x39			
DI Name	DI Function Description	Trigger Method	Control Mode
EV1	Event trigger command 1 [see P5-98, P5-99]	Rising-edge/ Falling-edge Triggered	PR

Setting value: 0x3A			
DI Name	DI Function Description	Trigger Method	Control Mode
EV2	Event trigger command 2 [see P5-98, P5-99]	Rising-edge/ Falling-edge Triggered	PR

Setting value: 0x3B				
DI Name	DI Function Description	Trigger Method	Control Mode	
EV3	Event trigger command 3 [see P5-98, P5-99] (available in firmware version V1.009 and later models)	Rising-edge/ Falling-edge Triggered	PR	

Setting value: 0x3C			
DI Name	DI Function Description	Trigger Method	Control Mode
EV4	Event trigger command 4 [see P5-98, P5-99] (available in firmware version V1.009 and later models)	Rising-edge/ Falling-edge Triggered	PR

8-288 Revision September 2012

Setting value: 0x43, 0x44 Trigger Control DI Name **DI Function Description** Method Mode Electronic gear ratio (Numerator) selection 0 ~ 1 [see P2-60 ~ P2-62] GNUMO, GNUM1 GNUM0 Level 1st Numerator (N1) (P1-44) PT GNUM1 Triggered Pulse 2nd Numerator (N2) (P2-60) Pulse Error Moving Filter Smooth Filter (P1-68) (P1-08) 3rd Numerator (N3) (P2-61) 4th Numerator (N4) (P2-62) Feed Back Pulse Denominator (P1-45)

Setting value: 0x45 Control Trigger DI Name **DI Function Description** Method Mode Pulse inhibit input. When the drive is in position mode, if INHP is activated, the external pulse input Level **INHP** command is not valid. (Please use DI8 for INHP PT Triggered signal to ensure the real-time operation of INHP function.)

Setting value: 0x46			
DI Name	DI Function Description	Trigger Method	Control Mode
STOP	Motor stop.	Rising-edge Triggered	PR

- 1) 11 ~ 17: Single control mode, 18 ~ 20: Dual control mode
- 2) When P2-10 to P2-17 is set to 0, it indicates input function is disabled.

Table 8.B Output Function Definition

Setting value: 0x01			
DO Name	DO Function Description	Trigger Method	Control Mode
SRDY	Servo ready. SRDY is activated when the servo drive is ready to run. All fault and alarm conditions, if present, have been cleared.	Level Triggered	All

Setting value: 0x02				
DO Name	DO Function Description	Trigger Method	Control Mode	
SON	SON is activated when control power is applied the servo drive. The drive may or may not be ready to run as a fault / alarm condition may exist. Servo ON (SON) is "ON" with control power applied to the servo drive, there may be a fault condition or not. The servo is not ready to run. Servo ready (SRDY) is "ON" where the servo is ready to run, NO fault / alarm exists.	Level Triggered	All	

Setting value: 0x03 Control Trigger DO Name **DO Function Description** Method Mode ZSPD is activated when the drive senses the motor is equal to or below the Zero Speed Range setting as defined in parameter P1-38. Level For Example, at factory default ZSPD will be **ZSPD** ΑII activated when the drive detects the motor rotating Triggered at speed at or below 10 r/min, ZSPD will remain activated until the motor speed increases above 10 r/min.

Setting valu	ue: 0x04		
DO Name	DO Function Description	Trigger Method	Control Mode
TSPD	TSPD is activated once the drive has detected the motor has reached the Target Rotation Speed setting as defined in parameter P1-39. TSPD will remain activated until the motor speed drops below the Target Rotation Speed.	Level Triggered	All

8-290 Revision September 2012

Setting value: 0x05 Control Trigger DO Name **DO** Function Description Method Mode 1. When the drive is in PT mode, TPOS will be activated when the position error is equal and below the setting value of P1-54. Level **TPOS** PT, PR 2. When the drive is in PR mode, TPOS will be Triggered activated when the drive detects that the position of the motor is in a -P1-54 to +P1-54 band of the current command position.

Setting value: 0x06				
DO Name	DO Function Description	Trigger Method	Control Mode	
TQL	TQL is activated when the drive has detected that the motor has reached the torques limits set by either the parameters P1-12 ~ P1-14 of via an external analog voltage.	Level Triggered	All, except T, Tz	

Setting valu	ue: 0x07		
DO Name	DO Function Description	Trigger Method	Control Mode
ALRM	ALRM is activated when the drive has detected a fault condition. (However, when Reverse limit error, Forward limit error, Emergency stop, Serial communication error, and Undervoltage these fault occur, WARN is activated first.)	Level Triggered	All

Setting valu	ue: 0x08		
DO Name	DO Function Description	Trigger Method	Control Mode
BRKR	Electromagnetic brake control. BRKR is activated (Actuation of motor brake). (Please refer to parameters P1-42 ~ P1-43) ON SON OFF ON BRKR OFF ON MBT1(P1-42) MBT2(P1-43) ZSPD (P1-38)	Level Triggered	All

Settino		^	00
SATTIMA	1 (2)	10.11	\mathbf{v}

DO Name	DO Function Description	Trigger Method	Control Mode
НОМЕ	Homing completed. HOME is activated when the servo drive has detected that the "HOME" sensor (ORGP, digital input 0x24) has been detected.		
	When power to the servo drive at the first time, this DO signal is OFF. After homing operation is completed, thi DO signal will be ON and continue being ON when the motor is running. It becomes OFF until the sytem detect that a position overflow occurs.	Level Triggered	PR
	When using PR command to trigger homing command, this DI signal will be OFF immediately. After homeing operation is completed, it becomes ON again.		

Setting value: 0x0D

DO Name	DO Function Description	Control Mode
ABSW	The fault messages regarding the absolute encoder will be output via ABSW. Please refer to Figure 12.4 for timing diagram.	ALL

Setting value: 0x0E

DO Name	DO Function Description	Control Mode
IDXD	The definitions of indexing coordinates are defined.	ALL

Setting value: 0x10

DO Name	DO Function Description	Trigger Method	Control Mode	
OLW		Output overload warning. OLW is activated when the servo drive has detected that the motor has reached the output overload time set by parameter P1-56.		
	tOL = Permissible Time for Overload x setting value of P1-56			
	When overload accumulated time (continuously overload time) exceeds the value of tOL , the overload warning signal will output, i.e. DO signal, OLW will be ON. However, if the accumulated overload time (continuous overload time) exceeds the permissible time for overload, the overload alarm (AL006) will occur.	Level Triggered	PR	
	For example:			
	If the setting value of parameter P1-56 (Output Overload Warning Time) is 60%, when the permissible time for overload exceeds 8 seconds at 200% rated output, the overload fault (AL006) will be detected and shown on the LED display.			

8-292 Revision September 2012

DO Name	DO Function Description	Trigger Method	Control Mode
	At this time, tOL = 8 x 60% = 4.8 seconds Result: When the drive output is at 200% rated output and the drive is continuously overloaded for 4.8 seconds, the overload warning signal will be ON (DO code is 0x10, i.e. DO signal OLW will be activated). If the drive is continuously overloaded for 8 seconds, the overload alarm will be detected and shown on the LED display (AL006). Then, Servo Fault signal will be ON (DO signal ALRM will be activated).		

Setting value: 0x11

DO Name	DO Function Description	Trigger Method	Control Mode
WARN	Servo warning activated. WARN is activated when the drive has detected Reverse limit error. Forward limit error, Emergency stop, Serial communication error, and Undervoltage these fault conditions.	Level Triggered	All

Setting value: 0x12

DO Name	DO Function Description	Trigger Method	Control Mode
OVF	Position command overflow. OVF is activated when the servo drive has detected that a position command overflows.	Level Triggered	All

Setting value: 0x13

DO Name	DO Function Description	Trigger Method	Control Mode
SNL (SCWL)	Reverse software limit. SNL is activated when the servo drive has detected that reverse software limit is reached.	Level Triggered	All

Setting value: 0x14

DO Name	DO Function Description	Trigger Method	Control Mode
SPL (SCCWL)	Forward software limit. SPL is activated when the servo drive has detected that forward software limit is reached.	Level Triggered	All

Setting value: 0x15

DO Name	DO Function Description	Trigger Method	Control Mode
CMD_OK	Internal position command completed output. CMD_OK is activated when the servo drive has detected that the internal position command has been completed. When excuting PR command, this DI signal is OFF. After the execution of PR command is completed, this DI signal is ON. The output is used to indicate the internal position command has been completed and it does not indicate that the motor positioning is completed. For the signal of motor positioning completed, please refer to DO signal, TPOS.	Level Triggered	PR

Setting value: 0x16

DO Name	DO Function Description	Trigger Method	Control Mode
CAP_OK	Capture operation completed output. CAP_OK is activated when the servo drive has detected that capture operation has been completed.	Level Triggered	PR

Setting value: 0x17

DO Name	DO Function Description	Trigger Method	Control Mode
MC_OK	Motion control completed output. MC_OK is activated when CMD_OK and TPOS are both ON. It indicates MC_OK is activated only when the servo drive has detected that the position command has been given and the positioning has been completed also. If only CMD_OK or TPOS is ON, MC_OK will not be activated.	Level Triggered	PR

Setting value: 0x18

DO Name	DO Function Description	Trigger Method	Control Mode
CAM_AREA	CAM_AREA is activated when the servo drive has detected the master position of E-Cam (electronic CAM) is within the setting area. Please note: ASDA-A2 series L type models do not provide Electronic Cam (E-Cam) function.	Level Triggered	PR

8-294 Revision September 2012

Setting value: 0x19				
DO Name	DO Function Description	Trigger Method	Control Mode	
SP_OK	Speed reached output. SP_OK will be activated when the speed error is equal and below the setting value of P1-47.	Level Triggered	S, Sz	

DO Name DO Function Description Zon1 will be activated when the value of P0-09 is within the range between the setting values of P0-54 ~ P0-55.

Setting Value: When ABSE is activated (ON), DO2 is switched to the function of ABSR to replace the DO function set by parameter P2-19.

DO Name	DO Function Description	Trigger Method	Control Mode
ABSR is controlled by DO2	When ABSR is OFF, it indicates that the host controller is ready for accessing next bit communication. When ABSR is activated (ON), it indicates that the host controller has read and fetched the data. ABSR is effective only when the digital input, ABSE is ON. Please refer to Figure 12.4 for timing diagram.	Level Triggered	ALL

Setting Value: When ABSE is activated (ON), DO3 is switched to the function of ABSD to replace the DO function set by parameter P2-20.

DO Name	DO Function Description	Trigger Method	Control Mode
ABSD is controlled by DO3	After data read, the absolute position data will be output and put at ABSD. The data is guaranteed correct when ABSR is ON. ABSD is effective only when the digital input, ABSE is ON. Please refer to Figure 12.4 for timing diagram.	Level Triggered	ALL

Setting value: 0x30 DO Name DO Function Description Trigger Method Control Mode SDO_0 Output the status of bit00 of P4-06. Level Triggered All

Setting value: 0x31				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_1	Output the status of bit01 of P4-06.	Level Triggered	All	

Setting value: 0x32				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_2	Output the status of bit02 of P4-06.	Level Triggered	All	

Setting value	Setting value: 0x33				
DO Name	DO Function Description	Trigger Method	Control Mode		
SDO_3	Output the status of bit03 of P4-06.	Level Triggered	All		

Setting value: 0x34				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_4	Output the status of bit04 of P4-06.	Level Triggered	All	

Setting value: 0x35				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_5	Output the status of bit05 of P4-06.	Level Triggered	All	

Setting value: 0x36				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_6	Output the status of bit06 of P4-06.	Level Triggered	All	

Setting valu	ue: 0x37		
DO Name	DO Function Description	Trigger Method	Control Mode
SDO_7	Output the status of bit07 of P4-06.	Level Triggered	All

8-296 Revision September 2012

Setting value: 0x38				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_8	Output the status of bit08 of P4-06.	Level Triggered	All	

Setting value: 0x39				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_9	Output the status of bit09 of P4-06.	Level Triggered	All	

Setting value: 0x3A				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_A	Output the status of bit10 of P4-06.	Level Triggered	All	

Setting value: 0x3B				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_B	Output the status of bit11 of P4-06.	Level Triggered	All	

Setting value: 0x3C				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_C	Output the status of bit12 of P4-06.	Level Triggered	All	

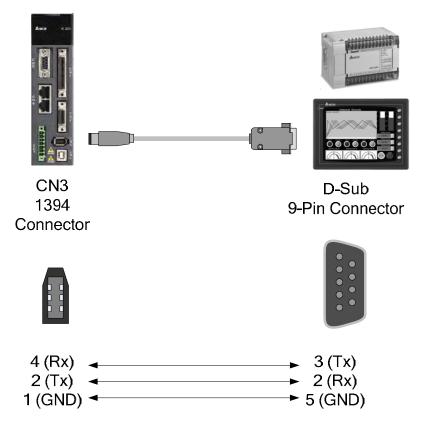
Setting value: 0x3D				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_D	Output the status of bit13 of P4-06.	Level Triggered	All	

Setting valu	ue: 0x3E		
DO Name	DO Function Description	Trigger Method	Control Mode
SDO_E	Output the status of bit14 of P4-06.	Level Triggered	All

Setting value: 0x3F				
DO Name	DO Function Description	Trigger Method	Control Mode	
SDO_F	Output the status of bit15 of P4-06.	Level Triggered	All	

1) When P2-18 to P2-22 is set to 0, it indicates output function is disabled.

Chapter 9 Communications

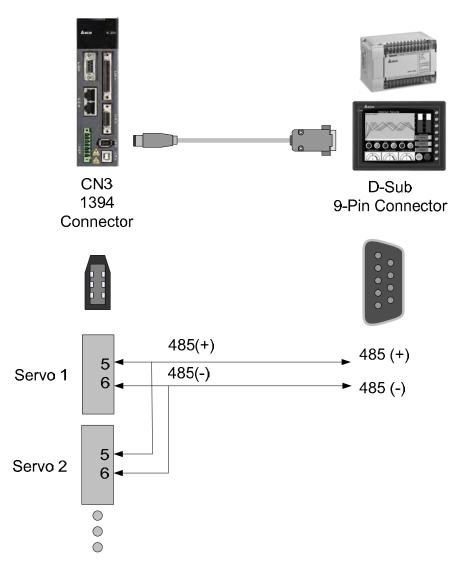

9.1 RS-485 & RS-232 Communication Hardware Interface

The ASDA-A2 series servo drives support RS-485 and RS-232 serial communication. All aspects of control, operation and monitoring as well as programming of the controller can be achieved via communication. However, only one communication mode can be used at a time. Users can select the desired communication mode via parameter P3-05.

Please refer to the following sections for connections and limitations.

RS-232

Configuration



- 1) Recommended maximum cable length is 15m (50ft.). Please note, RFI / EME noise should be kept to a minimum, communication cable should kept apart from high voltage wires. If a transmission speed of 38400 bps or greater is required, the maximum length of the communication cable is 3m (9.84ft.) which will ensure the correct and desired baud rate.
- 2) The number shown in the pervious figure indicates the terminal number of each connector.

RS-485

■ Configuration

- 1) The maximum cable length is 100m (39.37inches) when the servo drive is installed in a location where there are only a few interferences. Please note, RFI / EME noise should be kept to a minimum, communication cable should kept apart from high voltage wires. If a transmission speed of 38400 bps or greater is required, the maximum length of the communication cable is 15m (50ft.) which will ensure the correct and desired baud rate.
- 2) The number shown in the pervious figure indicates the terminal number of each connector.
- 3) The power supply should provide a +12V and higher DC voltage.
- 4) Please use a REPEATER if more than 32 synchronous axes are required. Maximum 127 servo drives can be connected.
- 5) For the terminal identification of CN3, please refer to Section 3.6.

9-2

9.2 Communication Parameters

The following four communication parameters, P3-00 (Communication Address Setting), P3-01 (Transmission Speed), P3-02 (Communication Protocol) and P3-05 (Communication Mode) are essential and must be set for the communication between the master (PC, etc.) and the AC servo drive. The other communication parameters, such as P3-03 (Transmission Fault Treatment), P3-04 (Communication Time Out Detection), P3-06 (Digital Input Communication Function), P3-07 (Communication Response Delay Time) and P3-08 (Monitor Mode) are for advanced communication settings. For the descriptions of all communication parameters, please refer to the Chapter 8.

P3-00∙	ADR	Communication Addre	ess Setting	Address: 040EH 040FH
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: Section 9.2
	Defa	ıult: 0x7F		7 1 1
	Control Mode:			
	Unit: N/A			
	Rar	nge: 0x01 ~ 0x7F		7 1 1
	Data Size::16-bit			· ·
	Disp Forn	lay Hexadecimal		T

Settings: This parameter is used to set the communication slave address in hexadecimal format.

Display	0	0	Y	X
Range	-	-	0 ~ 7	0 ~ F

- X: Axis number which indicates the value must be within the range from 0 through F.
- Y: Group number which indicates the value must be within the range from 0 to through 7

When using RS-232/485 communication, this parameter is used set the communication address in hexadecimal format. If the AC servo drive is controlled by RS-232/485 communication, each drive (or device) must be uniquely identified. One servo drive only can set one address. If the address is duplicated, there will be a communication fault. This address is an absolute address which represents the servo drive on a RS-232/485 or CANbus network.

Please note:

1. When the address of host (external) controller is set to 0xFF, it is with auto-respond function. Then, the servo drive will receive from and respond to host (external) controller both no matter the address is matching or not. However, the parameter P3-00 cannot be set to 0xFF.

P3-01	BRT	Transmission Speed		Address: 0302H 0303H
	, ' Keypad / Software Communication		Related Section:	
			Section 9.2	
	Defa	ıult: 0x0203	· · · · · · · · · · · · · · · · · · ·	
	Control Mode: ALL			
	U	Init: bps		:
	Rar	nge: 0x0000 ~ 0x0405		

Settings: This parameter is used to set the baud rate and data transmission speed of the communications.

	0	Z	Y	X
COM Port	-	CAN	-	RS-232/485
Range	0	0 ~ 4	0	0 ~ 5

Settings:

Data Size::16-bit

Display Hexadecimal Format:

Setting value of X: Baud rate setting

- 0: Baud rate 4800 (data transmission speed: bits / second)
- 1: Baud rate 9600 (data transmission speed: bits / second)
- 2: Baud rate 19200 (data transmission speed: bits / second)
- 3: Baud rate 38400 (data transmission speed: bits / second)
- 4: Baud rate 57600 (data transmission speed: bits / second)
- 5: Baud rate 115200 (data transmission speed: bits / second)

Setting value of Y: Reserved. Must be set to 0.

Setting value of Z: Data transmission speed setting

- 0: 125K bits / second
- 1: 250K bits / second
- 2: 500K bits / second
- 3: 750K bits / second
- 4: 1.0M bits / second

9-4

Please note:

- 1. When setting this parameter via CANopen communication, only the setting of Z (data transmission speed setting) can be configured and other settings.
- 2. The communication transmission speed for USB can be set to 1.0M bits / second only and cannot be changed.

P3-02	PTL Communication Protocol	Address: 0304H 0305H
	Operation Interface: Keypad / Software Communication	Related Section: Section 9.2
	Default: 6	
	Control Mode: ALL	
	Unit::N/A	
	Range: 0 ~ 8	
	Data Size: 16-bit	
	Display Hexadecimal Format:	

Settings: This parameter is used to set the communication protocol. The alphanumeric characters represent the following: 7 or 8 is the number of data bits; N, E or O refers to the parity bit, Non, Even or Odd; the 1 or 2 is the numbers of stop bits.

0: Modbus ASCII mode, <7,N,2>

1: Modbus ASCII mode, <7,E,1>

2: Modbus ASCII mode, <7,0,1>

3: Modbus ASCII mode, <8,N,2>

4: Modbus ASCII mode, <8,E,1>

5: Modbus ASCII mode, <8,0,1>

6: Modbus RTU mode, <8,N,2>

7: Modbus RTU mode, <8,E,1>

8: Modbus RTU mode, <8,0,1>

P3-05

		Communication Select	Address: 030AH 030BH	
	Operat Interfa	ion ce: Keypad / Software	Communication	Related Section: Section 9.2
:	Defa			
	Cont Mo	trol de: ALL		
	U	nit: N/A		T : :
-	Ran	ge: 0x00 ~ 0x01		
-	Data Si	ze: 16-bit		.
	Displ Form	Hexadecimal		

Settings: Communication interface selection

0: RS-232 1: RS-485

Multiple communication modes RS232 and RS-485 cannot be used within one communication ring.

9-6 Revision September 2012

9.3 MODBUS Communication Protocol

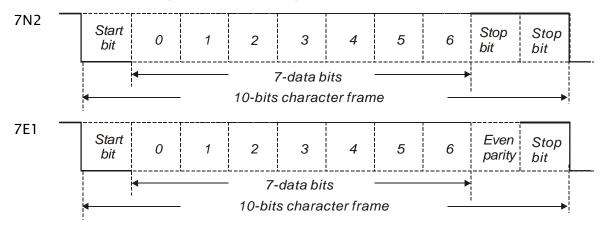
When using RS-232/485 serial communication interface, each ASDA-A2 series AC servo drive has a pre-assigned communication address specified by parameter "P3-00". The computer then controls each AC servo drive according to its communication address. ASDA-A2 series AC servo drives can be set up to communicate on a MODBUS network using on of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit). Users can select the desired mode along with the serial port communication protocol in parameter "P3-02".

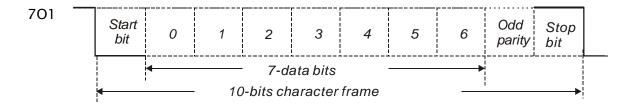
Code Description

ASCII Mode:

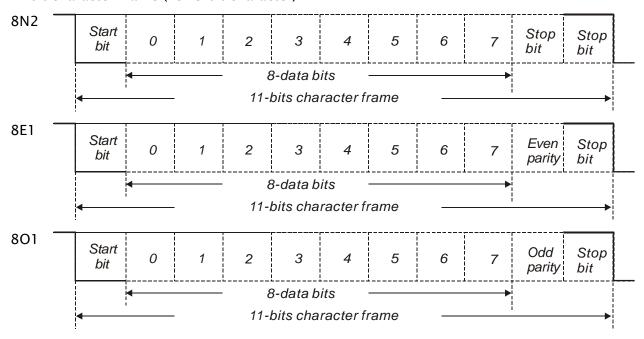
When AC servo drives are set up to communicate on a MODBUS network using ASCII (American Standard Code for Information Interchange) mode, each 8-bit data in a message is sent as two ASCII characters between the master and the slave. For example, a 1-byte data: 64 Hex, shown as '64' in ASCII, consists of '6' (36Hex) and '4' (34Hex).

ASCII Characters:


Character	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30H	31H	32H	33H	34H	35H	36H	37H
Character	'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H


RTU Mode:

When AC servo drives are set up to communicate on a MODBUS network using RTU (Remote Terminal Unit) mode, each 8-bit data is the combination of two 4-bit hexadecimal characters. For example, a 1-byte data: 64 Hex. Comparing to ASCII mode, the transmission speed of RTU mode is better.


■ Data Format

10-bit character frame (For 7-bit character)

11-bit character frame (For 8-bit character)

■ Communication Protocol

ASCII Mode:

Start	Start character ': ' (3AH)	
Slave Address	Communication address: 1-byte consists of 2 ASCII codes	
Function	Function code: 1-byte consists of 2 ASCII codes	
Data (n-1)		
	Contents of data: n word = n x 2-byte consists of n x 4 ASCII codes n≤10	
Data (0)		
LRC	Error checking: 1-byte consists of 2 ASCII codes	
End 1	End code 1: (0DH)(CR)	
End 0	End code 0: (0AH)(LF)	

The communication protocol of ASCII mode starts from a start character ': ' (3AH). ADR is 1-byte consists of 2 ASCII codes. CR (Carriage Return) and LF (Line Feed) is a special sequence of characters signifying the end. There are communication address, function code, contents of data and LRC (Longitudinal Redundancy Check) between Start and End.

9-8 Revision September 2012

RTU Mode:

Start	A silent interval of more than 10ms	
Slave Address	Communication address: 1-byte	
Function	Function code: 1-byte	
Data (n-1)		
	Contents of data: n word = n x 2-byte, n≤12	
Data (0)		
CRC	Error checking: 1-byte	
End 1	A silent interval of more than 10ms	

The communication protocol of RTU mode starts from a signal of silent interval and ends at a signal of silent interval as well. There are communication address, function code, contents of data and CRC (Cyclical Redundancy Check) between Start and End.

The format of data characters depends on the function code. The available function codes and examples for AC servo drive are described as follows:

Example 1:

Function code: 03H, read N words (The maximum value of N is 10)

For example, reading continuous 2 words from starting address 0200H of AC servo drive. In the response message (Slave), the content of starting data address 0200H is 00B1H and the content of second data address 0201H is 1F40H.

ASCII Mode:

Command message (Master):

Start	٠.,
Clave Address	'0'
Slave Address	'1'
Function	'0'
Function	'3'
	'0'
Starting data	'2'
address	'0'
	'0'
	'0'
Number of data	'0'
(In Word)	'0'
	'2'
LRC Check	'F'
LKC CHECK	'8'
End 1	(0DH)(CR)
End 0	(0AH)(LF)

Response message (Slave):

Start	.,,
Clavia Addinasa	'0'
Slave Address	'1'
Function	'0'
Function	'3'
Number of data	'0'
(In Byte)	'4 '
	'0'
Content of	'0'
starting data address 0200H	'B'
	'1'
	'1'
Content of second data	'F'
address 0201H	'4'
	'0'
LRC Check	'E'
LKC CHECK	'8'
End 1	(0DH)(CR)
End 0	(0AH)(LF)

9-10 Revision September 2012

RTU Mode:

Command message (Master):

Slave Address	01H
Function	03H
Starting data	02H (High)
address	00H (Low)
Number of data	00Н
(In Word)	02H
CRC Check Low	C5H (Low)
CRC Check High	B3H (High)

Response message (Slave):

Slave Address	01H
Function	03H
Number of data (In Byte)	04Н
Content of	00H (High)
starting data address 0200H	B1H (Low)
Content of	1FH (High)
second data address 0201H	40H (Low)
CRC Check Low	A3H (Low)
CRC Check High	D4H (High)

Please note:

In RTU mode, a silent interval of more than 10ms is needed before and after transmission.

Example 2:

Function code: 06H, write 1 word

For example, writing 100 (0064H) to starting data address 0200H. The slave will send the response message to the master after writing operation is completed.

ASCII Mode:

Command message (Master):

Start	.,
Slave Address	' 0'
	'1'
Function	'0'
Function	'6'
Starting data	'0'
	'2'
address	'0'
	'0'
	'0'
Content of data	'0'
Content of data	'6'
	'4'
LDC Charle	'9'
LRC Check	'3'
End 1	(0DH)(CR)
End 0	(OAH)(LF)

Response message (Slave):

Start	·.,	
Slave Address	'0'	
	'1'	
Fatia.a	'0'	
Function	'6'	
Starting data	'0'	
	'2'	
address	'0'	
	'0'	
	'0'	
Contant of data	'0'	
Content of data	' 6'	
	'4'	
LDC Charle	'9'	
LRC Check	'3'	
End 1	(0DH)(CR)	
End 0	(0AH)(LF)	

RTU Mode:

Command message (Master):

Address	01H	
Slave Function	06H	
Starting data address	02H (High)	
	00H (Low)	
Content of data	00H (High)	
	64H (Low)	
CRC Check Low	89H (Low)	
CRC Check High	99H (High)	

Response message (Slave):

Address	01H	
Slave Function	06H	
Starting data address	02H (High)	
	00H (Low)	
Content of data	00H (High)	
	64H (Low)	
CRC Check Low	89H (Low)	
CRC Check High	99H (High)	

Please note:

In RTU mode, a silent interval of more than 10ms is needed before and after transmission.

Example 3:

Function code: 10H, write N words (The maximum value of N is 10)

For example, writing continuous 2 words into starting address 0112H of AC servo drive. The content of first data address is 0BB8H and the content of second data address is 0000H.

ASCII Mode:

Command message (Master):

Start	٠,,	
Slave Address	·0'	
	·1'	
	'1'	
Function	'0'	
	'0'	
Starting data	'1'	
address	'1'	
	'2'	
	'0'	
Number of data	'0'	
(In Word)	'0'	
	'2'	
Number of data	'0'	
(In Byte)	'4'	
	'0'	
Content of first data	'B'	
address	'В'	
	'8'	
	'0'	
Content of second data	'0'	
address	'0'	
	'0'	
LRC Check	'1'	
LIC CHECK	'3'	
End 1	(0DH)(CR)	
End 0	(0AH)(LF)	

Response message (Slave):

Start	·.,
Slave Address	'0'
	'1'
Function	'1'
Function	'0'
Starting data	'0'
	'1'
address	'1'
	'2'
	'0'
Number of data	'0'
Number of data	'0'
	'2'
LDC Charle	'D'
LRC Check	'A'
End 1	(0DH)(CR)
End 0	(OAH)(LF)

RTU Mode:

Command message (Master):

Slave Address	01H	
Function	10H	
Starting data	01H (High)	
address	12H (Low)	
Number of data (In Word)	00H (High)	
	02H (Low)	
Number of data (In Byte)	04H	
Content of first data address	OBH (High)	
	B8H (Low)	
Content of second data address	00H (High)	
	00H (Low)	
CRC Check Low	FCH (Low)	
CRC Check High	EBH (High)	

Response message (Slave):

Slave Address	01H	
Function	10H	
Starting data	01H (High)	
address	12H (Low)	
Number of data (In Word)	00H (High)	
	02H (Low)	
CRC Check Low	E0H (Low)	
CRC Check High	31H (High)	

Please note:

In RTU mode, a silent interval of more than 10ms is needed before and after transmission.

9-14 Revision September 2012

■ LRC and CRC Error Checking

ASCII mode adopts LRC (Longitudinal Redundancy Check) and RTU mode adopts CRC (Cyclical Redundancy Check)

LRC (ASCII Mode):

LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, the values of the bytes from Slave address to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

For example, reading 1 word from address 05C4H of the AC servo drive with address 7FH.

Start	·.,
Clavra addus sa	'7'
Slave address	'F'
-	'0'
Function	'3'
G 1.	'0'
	'5'
Starting data address	,C,
	'4'
	'0'
Number of data	'0'
Number of data	'0'
	'1'
LRC Check	'B'
	'4'
End 1	(0DH)(CR)
End 0	(0AH)(LF)

7FH + 03H + 05H + C4H + 00H + 01H = 14CH, take 4CH only, the 2's complement negation of 4CH is B4H.

Hence, we can know that LRC CHK is 'B','4'.

CRC (RTU Mode):

- CRC (Cyclical Redundancy Check) is calculated by the following steps:
- Step 1:Load a 16-bit register (called CRC register) with FFFFH.
- Step 2:Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.
- Step 3:Extract and examine the LSB. If the LSB of CRC register is 0, shift the CRC register one bit to the right. If the LSB of CRC register is 1, shift the CRC register one bit to the right, then Exclusive OR the CRC register with the polynomial value A001H.
- Step 4:Repeat step 3 until eight shifts have been performed. When this is done, a complete 8-bit byte will have been processed, then perform step 5.
- Step 5: Repeat step 2 to step 4 for the next 8-bit byte of the command message.

Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value.

For example, reading 2 words from address 0101H of the AC servo drive with address 01H. The final content of the CRC register from ADR to last data character is 3794H, then the command message is shown as follows. What should be noticed is that 94H have to be transmitted before 37H.

Command Message		
ADR	01H	
CMD	03H	
Starting data address	01H (High)	
	01H (Low)	
Number of data (In Word)	00H (High)	
	02H (Low)	
CRC Check Low	94H (Low)	
CRC Check High	37H (High)	

9-16 Revision September 2012

Example

```
The following is an example of CRC generation using C language. The function takes two
arguments:
unsigned char* data;
unsigned char length
The function returns the CRC value as a type of unsigned integer.
  unsigned int crc_chk(unsigned char* data, unsigned char length) {
      int j;
      unsigned int reg_crc=0xFFFF;
      while( length-- ) {
           reg_crc^= *data++;
           for (j=0; j<8; j++) {
                if( reg_crc & 0x01 ) { /*LSB(bit 0 ) = 1 */
                    reg\_crc = (reg\_crc >> 1)^0xA001;
               } else {
                    reg_crc = (reg_crc>>1);
               }
           }
      return reg_crc;
  }
  PC communication program example:
  #include<stdio.h>
  #include<dos.h>
  #include<conio.h>
  #include<process.h>
                           /* the address of COM 1 */
  #define PORT 0x03F8
  #define THR 0x0000
  #define RDR 0x0000
  #define BRDL 0x0000
  #define IER 0x0001
  #define BRDH 0x0001
  #define LCR 0x0003
  #define MCR 0x0004
  #define LSR 0x0005
  #define MSR 0x0006
  unsigned char rdat[60];
  /* read 2 data from address 0200H of ASD with address 1 */
```

```
unsigned char tdat[60]={':','0','1','0','3','0','2','0','0','0','0','2','F','8','\r','\n'};
void main() {
int I;
outportb(PORT+MCR,0x08);
                                      /* interrupt enable */
outportb(PORT+IER,0x01);
                                             /* interrupt as data in */
outportb(PORT+LCR,( inportb(PORT+LCR) | 0x80 ) );
/* the BRDL/BRDH can be access as LCR.b7 == 1 */
outportb(PORT+BRDL, 12);
outportb(PORT+BRDH,0x00);
outportb(PORT+LCR,0x06);
                                      /* set prorocol
                                             <7,E,1> = 1AH,
                                                                         <7,0,1> = 0AH
                                             <8,N,2> = 07H
                                                                         <8,E,1> = 1BH
                                             <8,0,1> = 0BH
                                                                                     */
for(I = 0; I <= 16; I ++ ) {
    while(!(inportb(PORT+LSR) & 0x20));
                                           /* wait until THR empty */
                                            /* send data to THR */
    outportb(PORT+THR,tdat[I]);
}
I = 0;
while(!kbhit()) {
    if( inportb(PORT+LSR)&0x01 ) { /* b0==1, read data ready */
         rdat[I++] = inportb(PORT+RDR); /* read data from RDR */
    }
}
}
```

9-18 Revision September 2012

9.4 Communication Parameter Write-in and Read-out

There are following 8 groups for parameters:

Group 1: Basic parameters (example: P1-xx)
Group 2: Extension parameters (example: P2-xx)
Group 3: Communication parameters (example: P3-xx)
Group 4: Diagnosis parameters (example: P4-xx)
Group 5: Motion control parameters (example: P5-xx)
Group 6: PR definition parameters (example: P6-xx)
Group 7: PR definition parameters (example: P7-xx)

For a complete listing and description of all parameters, refer to Chapter 8.

Communication write-in parameters for ASDA-A2 series are including:

Group 0: All parameters except P0-00 ~ P0-01, P0-08 ~ P0-13 and P0-46

Group 1: P1-00 ~ P1-76

Group 2: P2-00 ~ P2-67

Group 3: P3-00 ~ P3-11

Group 4: All parameters except P4-00 ~ P4-04 and P4-08 ~ P4-09

Group 5: All parameters except P5-10, P5-16 and P5-76

Group 6: P6-00 ~ P6-99

Group 7: P7-00 ~ P7-27

NOTE

- 1) P3-01 After the new transmission speed is set, the next data will be written in new transmission speed.
- 2) P3-02 After the new communication protocol is set, the next data will be written in new communication protocol.
- 3) P4-05 JOG control of servo motor. For the description, refer to Chapter 8.
- 4) P4-06 Force output contact control. This parameter is for the users to test if DO (Digit output) is normal. User can set 1, 2, 4, 8, 16 to test DO1, DO2, DO3, DO4, DO5, respectively. After the test has been completed, please set this parameter to 0 to inform the drive that the test has been completed.
- 5) P4-10 Adjustment function selection. If user desires to change the settings of this parameter, user has to set the value of the parameter P2-08 to 20 (hexadecimal: 14H) first and then restart. After restarting, the settings of parameter P4-10 can become modified.

6) P4-11 ~ P4-21 These parameters are for offset adjustment. Do not change the factory default setting if not necessary. If the user desires to change the settings of these parameters, the user has to set the value of the parameter P2-08 to 22 (hexadecimal: 16H) first and then restart. After restarting, the settings of parameters P4-11 to P4-21 can become modified.

Communication read-out parameters for ASDA-A2 series are including:

Group 0: P0-00 ~ P0-46

Group 1: P1-00 ~ P1-76

Group 2: P2-00 ~ P2-67

Group 3: P3-00 ~ P3-11

Group 4: P4-00 ~ P4-23

Group 5: P5-00 ~ P5-99

Group 6: P6-00 ~ P6-99

Group 7: P7-00 ~ P7-27

Chapter 10 Troubleshooting

If a fault is detected on the servo motor or drive, a corresponding fault code will be shown on the drive's LED display. Fault codes can also be transmitted via communication, see P0-01 and $P4-00 \sim P4-04$ for display on controller or HMI.

10.1 Servo Drive Fault Messages Table

Fault Messages				
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
81001	Overcurrent	Main circuit current is higher than 1.5 multiple of motor's instantaneous maximum current value.	ALRM (DO code: 0x07)	Servo Off
80002	Overvoltage	Main circuit voltage has exceeded its maximum allowable value.	ALRM (DO code: 0x07)	Servo Off
85003	Undervoltage	Main circuit voltage is below its minimum specified value.	WARN (DO code: 0x11)	Servo Off
81004	Motor error	The motor does not match the drive. They are not correctly matched for size (power rating).	ALRM (DO code: 0x07)	Servo Off
81005	Regeneration error	Regeneration control operation is in error.	ALRM (DO code: 0x07)	Servo Off
81008	Overload	Servo motor and drive is overload.	ALRM (DO code: 0x07)	Servo Off
86003	Overspeed	Motor's control speed exceeds the limit of normal speed.	ALRM (DO code: 0x07)	Servo Off
81008	Abnormal pulse control command	Input frequency of pulse command exceeds the limit of its allowable setting value.	ALRM (DO code: 0x07)	Servo Off
86003	Excessive deviation	Position control deviation value exceeds the limit of its allowable setting value.	ALRM (DO code: 0x07)	Servo Off
AL 0 10	Reserved			
810::	Encoder error	Pulse signal is in error.	ALRM (DO code: 0x07)	Servo Off
8E0 15	Adjustment error	Adjusted value exceeds the limit of its allowable setting value when perform electrical adjustment.	ALRM (DO code: 0x07)	Servo Off

Fault Messages				
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
81013	Emergency stop activated	Emergency stop switch is activated.	WARN (DO code: 0x11)	Servo Off
860 14	Reverse limit switch error	Reverse limit switch is activated.	WARN (DO code: 0x11)	Servo On
81015	Forward limit switch error	Forward limit switch is activated.	WARN (DO code: 0x11)	Servo On
81018	IGBT temperature error	The temperature of IGBT is over high.	ALRM (DO code: 0x07)	Servo Off
860:3	Memory error	EE-PROM write-in and read-out is in error.	ALRM (DO code: 0x07)	Servo Off
81 0 18	Encoder output error	The encoder output exceeds the rated output frequency.	ALRM (DO code: 0x07)	Servo Off
81018	Serial communication error	RS-232/485 communication is in error.	ALRM (DO code: 0x07)	Servo Off
81050	Serial communication time out	RS-232/485 communication time out.	WARN (DO code: 0x11)	Servo On
1 5038	Reserved			
85038	Input power phase loss	One phase of the input power is loss.	WARN (DO code: 0x11)	Servo Off
81053	Pre-overload warning	To warn that the servo motor and drive is going to overload. This alarm will display before ALM06. When the servo motor reach the setting value of P1-56, the motor will send a warning to the drive. After the drive has detected the warning, the DO signal OLW will be activated and this fault message will display.	WARN (DO code: 0x11)	Servo On
86054	Encoder initial magnetic field error	The magnetic field of the encoder U, V, W signal is in error.	ALRM (DO code: 0x07)	Servo Off
86025	Encoder internal error	The internal memory of the encoder is in error. An internal counter error is detected.	ALRM (DO code: 0x07)	Servo Off
85038	Encoder data error	An encoder data error is detected for three times.	ALRM (DO code: 0x07)	Servo Off

10-2 Revision September 2012

Fault Messages				
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
81030	Motor protection error	In order to protect the motor, this alarm will be activated when the setting value of P1-57 is reached after a period of time set by P1-58.	ALRM (DO code: 0x07)	Servo Off
8603:	U, V, W, GND wiring error	The wiring connections of U, V, W (for servo motor output) and GND (for grounding) are in error.	ALRM (DO code: 0x07)	Servo Off
81040	Full closed-loop excessive deviation	The position control deviation value of full closed-loop exceeds the specified limit.	ALRM (DO code: 0x07)	Servo Off
86041	Linear scale wiring error	The wiring connections of linear and servo drive are in error.	ALRM (DO code: 0x07)	Servo Off
81045	Analog input voltage error	The analog input voltage is higher than the value of P1-83 over 50ms.	ALRM (DO code: 0x07)	Servo Off
85033	DSP firmware upgrade	EE-PROM is not reset after the firmware version is upgraded. This fault can be cleared after setting P2-08 to 30 first, and then setting P2-08 to 28 next and restarting the servo drive.	ALRM (DO code: 0x07)	Servo Off

10.2 CANopen Communication Fault Messages Table

	Fault Messages			
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
AL 185	CANbus error	CANbus off or Error Rx/Tx Counter exceeds 128.	ALRM (DO code: 0x07)	Servo On
86 : : :	CANopen SDO receive buffer overrun	SDO Rx buffer overrun is detected (receive two or more SDO packets in 1 ms).	ALRM (DO code: 0x07)	Servo On
86 : 15	CANopen PDO receive buffer overrun	PDO Rx buffer overrun is detected (receive two or more PDO (same COBID) packets in 1 ms).	ALRM (DO code: 0x07)	Servo On
81 15 1	Index error occurs when accessing CANopen PDO object.	The specified Index in the message does not exist.	ALRM (DO code: 0x07)	Servo On
86 155	Sub-index error occurs when accessing CANopen PDO object.	The specified Sub-index in the message does not exist.	ALRM (DO code: 0x07)	Servo On
86 153	Data type (size) error occurs when accessing CANopen PDO object.	The data length in the message does not match the specified object.	ALRM (DO code: 0x07)	Servo On
86 154	Data range error occurs when accessing CANopen PDO object.	The data in the message has exceeded the data range of the specified object.	ALRM (DO code: 0x07)	Servo On
8L 12S	CANopen PDO object is read-only and write-protected.	The specified object in the message is read-only and write-protected (cannot be changed).	ALRM (DO code: 0x07)	Servo On
8L :26	CANopen PDO object does not support PDO.	The specified object in the message does not support PDO.	ALRM (DO code: 0x07)	Servo On
86 187	CANopen PDO object is write- protected when Servo On.	The specified object in the message is write-protected (cannot be changed) when Servo On.	ALRM (DO code: 0x07)	Servo On

10-4 Revision September 2012

Fault Messages				
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
85 158	Error occurs when reading CANopen PDO object from EE- PROM.	An error occurs when loading the default settings from EE-PROM at start-up. All CANopen objects return to their default settings automatically.	ALRM (DO code: 0x07)	Servo On
85 158	Error occurs when writing CANopen PDO object into EE- PROM.	An error occurs when writing the current settings into EE-PROM.	ALRM (DO code: 0x07)	Servo On
8L 130	EE-PROM invalid address range	The amount of the data saved in EE-PROM has exceeded the space determined by the firmware. Maybe the firmware version has been upgraded, and it causes that the data of old firmware version saved in EE-PROM cannot be used.	ALRM (DO code: 0x07)	Servo On
81 13 1	EE-PROM checksum error	The data saved in EE-PROM has been damaged and all CANopen objects return to their default settings automatically.	ALRM (DO code: 0x07)	Servo On
AL 132	Password error	The parameter is password protected when using CANopen communication to access the parameter. The users must enter the valid password to unlock the parameter.	ALRM (DO code: 0x07)	Servo On

10.3 Motion Control Fault Messages Table

	Fault Messages			
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
8F50 I	CANopen data initial error	An error occurs when loading data from EE-PROM.	WARN (DO code: 0x11)	Servo On
815 t3	Write parameter error: exceeds the limit of normal range.	Write parameter error occurs in PR mode: the setting value exceeds the limit of normal range.	WARN (DO code: 0x11)	Servo On
RL2 15		Write parameter error occurs in PR mode: the parameter is read only.	WARN (DO code: 0x11)	Servo On
86513	error:	Write parameter error occurs in PR mode: the parameter is write-protected (cannot be changed) when Servo On or the setting value is invalid.	WARN (DO code: 0x11)	Servo On
81 5 18	error:	Write parameter error occurs in PR mode: the parameter is write-protected (cannot be changed) when Servo On or the setting value is invalid.	WARN (DO code: 0x11)	Servo On
81535	PR command overflow	In PR mode, this fault occurs when position command counter register overflowed and at this time an absolute position command is executed.	WARN (DO code: 0x11)	Servo On
86545	PR positioning time out	In PR mode, the execution time of positioning command exceeds its time limit.	WARN (DO code: 0x11)	Servo On
81548	Invalid PR path number	In PR mode, the valid range of PR path number is within 0~63. The path number is not within this range.	WARN (DO code: 0x11)	Servo On
8158 :	Index error occurs when accessing CANopen object.	The specified Index in the message does not exist.	WARN (DO code: 0x11)	Servo On
81583	Sub-index error occurs when accessing CANopen object.	The specified Sub-index in the message does not exist.	WARN (DO code: 0x11)	Servo On

10-6 Revision September 2012

	Fault Messages			
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
81585	Data type (size) error occurs when accessing CANopen object.	The data length in the message does not match the specified object.	WARN (DO code: 0x11)	Servo On
81587	Data range error occurs when accessing CANopen object.	The data in the message has exceeded the data range of the specified object.	WARN (DO code: 0x11)	Servo On
86588	is read-only and	The specified object in the message is read-only and write-protected (cannot be changed).	WARN (DO code: 0x11)	Servo On
8L26b	CANopen object does not support PDO.	The specified object in the message does not support PDO.	WARN (DO code: 0x11)	Servo On
8L26d	is write-	The specified object in the message is write-protected (cannot be changed) when Servo On.	WARN (DO code: 0x11)	Servo On
86588	Error occurs when reading CANopen object from EE-PROM.	An error occurs when loading the default settings from EE-PROM at start-up. All CANopen objects return to their default settings automatically.	WARN (DO code: 0x11)	Servo On
81531	Error occurs when writing CANopen object into EE-PROM.	An error occurs when writing the current settings into EE-PROM.	WARN (DO code: 0x11)	Servo On
81533	EE-PROM invalid address range	The amount of the data saved in EE-PROM has exceeded the space determined by the firmware. Maybe the firmware version has been upgraded, and it causes that the data of old firmware version saved in EE-PROM cannot be used.	WARN (DO code: 0x11)	Servo On
81275	EE-PROM checksum error	The data saved in EE-PROM has been damaged and all CANopen objects return to their default settings automatically.	WARN (DO code: 0x11)	Servo On

Fault Messages				
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
86511	Password error	The parameter is password protected when using CANopen communication to access the parameter. The users must enter the valid password to unlock the parameter.	WARN (DO code: 0x11)	Servo On
85583	Forward software limit	Position command is equal to or more than forward software limit.	WARN (DO code: 0x11)	Servo On
RL 285	Reverse software limit	Position command is equal to or less than reverse software limit.	WARN (DO code: 0x11)	Servo On
86538	Position counter overflow	Position counter overflow occurs.	WARN (DO code: 0x11)	Servo On
8658 :	Servo Off error	Servo Off occurs during positioning (when the drive and motor are both running).	WARN (DO code: 0x11)	Servo On
8630 :	CANopen SYNC failed	The synchronous communication with the external controller has failed.	WARN (DO code: 0x11)	Servo On
BF 305	CANopen SYNC signal error	The CANopen SYNC signal is received too early.	WARN (DO code: 0x11)	Servo On
8f 303	CANopen SYNC time out	The CANopen SYNC signal is not received within the specified time.	WARN (DO code: 0x11)	Servo On
81304	CANopen IP command failed	Internal command of CANopen IP mode cannot be sent and received.	WARN (DO code: 0x11)	Servo On
RL 305	SYNC period error	Object 0x1006 data error. SYNC period 1006h value is invalid.	WARN (DO code: 0x11)	Servo On
RL 380	Position deviation alarm for digital output, MC_OK	After MC_OK is activated, when the digital output, TPOS is Off, the digital output, MC_OK becomes Off. For more detailed explanation, please refer to parameter P1-48 in Chapter 8.	WARN (DO code: 0x11)	Servo On

10-8 Revision September 2012

10.4 Absolute System Fault Messages Table

Fault Messages				
Display	Fault Name	Fault Description	Corresponding Digital Output	Servo Status
85038	Voltage level above specification	The voltage level of the battery is higher than the specified voltage (> 3.8V). Maybe an electrical charge still remains in the servo drive.	ALRM (DO code: 0x07)	Servo Off
85038	Gray code error	An absolute position error within one turn.	ALRM (DO code: 0x07)	Servo Off
RL060	Absolute position lost	The recorded turn numbers are lost as the voltage level of battery is too low or after a power interruption.	WARN (DO code: 0x11)	Servo On
8L06 I	Voltage level below specification	The voltage level of the battery is lower than the specified voltage.	WARN (DO code: 0x11)	Servo On
8L062	Overflow warning of absolute position	The normal range of turn numbers of absolute position is - 32768~+32767.	WARN (DO code: 0x11)	Servo On
RL 068	I/O data transmission error of absolute position	A timing error occurs when reading the data of absolute position via the digital inputs and outputs.	WARN (DO code: 0x11)	Servo On
AL069	Motor type error	Possible an incremental type motor is connected. Possible the setting value of P2-69 is not set to 0.	ALRM (DO code: 0x07)	Servo Off
81588	Position counter overflow	Position counter overflow occurs.	WARN (DO code: 0x11)	Servo On

- 1) If there is any unknown fault code that is not listed on the above table, please inform the distributor or contact with Delta for assistance.
- 2) For more information about the CANopen objects, please refer to CANopen Instruction Manual.

10.5 Potential Cause and Corrective Actions

Servo Drive Fault Messages

RLOO!: Overcurrent

Potential Cause	Checking Method	Corrective Actions
Short-circuit at drive output (U, V, W)	 Check the wiring connections between drive and motor. Check if the wire is short-circuited. 	Repair the short-circuited and avoid metal conductor being exposed.
Motor wiring error	Check if the wiring steps are all correct when connecting motor to drive.	Follow the wiring steps in the user manual to reconnect wiring.
IGBT error	Heat sink overheated	Please contact your distributor for assistance or contact with Delta.
Control parameter setting error	Check if the setting value exceeds the factory default setting.	Set the setting back to factory default setting and then reset and adjust the parameter setting again.
Control command setting error	Check if the control input command is unstable (too much fluctuation).	 Ensure that input command frequency is stable (too much fluctuation). Activate filter function.

RL002: Overvoltage

Potential Cause	Checking Method	Corrective Actions
The main circuit voltage has exceeded its maximum allowable value.	Use voltmeter to check whether the input voltage falls within the rated input voltage. (For voltage specification, please refer to section 12.1 in Chapter12.)	Use correct power supply or stabilizing power or using series transformer.
Input power error (Incorrect power input)	Use voltmeter to check whether the input voltage is within the specified limit.	Use correct power supply or stabilizing power or using series transformer.
The hardware of the servo drive is damaged.	Use voltmeter to ensure that the main circuit input voltage falls within the specified limit,	If the error does not clear even if the main circuit input voltage falls within the specified limit, please contact your distributor for assistance or contact with Delta.

10-10 Revision September 2012

8L003: Undervoltage

Potential Cause	Checking Method	Corrective Actions
The main circuit voltage is below its minimum specified value.	Check whether the wiring of main circuit input voltage is normal.	Reconfirm voltage wiring.
No input voltage at main circuit.	Use voltmeter to check whether input voltage at main circuit is normal.	Reconfirm power switch.
Input power error (Incorrect power input)		Use correct power supply or stabilizing power or using series transformer.

RLOG4 : Motor error

Potential Cause	Checking Method	Corrective Actions
Encoder is damaged.	Check the encoder for the damage.	Replace the motor.
Encoder is loose.	Examine the encoder connector.	Install the motor again.
, , ,	Check if the servo drive and servo motor are not correctly matched for size (power rating).	Replace the motor.

RLCCS: Regeneration error

Potential Cause	Checking Method	Corrective Actions
Regenerative resistor is not connected or the value of the regenerative resistor is too low.	Check the wiring connection of regenerative resistor.	Reconnect regenerative resistor or calculate the value of the regenerative resistor.
The parameter P1-53 is not set to zero when the regenerative resistor is not in use.	Ensure the parameter P1-53 is set to zero.	Set the parameter P1-53 to zero when the regenerative resistor is not in use.
Parameter setting is in error	Confirm the parameter settings of P1-52 and P1-53, and specifications of regenerative resistor.	Correctly reset parameter settings and the specifications of regenerative resistor again.

81006 : Overload

Potential Cause	Checking Method	Corrective Actions
The drive has exceeded its rated load during continuous operation.	Check if the drive is overloaded. The users can set parameter P0-02 (Drive Fault Code) to 11 and monitor if the value of the average torque [%] exceeds 100% always.	Increase motor capacity or reduce load.
Control system parameter setting is incorrect.	1.Check if there is mechanical vibration 2.Accel/Decel time setting is too fast.	 Adjust gain value of control circuit. Decrease Accel/Decel time setting.
The wiring of drive and encoder is in error.	Check the wiring of U, V, W and encoder.	Ensure all wiring is correct.
The encoder of the motor is damaged.	Please contact your distributor for assistance or contact with Delta.	

RL007: Overspeed

Potential Cause	Checking Method	Corrective Actions
Speed input command is not stable (too much fluctuation).	Use signal detector to detect if input signal is abnormal.	Ensure that input command frequency is stable (not fluctuate too much) and activate filter function.
Over-speed parameter setting is defective.	Check if over-speed parameter setting value is too low.	Correctly set over-speed parameter setting (P2-34).

81008: Abnormal pulse control command

Potential Cause	Checking Method	Corrective Actions
Pulse command frequency is higher than rated input frequency.	Use pulse frequency detector to measure input frequency.	Correctly set the input pulse frequency.

81009: Excessive deviation

Potential Cause	Checking Method	Corrective Actions
Maximum deviation parameter setting is too small.	Check the maximum deviation parameter setting and observe the position error value when the motor is running.	Increases the parameter setting value of P2-35.
Gain value is too small.	Check for proper gain value.	Correctly adjust gain value.
Torque limit is too low.	Check torque limit value.	Correctly adjust torque limit value.
There is an overload.	Check for overload condition.	Reduce external applied load or re-estimate the motor capacity.

10-12 Revision September 2012

REServed : Reserved

: Encoder error (Position detector fault)

Potential Cause	Checking Method	Corrective Actions
The wiring of encoder is in error.	1.Check if all wiring is correct.2.Check if the users conduct the wiring by the wiring information in the user manual.	Ensure all wiring is correct.
Encoder is loose	Examine the encoder connector (CN2).	Install the motor again.
The wiring of encoder is defective.	Check if all connections are tight.	Conduct the wiring again.
Encoder is damage	Check the motor for the damage.	Replace the motor.

81012: Adjustment error

Potential Cause	Checking Method	Corrective Actions
The analog input contact does not go back to zero.	Measure if the voltage of the analog input contact is the same as the voltage of the ground.	Correctly ground the analog input contact.
The detection device is damaged.	Reset the power supply.	If the error does not clear after resetting the power supply, please contact your distributor for assistance or contact with Delta.

81013: Emergency stop activated

Potential Cause	Checking Method	Corrective Actions
Emergency stop switch is activated.	Check if emergency stop switch is On or Off.	Activate emergency stop switch.

Reverse (CWL) limit switch error

Potential Cause	Checking Method	Corrective Actions
Reverse limit switch is activated.	Check if reverse limit switch is On or Off.	Activate reverse limit switch.
		Modify parameter setting and re-estimate motor capacity.

82015 : Forward (CCWL) limit switch error

Potential Cause	Checking Method	Corrective Actions
Forward limit switch is activated.	Check if forward limit switch is On or Off.	Activate forward limit switch.
		Modify parameter setting and re-estimate motor capacity.

82018: IGBT temperature error

Potential Cause	Checking Method	Corrective Actions
load diiring	Check if there is overload or the motor current is too high.	Increase motor capacity or reduce load.
Short-circuit at drive output.	Check the drive input wiring.	Ensure all wiring is correct.

RLO : : Memory error

Potential Cause	Checking Method	Corrective Actions
Parameter data error when writing into EE-PROM.	Examine the parameter settings. Please do the following steps: 1. Press SHIFT key on the drive keypad, and examine the parameter shown on LED display. 2. If E320A is displayed (in hexadecimal format), it indicates it is parameter P2-10. Please examine the parameter settings of P2-10. 3. If E3610 is displayed (in hexadecimal format), it indicates it is parameter P6-16. Please examine the parameter settings of P6-16.	1.If this fault occurs when power is applied to the drive, it indicates that the setting value of one parameter has exceeded the specified range. Correct the setting value of the parameter to clear the fault and restart the servo drive. 2.If this fault occurs during normal operation, it indicates that the error occurs when writing data into EE-PROM. Turn ARST (DI signal) ON to clear the fault or restart the servo drive.
The setting value of hidden parameter is in error.	Press SHIFT key on the drive keypad and examine if E100X is displayed on LED display.	If this fault occurs when resetting the parameter settings, it indicates that the servo drive type is not set correctly. Correctly set the servo drive type again.
Data in EE-PROM is damaged.	Press SHIFT key on the drive keypad and examine if E0001 is displayed on LED display.	If this fault occurs when power is applied to the drive, it indicates that the data in EE-RPM is damaged or there is no data in EE-PROM. Please contact your distributor for assistance or contact with Delta.

10-14 Revision September 2012

810 18: Encoder output error

Potential Cause	Checking Method	Corrective Actions
Encoder itself or the wiring of encoder is in error.	Check if the recent fault records (P4-00 ~ P4-05) display on the drive keypad in accordance with the fault codes AL011, AL024, AL025 and AL026.	Perform the corrective actions as described in AL011, AL024, AL025 and AL026.
The output frequency for pulse output may exceed the limit of its allowable setting value.	Check if the following conditions occur: Condition 1: Motor speed is above the value set by P1-76. Condition 2: $\frac{\text{Motor Speed}}{60} \times \text{P1-46} \times 4 > 19.8 \times 10^6$	Correctly set P1-76 and P1-46. 1.Ensure that the motor speed is below the value set by P1-76. 2. Motor Speed 60 ×P1-46×4<19.8×106

RLUIS: Serial communication error

Potential Cause	Checking Method	Corrective Actions
Communication parameter setting is defective.	Check the communication parameter setting.	Correctly set parameter setting.
Communication address is incorrect.		Correctly set communication address.
Communication value is incorrect.	Check the communication value.	Correctly set communication value.

RLOZO: Serial communication time out

Potential Cause	Checking Method	Corrective Actions
Setting value in time out parameter is not correct.	Check communication time out parameter setting.	Correctly set P3-07.
Not receiving communication command for a long time.	Check whether communication cable is loose or broken.	Tighten the communication cable, make sure the communication cable is not damaged and ensure all wiring is correct.

RESERVED: Reserved

81022: Input power phase loss

Potential Cause	Checking Method	Corrective Actions
Control power supply is in error.	Check the power cable and connections of R, S, T. Check whether the power cable is loose or the possible loss of phase on input power.	If the fault does not clear even when the three-phase power is connected correctly, please contact your distributor for assistance or contact with Delta.

82023 : Pre-overload warning

Potential Cause	Checking Method	Corrective Actions
The drive is going to overload.	 Check the load condition of the servo motor and drive. Check the setting value of P1-56. Check whether the setting value of P1-56 is too small. 	 Please refer to the correction actions of AL006. Increase the setting value of P1-56 or set P1-56 to 100 and above.

8L024: Encoder initial magnetic field error

Potential Cause	Checking Method	Corrective Actions
The magnetic field of the encoder U, V, W signal is in error.	2.Check if the encoder signal cables are	If the error does not clear after each checking is done, please contact your distributor for assistance or contact with Delta.

82025: Encoder internal error

Potential Cause	Checking Method	Corrective Actions
The internal memory of the encoder is in error. An encoder counter error occurs.	 Check if the servo motor is properly grounded. Check if the encoder signal cables are placed in separate conduits from the cables connected to R, S, T and U, V, W terminals to prevent the interference. Check if the shielded cables are used when performing encoder wiring. 	 Please connect the grounding (green color) of U, V, W terminal to the heatsink of the servo drive. Ensure that the encoder signal cables are placed in separate conduits from the cables connected to R, S, T and U, V, W terminals to prevent the interference. Please use shielded cables for Encoder wiring. If the error does not clear after all the above actions are done, please contact your distributor for assistance or contact with Delta.

10-16 Revision September 2012

81028 : Encoder data error

Potential Cause	Checking Method	Corrective Actions
An encoder data error occurs for three times.	 Check if the servo motor is properly grounded. Check if the encoder signal cables are placed in separate conduits from the cables connected to R, S, T and U, V, W terminals to prevent the interference. Check if the shielded cables are used when performing encoder wiring. 	 Please connect the grounding (green color) of U, V, W terminal to the heatsink of the servo drive. Ensure that the encoder signal cables are placed in separate conduits from the cables connected to R, S, T and U, V, W terminals to prevent the interference. Please use shielded cables for Encoder wiring. If the error does not clear after all the above actions are done, please contact your distributor for assistance or contact with Delta.

81030: Motor protection error

Potential Cause	Checking Method	Corrective Actions
The setting value of parameter P1-57 is reached after a period of time set by parameter P1-58.	1.Check if P1-57 is enabled. 2.Check if the setting values of P1-57 and P1-58 are both too small.	1.Set P1-57 to 0. 2.Correctly set P1-57 and P1-58. Please note that the over-low setting may results in malfunction, but over-high setting may let the motor protection function not operate.

8103: U, V, W, GND wiring error

Potential Cause	Checking Method	Corrective Actions
The wiring connections of U, V, W (for servo motor output) and GND (for grounding) are in error.	Check if wiring connections of U, V, W are not correct.	Follow the wiring steps in the user manual to reconnect the wiring and ground the servo drive and motor properly.

: Full closed-loop excessive deviation

Potential Cause	Checking Method	Corrective Actions
The position control deviation value of full-closed loop exceeds the specified limit. Maximum deviation parameter setting is too small.	 Check if the setting value of P1-73 is too small. Check if all connections are tight and well-connected to the mechanical equipment. 	 Increases the parameter setting value of P1-73. Ensure all connections are tight and well-connected to the mechanical equipment.

유단합식 : Linear scale wiring error

Potential Cause	Checking Method	Corrective Actions
	wiring connections of linear scale are not	Check all wiring connections of linear scale and reconnect the wiring if necessary.

: Analog input voltage error

Potential Cause	Checking Method	Corrective Actions
The analog input voltage is higher than the value of P1-83 over 50ms.	Check if analog input voltage is too high.	Check all analog input voltages. Check if there is any question about the sources of analog speed commands.

81088 : DSP firmware upgrade

Potential Cause	Checking Method	Corrective Actions
EE-PROM is not reset after the firmware version is upgraded.	firmware version is upgraded	Set P2-08 to 30 first, and then 28 next, and restart the servo drive.

10-18 Revision September 2012

CANopen Communication Fault Messages

81 185 : CANbus error

Potential Cause	Checking Method	Corrective Actions
CANbus off or Error Rx/Tx Counter exceeds 128.	2. Check if the communication quality is	NMT Maser send "Reset node" command to its slave or restart the servo drive.

RL III: CANopen SDO receive buffer overrun

Potential Cause	Checking Method	Corrective Actions
SDO Rx buffer overrun is detected (receive two or more SDO packets in 1 ms).	Check if the servo drive (Master) receives two or more SDO packets in 1 ms.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL ::2: CANopen PDO receive buffer overrun

Potential Cause	Checking Method	Corrective Actions
	Check if the servo drive (Master) receives two or more PDO (same COB-ID) packets in 1 ms.	

: Index error occurs when accessing PDO object

Potential Cause	Checking Method	Corrective Actions
	Check if the Entry index value in PDO mapping is changed when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL 122: Sub-index error occurs when accessing PDO object

Potential Cause	Checking Method	Corrective Actions
The specified Sub- index in the message does not exist.	Check if the Entry Sub-index value in PDO mapping is changed when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

: Data type (size) error occurs when accessing PDO object

Potential Cause	Checking Method	Corrective Actions
The data length in the message does not match the specified object.	Check if the Entry data length in PDO mapping is changed when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

: Data range error occurs when accessing PDO object

Potential Cause	Checking Method	Corrective Actions
	Check if the write-in data range in PDO mapping is not correct when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL 125: Object is read-only and write-protected

Potential Cause	Checking Method	Corrective Actions
read-only and write-	Check if the specified object is set to read-only write-protected (cannot be changed) when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

10-20 Revision September 2012

RL 128: CANopen PDO object does not support PDO

Potential Cause	Checking Method	Corrective Actions
	Check if the specified object cannot support PDO when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

: CANopen PDO object is write-protected when Servo On

Potential Cause	Checking Method	Corrective Actions
write-protected	Check if the specified object in the message is write-protected (cannot be changed) while the servo drive is enabled	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

82 128 : Error occurs when reading CANopen PDO object from EE-PROM

Potential Cause	Checking Method	Corrective Actions
An error occurs when loading the default settings from EE-PROM at start-up. All CANopen objects return to their default settings automatically.	specified object reads EE-PROM when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL 123: Error occurs when writing CANopen PDO object into EE-PROM

Potential Cause	Checking Method	Corrective Actions
An error occurs when writing the current settings into EE-PROM.	Check if it causes an error when the specified object writes EE-PROM when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

81 138: EE-PROM invalid address range

Potential Cause	Checking Method	Corrective Actions
firmware version has	Check if the specified object lets the address range of EE-PROM exceed the specification when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

81 13 : EE-PROM checksum error

Potential Cause	Checking Method	Corrective Actions
The data saved in EE-PROM has been damaged and all CANopen objects return to their default settings automatically.	Check if the specified object results in the checksum error of EE-PROM when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL 132 : Password error

Potential Cause	Checking Method	Corrective Actions
The parameter is password protected when using CANopen communication to access the parameter.	Check if the password for the specified object is invalid when accessing PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

10-22 Revision September 2012

Motion Control Fault Messages

8120: CANopen data initial error

Potential Cause	Checking Method	Corrective Actions
An error occurs when loading data from EE-PROM.	 Restart the servo drive to check if the error can be cleared. If the error cannot be cleared after restarting the servo drive, it indicates that the data in EE-PROM is damaged and the users must do the following actions: If the users want to write default setting values, set P2-08 to 30 first and then 28 next, or use CANopen "0x1011" object to restore parameters from non-volatile memory. If the users want to write current setting values, use CANopen "0x1010" object to save parameters in non-volatile memory. 	 Turn ARST (DI signal) ON to clear the fault. Use CANopen "0x1011" object to restore default parameters.

RL213 ~ RL219 : Write parameter error

Potential Cause	Checking Method	Corrective Actions
In PR mode, error occurs when using PR command TYPE=8 (write	: Check if the parameter setting value exceeds the limit of normal range. RL2 15 : Check if the parameter is read only.	 Turn ARST (DI signal) ON to clear the fault. Set P0-01 to 0.
	RL213, RL218: Check if the parameter is write-protected when Servo On or the setting value is invalid.	Correct the PR command and parameter setting value.

81235: PR command overflow

Potential Cause	Checking Method	Corrective Actions
In PR mode, this fault occurs when position command counter register overflowed and at this time an absolute position command is executed.	 In PR mode, check if the position command is executing continuously toward single direction and make the feedback position command counter overflow. Check if the above situation causes the correct position cannot be gauged. Check if an absolute position command is executed after the position command counter register overflowed. 	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

81245: PR positioning time out

Potential Cause	Checking Method	Corrective Actions
In PR mode, the execution time of positioning command exceeds its time limit.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

82249 : Invalid PR path number

Potential Cause	Checking Method	Corrective Actions
within 0~63 The		NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

8126: Index error occurs when accessing CANopen object

Potential Cause	Checking Method	Corrective Actions
in the message does		NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

Sub-index error occurs when accessing CANopen object

Potential Cause	Checking Method	Corrective Actions
The specified Sub- index in the message does not exist.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

10-24 Revision September 2012

: Data type (size) error occurs when accessing CANopen object

Potential Cause	Checking Method	Corrective Actions
	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

: Data range error occurs when accessing CANopen object

Potential Cause	Checking Method	Corrective Actions
The data in the message has exceeded the data range of the specified object.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

82289: Object is read-only and write-protected

Potential Cause	Checking Method	Corrective Actions
	If this fault occurs, please contact your distributor for assistance or contact with	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

81266 : CANopen object does not support PDO

Potential Cause	Checking Method	Corrective Actions
	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

8L266 : Object is write-protected when Servo On

Potential Cause	Checking Method	Corrective Actions
The specified object in the message is write-protected (cannot be changed) when Servo On.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

: Error occurs when reading CANopen object from EE-PROM

Potential Cause	Checking Method	Corrective Actions
An error occurs when loading the default settings from EE-PROM at start-up. All CANopen objects return to their default settings automatically.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

: Error occurs when writing CANopen object into EE-PROM

Potential Cause	Checking Method	Corrective Actions
An error occurs when writing the current settings into EE-PROM.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

82233: EE-PROM invalid address range

Potential Cause	Checking Method	Corrective Actions
		NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

10-26 Revision September 2012

82275 : EE-PROM checksum error

Potential Cause	Checking Method	Corrective Actions
The data saved in EE-PROM has been damaged and all CANopen objects return to their default settings automatically.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL277: Password error

Potential Cause	Checking Method	Corrective Actions
The parameter is password protected when using CANopen communication to access the parameter.		NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

8283 : Forward software limit

Potential Cause	Checking Method	Corrective Actions
Position command is equal to or more than forward software limit.	actual feedback position. It indicates that when this fault is activated, the actual position may not exceed the limit. Setting the proper deceleration time is able to solve this problem. For the	reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040

81285: Reverse software limit

Potential Cause	Checking Method	Corrective Actions
Position command is equal to or less than reverse software limit.	position may not exceed the limit.	reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040

81289: Position counter overflow

Potential Cause	Checking Method	Corrective Actions
Position counter overflow occurs.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

8128 : Servo Off error

Potential Cause	Checking Method	Corrective Actions
Servo Off occurs during positioning (when the drive and motor are both running).	 Examine if the wiring of digital input for Servo On is correct. Check if the host (external) controller disables the function of Servo On too early. 	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL30: CANopen SYNC failed

Potential Cause	Checking Method	Corrective Actions
CAN IP mode error. The synchronous communication with the external controller has failed.	good quality state.2.Check if the host (external) controller has sent SYNC signal.3.Check if the setting value of parameter P3-09 is a proper value (It is	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL 302 : CANopen SYNC error

Potential Cause	Checking Method	Corrective Actions
CAN IP mode error. The SYNC signal is received too early.	· · · · · · · · · · · · · · · · · · ·	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

10-28 Revision September 2012

81303: CANopen SYNC time out

Potential Cause	Checking Method	Corrective Actions
CAN IP mode error. The SYNC signal is not received with the specified time.	(communication cycle period) is the same as the setting in host (external) controller.3.Check if the setting value of parameter P3-09 is a proper value (It is	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

RL 304: CANopen IP command failed

Potential Cause	Checking Method	Corrective Actions
rannor no cont ano	The calculation time of IP mode is too long. Please disable USB monitor function.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

81305: SYNC period error

Potential Cause	Checking Method	Corrective Actions
Object 0x1006 Data Error. SYNC period 1006h value is invalid.	Examine the data of 0x1006. The SYNC period 1006h value should not be equal to or less than 0 or this fault will occur.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

Position deviation alarm for digital output, MC_OK

Potential Cause	Checking Method	Corrective Actions
After MC_OK is activated, when the digital output, TPOS is Off, the digital output, MC_OK becomes Off.	Check if the motor position changes by external force after the positioning is completed. This alarm can be disabled by the setting of P1-48. Please refer to the descriptions of parameter P1-48 for more detailed explanation.	

Absolute System Fault Messages

81028 : Voltage level above specification

Potential Cause	Checking Method	Corrective Actions
	. Check if an electrical charge still	
the battery is higher	remains in the servo drive.	removed automatically after
than the specified	. Examine the installation of the	the voltage level has returned
voltage (> 3.8V).	battery.	within its specification.

81029 : Gray code error

Potential Cause	Checking Method	Corrective Actions
error within one	Power ON the drive and turn the connected motor again to check if this fault message will disappear.	If this fault message cannot be clear by restarting the servo system, replace the encoder.

RL060 : Absolute position lost

Potential Cause	Checking Method	Corrective Actions
The voltage level of the battery is too low.	Check if the voltage level of the battery is lower than 2.7V.	Replace the battery and execute the homing procedure again. Please refer to section 12.3.4 to 12.3.5 for initialization procedure of an absolute system.
The initialization procedure of an absolute system has not finished after enabling the absolute function.	 Install a battery box. Check the wiring connection between the battery box and the servo drive. Check if the wiring is correct of the encoder. 	Execute the homing procedure again. Please refer to section 12.3.4 to 12.3.5 for initialization procedure of an absolute system.
Bad connection or an open circuit occurred in the wiring between the battery box and the servo drive.	 Check the wiring connection between the battery box and the servo drive. Check if the wiring is correct of the encoder. 	Conduct the wiring again. Then, execute the homing procedure again. Please refer to section 12.3.4 to 12.3.5 for initialization procedure of an absolute system.

RL06 : Voltage level below specification

Potential Cause	Checking Method	Corrective Actions
The voltage level of the battery is too low.	battery that is displayed on the keypad is lower than 3.1 V. Measure if the voltage level of the	Replace the battery when the control power is applied to the servo drive. This fault message can be removed automatically after conducting battery replacement.

10-30 Revision September 2012

81062 : Overflow warning of absolute position

Potential Cause	Checking Method	Corrective Actions
The motor traveling distance is out of the specified range.	Check if the motor turn numbers are within the range of -32768 to +32767.	Execute the homing procedure again. Please refer to section 12.2.3 to 12.2.4 for initialization procedure of an absolute system.

RL068: I/O data transmission error of absolute position

Potential Cause	Checking Method	Corrective Actions
Timing error	 The digital input, ABSQ cannot be turned OFF before the digital output, ABSR is set to be OFF. The digital input, ABSQ cannot be turned ON before the digital output, ABSR is set to be ON. 	Correct the read/write timing of ABSQ and ABSR.
Reading timeout	Check if the period of time from enabling ASBR to be ON to ABSQ kept high has exceeded 200ms.	When ASBR is activated to be ON, it indicates that the absolute position data is ready. The host controller will read and put the data at ABSD in 200ms and enable ABSQ to be ON to inform the servo drive the bit reading procedure has been done.
The wiring is disconnected.	Examine if the wiring is disconnected.	Reconnect the wiring.

8L069 : Motor type error

Potential Cause	Checking Method	Corrective Actions
 Possible an incremental type motor is connected. Possible the setting value of P2-69 is not set to 0. 	 Examine the connected motor is an absolute type or an incremental type motor. Check the setting value of P2-69 	 Please choose an absolute type motor. Please set the setting value of P2-69 to 0.

8288 : Position counter overflow

Potential Cause	Checking Method	Corrective Actions
Position counter overflow occurs.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

10.6 Clearing Faults

Servo Drive Fault Messages

Display	Fault Name	Clearing Method
8600 :	Overcurrent	Turn ARST (DI signal) ON to clear the fault.
86005	Overvoltage	Turn ARST (DI signal) ON to clear the fault.
81003	Undervoltage	This fault message can be removed automatically after the voltage has returned within its specification.
86004	Motor error	This fault message can be removed by restarting the servo drive.
86005	Regeneration error	Turn ARST (DI signal) ON to clear the fault.
8L008	Overload	Turn ARST (DI signal) ON to clear the fault.
86883	Overspeed	Turn ARST (DI signal) ON to clear the fault.
81008	Abnormal pulse control command	Turn ARST (DI signal) ON to clear the fault.
86003	Excessive deviation	Turn ARST (DI signal) ON to clear the fault.
818 18	Reserved	
860::	Encoder error	This fault message can be removed by restarting the servo drive.
81.0.18	Adjustment error	This fault message can be removed after the wiring of CN1 connector (I/O signal connector) is removed and auto adjustment function is executed.
810 (3)	Emergency stop activated	This fault message can be removed automatically by turning off EMGS (DI signal).
860 14	Reverse limit switch error	 Turn ARST (DI signal) ON to clear the fault. This fault message can be removed when the servo drive is Off (Servo Off). When the servo drive does not reach the limit, this fault message can be removed automatically
8L0 (S	Forward limit switch error	 Turn ARST (DI signal) ON to clear the fault. This fault message can be removed when the servo drive is Off (Servo Off). When the servo drive does not reach the limit, this fault message can be removed automatically
8L0 (6	IGBT temperature error	Turn ARST (DI signal) ON to clear the fault.

10-32 Revision September 2012

Display	Fault Name	Clearing Method
868:3	Memory error	 If this fault occurs when power is applied to the drive, correct the setting value of the parameter to clear the fault and restart the servo drive. If this fault occurs during normal operation, turn ARST (DI signal) ON to clear the fault.
810:18	Encoder output error	Turn ARST (DI signal) ON to clear the fault.
866 18	Serial communication error	Turn ARST (DI signal) ON to clear the fault.
86050	Serial communication time out	Turn ARST (DI signal) ON to clear the fault.
8LE2 :	Reserved	
85055	Input power phase loss	Turn ARST (DI signal) ON to clear the fault. This fault message can be removed automatically after input power phase lost problem is solved.
85053	Pre-overload warning	Turn ARST (DI signal) ON to clear the fault.
86054	Encoder initial magnetic field error	This fault message can be removed by restarting the servo drive.
86025	Encoder internal error	This fault message can be removed by restarting the servo drive.
86038	Encoder data error	This fault message can be removed by restarting the servo drive.
86030	Motor protection error	Turn ARST (DI signal) ON to clear the fault.
86833	U,V,W wiring error	This fault message can be removed by restarting the servo drive.
86848	Full closed-loop excessive deviation	Turn ARST (DI signal) ON to clear the fault.
86041	Linear scale wiring error	Turn ARST (DI signal) ON to clear the fault.
81042	Analog input voltage error	 Turn ARST (DI signal) ON to clear the fault. Set P0-01 to 0. NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
86838	DSP firmware upgrade	This fault message can be removed after setting P2-08 to 30 first, and then 28 next and restarting the servo drive.

CANopen Communication Fault Messages

Display	Fault Name	Clearing Method
8L 185	CANbus error	NMT Maser send "Reset node" command to its slave or restart the servo drive.
85 :::	CANopen SDO receive buffer overrun	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81 : 12	CANopen PDO receive buffer overrun	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81 15 1	Index error occurs when accessing CANopen PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
86 155	Sub-index error occurs when accessing CANopen PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
RL 123	Data type (size) error occurs when accessing CANopen PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
8E 154	Data range error occurs when accessing CANopen PDO object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
RL 125	CANopen PDO object is read-only and write-protected.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
8L 188	CANopen PDO object does not support PDO.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
AL 127	CANopen PDO object is write-protected when Servo On.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).

10-34 Revision September 2012

Display	Fault Name	Clearing Method
85 158	Error occurs when reading CANopen PDO object from EE-PROM.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
85 158		NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
8L 130	EE-PROM invalid address range.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
86 13 1	EE-PROM checksum error.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
8L 132	Password error	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).

Motion Control Fault Messages

Display	Fault Name	Clearing Method
86501	CANopen Data Initial Error	 Turn ARST (DI signal) ON to clear the fault. Use CANopen "0x1011" object to restore default parameters.
BF 5 13	Write parameter error: exceeds the limit of normal range.	 Turn ARST (DI signal) ON to clear the fault. Set P0-01 to 0.
RL2 15	Write parameter error: read only.	 Turn ARST (DI signal) ON to clear the fault. Set P0-01 to 0.
8F5 13	Write parameter error: parameter lock	Correct the PR command and parameter setting value.
81.5.18	Write parameter error: parameter lock	Correct the PR command and parameter setting value.
81235	PR Command Overflow	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
86545	PR Positioning Time out	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81548	Invalid PR Path Number	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
8158 I	Index error occurs when accessing CANopen object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81583	Sub-index error occurs when accessing CANopen object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
RL 265	Data type (size) error occurs when accessing CANopen object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).

10-36 Revision September 2012

Display	Fault Name	Clearing Method
81.287	Data range error occurs when accessing CANopen object.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81588	Object is read-only and write-protected.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
8L26b	CANopen object does not support PDO.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
8L26d	CANopen object is write- protected when Servo On.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81385	Error occurs when reading CANopen object from EE-PROM.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81271	Error occurs when writing CANopen object into EE-PROM.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
86233	EE-PROM invalid address range	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81275	EE-PROM checksum error	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
86533	Password error	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81583	Forward software limit	When the servo drive does not reach the limit, i.e. the position command is less than forward software limit, this fault message can be removed automatically

Display	Fault Name	Clearing Method
81582	Reverse software limit	When the servo drive does not reach the limit, i.e. the position command is more than reverse software limit, this fault message can be removed automatically
81583	Position counter overflow	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
8158 1	Servo Off error	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81301	CANopen SYNC failed	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81305	CANopen SYNC signal error	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81303	CANopen SYNC time out	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
81304	CANopen IP command failed	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
RL 305	SYNC period error	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).
AL 380	Position deviation alarm	 Turn ARST (DI signal) ON to clear the fault. Set P0-01 to 0.

10-38 Revision September 2012

Absolute System Fault Messages

Display	Fault Name	Clearing Method
81058	Voltage level above specification	 This fault message can be removed by restarting the servo drive. If this fault message cannot be removed after restarting the servo drive, please contact your distributor for assistance or contact with Delta.
RL029	Gray code error	 This fault message can be removed by restarting the servo drive. If this fault message cannot be removed after restarting the servo drive, please contact your distributor for assistance or contact with Delta.
8L060	Absolute position lost	 This fault message can be removed after all the corrective actions are done. If this fault message cannot be removed after all the corrective actions are done, please contact your distributor for assistance or contact with Delta.
AL 06 1	Voltage level below specification	 This fault message can be removed after all the corrective actions are done. If this fault message cannot be removed after all the corrective actions are done, please contact your distributor for assistance or contact with Delta.
81062	Overflow warning of absolute position	 This fault message can be removed after all the corrective actions are done. If this fault message cannot be removed after all the corrective actions are done, please contact your distributor for assistance or contact with Delta.
RL068	I/O data transmission error of absolute position	 This fault message can be removed after all the corrective actions are done. If this fault message cannot be removed after all the corrective actions are done, please contact your distributor for assistance or contact with Delta.
AL069	Motor type error	4. This fault message can be removed after all the corrective actions are done.5. If this fault message cannot be removed after all the corrective actions are done, please contact your distributor for assistance or contact with Delta.
81588	Position counter overflow	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset).

This page intentionally left blank.

10-40 Revision September 2012

Chapter 11 Specifications

11.1 Specifications of Servo Drives (ASDA-A2 Series)

11.1.1 ASDA-A2 220V Series

			100W 200W 400W 750W 1kW 1.5kW 2kW 3kW 4.5kW 5.5kW 7.5kW 11kW 15kW										15kW		
	ASDA-A2 S	eries	01	02	04	07	10	15	20	30	45	55	75	1 B	1F
	Phase /	Voltage	Thre	ee-phas	se / Sin	gle-pha	se 220	VAC			ا-Three	phase 2	220VAC		
Power supply	Permissib Rar	le Voltage nge				/ Single C, -15%				Thr		se 200 5% ~ 1	~ 230V 0%	AC,	
R S	Continuo		0.9 Arms	1.55 Arms	2.6 Arms	5.1	7.3	8.3	13.4 Arms	19.4 Arms	32.5	40	47.5 Arms	54.4 Arms	70 Arms
	Cooling Sy		N	atural <i>A</i> rculation	\ir	7	7	7	7	Fan C		7	7	7	7
	coder Reso edback Res					ental ty	pe: 20	-bit (12	80000	p/rev) ;	Absolu	ute type	e: 17-bi	t	
	ntrol of Mai				S۱	/PWM (S	pace V	ector P	ulse Wi	dth Mo	dulatio	n) Cont	rol		
	Tuning Mo	odes						Aut	o / Ma	nual		I			
	Dynamic B	rake		None				Buil	t-in				Exte	ernal	
		out Pulse Jency		M	ax. 500	Kpps /	4Mpps	(Line c	driver),	Max. 20	00Kpps	(Open	collect	or)	
ode	Pulse	Type		Pulse + Direction, A phase + B phase, CCW pulse + CW pulse											
Position Control Mode	Comman	d Source		External pulse train / Internal parameters											
Cont	Smoothin	g Strategy					Lo	w-pass	and P-0	urve fil	ter				
ition	Electror			Electi	onic ge	ear N/M	l multi	ole N: 1	~3276	7, M: 1:	32767	(1/50<	N/M<2	5600)	
Pos		ation						Set b	y paran	neters					
		orward nsation						Set b	y paran	neters					
	Analog	Voltage Range						0	~ ±10 \	V _{DC}					
	Input	Input Resistance							10ΚΩ						
	Command	Time Constant							2.2 us						
ode	Speed Con	trol Range					1:5000)				1:3	000	1:2	000
Speed Control Mod	Comman	d Source	External analog signal / Internal parameters												
Cont		g Strategy		Low-pass and S-curve filter											
peed		e Limit ation	Set by parameters or via analog input												
S		Response teristic						Max	imum	l kHz					
	Speed A	ccuracy *2				0.0	1% or l	ess at 0	to 100	% load	fluctua	ition			
	(at rated	rotation ed)	0.01% or less at ±10% power fluctuation												
	360	,			0.019	% or les	s at 0°C	ີ to 50°	Cambie	nt tem	peratur	e flucti	uation		

			100W	200W	400W	750W	1kW	1.5kW	2kW	3kW	4.5kW	5.5kW	7.5kW	11kW	15kW	
	ASDA-A2 S	eries	01	02	04	07	10	15	20	30	45	55	75	1 B	1F	
		Voltage Range			1			0	~ ±10 \	V _{DC}	'		1			
/ode	Analog Input	Input Resistance							10ΚΩ							
Torque Control Mode	Command	Time Constant							2.2 us							
Con	Comman					Ext	ernal a	nalog sig	gnal / Ir	nternal	parame	ters				
orque	Smoothin	g Strategy						Low	-pass f	ilter						
Ĕ	Speed Oper					S	et by p	aramet	ers or \	/ia ana	log inpi	ut				
Ana	alog Monito			N	Monitor	signal	can set	by par	ameter	s (Out	out volt	age ran	ge: ±8\	/)		
	Digital	Inputs	contro Motor mode Emero Revers JOG in	Monitor signal can set by parameters (Output voltage range: ±8V) ervo on, Reset, Gain switching, Pulse clear, Zero speed CLAMP, Command input reverse ontrol, Command triggered, Speed/Torque limit enabled, Position command selection, lotor stop, Speed position selection, Position / Speed mode switching, Speed / Torque node switching, Torque / Position mode switching, PT / PR command switching, mergency stop, Forward / Reverse inhibit limit, Reference "Home" sensor, Forward / everse operation torque limit, Move to "Home", Electronic Cam (E-Cam), Forward / Revers OG input, Event trigger PR command, Electronic gear ratio (Numerator) selection and Puls phibit input												
	Inputs/Outputs			•		out (A, B	, Z Lin	e Driver	and Z	Open (Collecto	or)				
		Outputs	Torqu comp overfl opera	Encoder signal output (A, B, Z Line Driver and Z Open Collector) Servo ready, Servo on, At Zero speed, At Speed reached, At Positioning completed, At Forques limit, Servo alarm (Servo fault) activated, Electromagnetic brake control, Homing completed, Output overload warning, Servo warning activated, Position command overflow, Forward / Reverse software limit, Internal position command completed, Capture operation completed output., Motion control completed output., Master position of E-Cam Electronic Cam)												
Pr	otective Fu	nctions	Overs Overs Adjus exces phase	urrent, peed, A tment o sive de loss, S	Overvo Abnorm error, E viation	nal pulse mergen of full- ommun	e contr icy stop close c	oltage, ol comr o activa ontrol lo time ou	nand, I ted, Re oop, Se	Excessi verse/ erial co	ve devi Forwar mmunio	ation, E d limit cation e	incoder switch e error, In	error, error, Po put pov	osition wer	
Com	ımunication	Interface					RS-23	2 / RS-4	85 / C	ANope	n / USB					
	Installa	ition Site				e from (s, dust)	direct s	unlight), no co	orrosiv	e liquid	and ga	ıs (far a	way fro	m oil	
	Alti	itude				Alt	itude	000m	or lowe	r abov	e sea le	vel				
		spheric ssure						86kP	a to 10	6kPa						
	Ope	rating erature	0℃~	55℃ (I	f opera	ting ten	nperati	ure is al	ove 45	5℃, for	ced coc	oling wi	ll be re	quired)		
ent	Storage Temperature						-20)℃to 65	5℃ (-4°I	F to 14	9°F)					
Environment	Hun	nidity					0 1	to 90% (non-co	ndensi	ng)					
Invir	Vibr	ation	9.80665m/s² (1G) less than 20Hz, 5.88m/ s² (0.6G) 20 to 50Hz													
	IP R	ating							IP20							
	Power	System						TN	l Systei	m*3						
	Арр	rovals	IEC/EN 61800-5-1, UL 508C, C-tick													

11-2 Revision September 2012

Footnote:

- *1 Rated rotation speed: When full load, speed ratio is defined as the minimum speed (the motor will not pause).
- *2 When command is rated rotation speed, the speed fluctuation rate is defined as: (Empty load rotation speed - Full load rotation speed) / Rated rotation speed
- *3 TN system: A power distribution system having one point directly earthed, the exposed conductive parts of the installation being connected to that points by protective earth conductor.
- *4 Please refer to "Chart of load and operating time" in section 11.4 "Overload Characteristics".
- *5 Please refer to Section 1.2 for details about the model explanation.

11.1.2 ASDA-A2 400V Series

	ASDA-A2 Se	ries	750W 1kW 1.5kW 2kW 3kW 4.5kW 5.5kW 7.5kW 11kW 15kW										
,		1103	07	10	15	20	30	45	55	75	1 B	1F	
= .	Input Vo	oltage					24VDC	C, ±10%					
Control	Input C	urrent		0.89A			1.1	8A			1.66A		
0 =	Input P	ower		21.4W			28.	2W			39.85W		
М	ain Circuit P	ower				Three-p	hase, 380	~ 480VA	C, ±10%				
Contin	uous Outpu	t Current	3.07 Arms	3.52 Arms	5.02 Arms	6.66 Arms	11.9 Arms	20 Arms	22.37 Arms	30 Arms	28.1 Arms	38.2 Arms	
(Cooling Syst	:em					Fan C	ooling					
	oder Resolu dback Reso			Incr	emental t	ype: 20-b	it (12800	00 p/rev)	; Absolut	te type: 1	7-bit		
Control of Main Circuit					SVPWM (Space Ve	ctor Pulse	Width M	odulation) Control			
	Tuning Modes						Auto /	Manual					
	Dynamic Bra		Built-in					External					
	Max. Input Pulse Frequency			Max. 500Kpps / 4Mpps (Line driver), Max. 200Kpps (Open collector)									
ode	Pulse ⁻	Туре	Pulse + Direction, A phase + B phase, CCW pulse + CW pulse										
ό	Command Source				Ex	ternal pu	lse train /	/ Internal	paramete	ers			
Pulse Type Command Source Smoothing Strategy Electronic Gear Torque Limit					Low	-pass and	l P-curve 1	filter					
tion (Electroni	ic Gear	İ	Electronic	c gear N/N	M multipl	e N: 1~32	767, M: 1	1:32767 (1/50 <n i<="" td=""><td>M<25600)</td><td></td></n>	M<25600)		
Posi	Torque Opera						Set by pa	ırameters					
	Feed Fo Compen						Set by pa	ırameters					
		Voltage Range					0 ~ ±	10 V _{DC}					
	Analog Input Command	Input Resistan ce					10	ΚΩ					
		Time Constant					2.2	us					
lode	Speed C Rang				1:5	000				1:3	000		
trol N	Command	d Source			Ext	ernal ana	log signal	/ Interna	al parame	ters			
Cont	Smoothing	Strategy				Low	-pass and	l S-curve 1	filter				
Speed Control Mode	Torque Opera		Set by parameters or via analog input										
	Frequency Charact						Maximu	m 1kHz					
	Cmal A	a *7			0.0)1% or les	s at 0 to	100% loa	d fluctuat	ion			
	Speed Acc	rotation	0.01% or less at ±10% power fluctuation										
	spee	ea)		0.	01% or les	ss at 0°C t	o 50°C an	nbient ter	nperature	fluctuati	on		

11-4 Revision September 2012

,	ASDA-A2 Se	rios	750W	1kW	1.5kW	2kW	3kW	4.5kW	5.5kW	7.5kW	11kW	15kW			
,	ASDA-AZ SE	ries	07	10	15	20	30	45	55	75	1 B	1F			
Torque Control Mode	Analog Input Command	Voltage Range Input Resistan ce						10 V _{DC}							
Contro		Time Constant					2.2	us							
dne (Command	d Source			E>	kternal an	alog signa	l / Interna	l paramete	ers					
Tor	Smoothing	Strategy					Low-pa	ss filter							
	Speed Opera					Set by pa	rameters	or via ana	alog inpu	t					
Anal	log Monitor	Output		Mon	itor signa	l can set	by parame	eters (Out	put volta	ge range:	±8V)				
	Inputs			Monitor signal can set by parameters (Output voltage range: ±8V) ervo on, Reset, Gain switching, Pulse clear, Zero speed CLAMP, Command input reverse ontrol, Command triggered, Speed/Torque limit enabled, Position command selection, Motor stop, Speed position selection, Position / Speed mode switching, Speed / Torque node switching, Torque / Position mode switching, PT / PR command switching, Emergence top, Forward / Reverse inhibit limit, Reference "Home" sensor, Forward / Reverse operatio orque limit, Move to "Home", Electronic cam, Forward / Reverse JOG input, Event trigger Pommand, Electronic gear ratio (Numerator) selection and Pulse inhibit input											
	Digital s/Outputs		Encoder signal output (A, B, Z Line Driver and Z Open Collector)												
		Outputs	Torques complet Forward	Servo ready, Servo on, At Zero speed, At Speed reached, At Positioning completed, At Torques limit, Servo alarm (Servo fault) activated, Electromagnetic brake control, Homing completed, Output overload warning, Servo warning activated, Position command overflor Forward / Reverse software limit, Internal position command completed, Capture operation completed output., Motion control completed output., Master position of E-Cam (Electron											
Pro	otective Fund	ctions	Overspe Adjustm excessiv phase lo	ed, Abno nent erro ve deviat	ormal puls r, Emerge ion of full Il commur	se contro ncy stop -close co	ltage, Mot I comman activated, ntrol loop ime out, s	d, Excess Reverse/ , Serial co	ive deviat Forward Immunica	tion, Enco limit swit ation erro	der error ch error, r, Input p	, Position ower			
Comr	munication I	nterface				RS-232	/ RS-485	/ CANope	en / USB						
	Installati	on Site			free from gas, dust		nlight), no	o corrosiv	e liquid a	and gas (f	ar away f	rom oil			
	Altitu	ıde			Α	ltitude 10	000m or l	ower abo	ve sea lev	⁄el					
	Atmosp press						86kPa to	106kPa							
	Opera Tempei		0℃	~ 55℃ (I	f operatin	ig tempe	rature is a	bove 45°0	C, forced	cooling w	ill be req	uired)			
ent	Storage -20°Cto 65°C (-4°F to 149°F)														
uuc	Humi	dity	0 to 90% (non-condensing)												
Environment	Vibra	tion		9.8	0665m/s ²	(1G) les	s than 20H	Hz, 5.88m	n/ s² (0.60	G) 20 to 5	0Hz				
	IP Rat	IP Rating					IP:	20							
	Power S	ystem					TN Sy	stem*³							
	Appro	ovals					61800-5-								

Footnote:

- *1 Rated rotation speed: When full load, speed ratio is defined as the minimum speed (the motor will not pause).
- *2 When command is rated rotation speed, the speed fluctuation rate is defined as: (Empty load rotation speed - Full load rotation speed) / Rated rotation speed
- *3 TN system: A power distribution system having one point directly earthed, the exposed conductive parts of the installation being connected to that points by protective earth conductor.
- *4 Please refer to "Chart of load and operating time" in section 11.4 "Overload Characteristics".
- *5 Please refer to Section 1.2 for details about the model explanation.

11-6 Revision September 2012

11.2 Specifications of Servo Motors (ECMA Series)

11.2.1 ECMA 220V Series

Low Inertia Series - 220V series

FCMA 6	C∆04	C∠	70 6	C∆	₂ 08	C	₇ 08	C △10		
ECMA Series	01	02	04	04	07	07	10	10	20	
Rated output power (kW)	0.1	0.2	0.4	0.4	0.75	0.75	1.0	1.0	2.0	
Rated torque (N-m)*1	0.32	0.64	1.27	1.27	2.39	2.39	3.18	3.18	6.37	
Maximum torque (N-m)	0.96	1.92	3.82	3.82	7.16	7.14	8.78	9.54	19.1	
Rated speed (r/min)			3000			30	000	30	00	
Maximum speed (r/min)			5000	000 3000 5000						
Rated current (A)	0.90	1.55	2.60	2.60	5.10	3.66	4.25	7.30	12.05	
Power rating (kW/s)	2.70	4.65	7.80	7.80	15.3	11	12.37	21.9	36.15	
Rotor moment of inertia (Kg.m²) (without brake)	27.7	22.4	57.6	24.0	50.4	29.6	38.6	38.1	90.6	
Mechanical time constant (ms)	0.037	0.177	0.277	0.68	1.13	1.93	2.62	2.65	4.45	
Mechanical time constant (ms)	0.75	0.80	0.53	0.74	0.63	1.72	1.20	0.74	0.61	
Torque constant-KT (N-m/A)	0.36	0.41	0.49	0.49	0.47	0.65	0.75	0.44	0.53	
Voltage constant-KE (mV/(r/min))	13.6	16.0	17.4	18.5	17.2	24.2	27.5	16.8	19.2	
Armature resistance (Ohm)	9.30	2.79	1.55	0.93	0.42	1.34	0.897	0.20	0.13	
Armature inductance (mH)	24.0	12.07	6.71	7.39	3.53	7.55	5.7	1.81	1.50	
Armature inductance (mH)	2.58	4.30	4.30	7.96	8.36	5.66	6.35	9.30	11.4	
Insulation class				Class A	(UL), Clas	ss B (CE)				
Insulation resistance				>100	OMΩ, DC !	500V				
Insulation strength				1500V	AC, 60 s	econds				
Weight (kg) (without brake)	0.5	1.2	1.6	2.1	3.0	2.9	3.8	4.3	6.2	
Weight (kg) (with brake)	0.8	1.5	2.0	2.9	3.8	3.69	5.5	4.7	7.2	
Max. radial shaft load (N)	78.4	196	196	245	245	245	245	490	490	
Max. thrust shaft load (N)	39.2	68	68	98	98	98	98	98	98	
Power rating (kW/s) (with brake)	25.6	21.3	53.8	22.1	48.4	29.3	37.9	30.4	82.0	
Rotor moment of inertia (Kg.m²) (with brake)	0.04	0.19	0.30	0.73	1.18	1.95	2.67	3.33	4.95	
Mechanical time constant (ms) (with brake)	0.81	0.85	0.57	0.78	0.65	1.74	1.22	0.93	0.66	
Brake holding torque [Nt-m (min)] *2	0.3	1.3	1.3	2.5	2.5	2.5	2.5	8.0	8.0	

ECMA Carias	C∆04	C/	∆ 06	C∆	₂ 08	C∆	₂ 09	C∆	₇ 10	
ECMA Series	01	02	04	04	07	07	10	10	20	
Brake power consumption (at 20°C) [W]	7.3	6.5	6.5	8.2	8.2	8.2	8.2	19.4	19.4	
Brake release time [ms (Max)]	5	10	10	10	10	10	10	10	10	
Brake pull-in time [ms (Max)]	25	70	70	70	70	70	70	70	70	
Vibration grade (µm)	15									
Operating temperature				0°C to 4	0°C (32°F 1	to 104°F)				
Storage temperature				-10°C to 8	30℃ (-14℉	to 176°F)				
Operating humidity			20	0% to 90%	RH (non-	condensir	ng)			
Storage humidity			20	0% to 90%	RH (non-	condensir	ng)			
Vibration capacity					2.5G					
IP Rating	IP65 (when waterproof connectors are used, or when an oil seal is used to be fitted to the rotating shaft (an oil seal model is used))									
Approvals	CE c TUs									

Footnote:

*1 Rate torque values are continuous permissible values at 0~40°C ambient temperature when attaching with the sizes of heatsinks listed below:

ECMA-__04 / 06 / 08 : 250mm x 250mm x 6mm

ECMA-__10 : 300mm x 300mm x 12mm ECMA-__13 : 400mm x 400mm x 20mm ECMA-__18 : 550mm x 550mm x 30mm

Material type: Aluminum - F40, F60, F80, F100, F130, F180

*2 The holding brake is used to hold the motor shaft, not for braking the rotation. Never use it decelerating or stopping the machine.

1) Please refer to Section 1.2 for details about the model explanation.

11-8 Revision September 2012

Medium / High Inertia Series - 220V series

		E∠	₄ 13	∆18	G △13				
ECMA Series	05	10	15	20	20	30	03	06	09
Rated output power (kW)	0.5	1.0	1.5	2.0	2.0	3.0	0.3	0.6	0.9
Rated torque (N-m) *1	2.39	4.77	7.16	9.55	9.55	14.32	2.86	5.73	8.59
Maximum torque (N-m)	7.16	14.3	21.48	28.65	28.65	42.97	8.59	17.19	21.48
Rated speed (r/min)		I	20	00	I	I		1000	
Maximum speed (r/min)			30	00				2000	
Rated current (A)	2.9	5.6	8.3	11.01	11.22	16.1	2.5	4.8	7.5
Maximum current (A)	8.7	16.8	24.9	33.03	33.66	48.3	7.5	14.4	22.5
Power rating (kW/s)	7.0	27.1	45.9	62.5	26.3	37.3	10.0	39.0	66.0
Rotor moment of inertia (Kg.m²) (without brake)	8.17	8.41	11.18	14.59	34.68	54.95	8.17	8.41	11.18
Mechanical time constant (ms)	1.91	1.51	1.10	0.96	1.62	1.06	1.84	1.40	1.06
Torque constant-KT (N-m/A)	0.83	0.85	0.87	0.87	0.85	0.89	1.15	1.19	1.15
Voltage constant-KE (mV/(r/min))	30.9	31.9	31.8	31.8	31.4	32.0	42.5	43.8	41.6
Armature resistance (Ohm)	0.57	0.47	0.26	0.174	0.119	0.052	1.06	0.82	0.43
Armature inductance (mH)	7.39	5.99	4.01	2.76	2.84	1.38	14.29	11.12	6.97
Electrical time constant (ms)	12.96	12.88	15.31	15.86	23.87	26.39	13.55	13.50	16.06
Insulation class				Class A	(UL), Clas	ss B (CE)			
Insulation resistance				>100	OMΩ, DC !	500V			
Insulation strength				1500V	AC, 60 s	econds			
Weight (kg) (without brake)	6.8	7.0	7.5	7.8	13.5	18.5	6.8	7.0	7.5
Weight (kg) (with brake)	8.2	8.4	8.9	9.2	17.5	22.5	8.2	8.4	8.9
Max. radial shaft load (N)	490	490	490	490	1176	1470	490	490	490
Max. thrust shaft load (N)	98	98	98	98	490	490	98	98	98
Power rating (kW/s) (with brake)	6.4	24.9	43.1	59.7	24.1	35.9	9.2	35.9	62.1
Rotor moment of inertia (Kg.m²) (with brake)	8.94	9.14	11.90	15.88	37.86	57.06	8.94	9.14	11.9
Mechanical time constant (ms) (with brake)	2.07	1.64	1.19	1.05	1.77	1.10	2.0	1.51	1.13
Brake holding torque [Nt-m (min)] *2	10.0	10.0	10.0	10.0	25.0	25.0	10.0	10.0	10.0
Brake power consumption (at 20°C) [W]	19.0	19.0	19.0	19.0	20.4	20.4	19.0	19.0	19.0
Brake release time [ms (Max)]	10	10	10	10	10	10	10	10	10

FCMA Souice		E∠	₇ 13		E∆	∆18		G ∆13			
ECMA Series	05	10	15	20	20	30	03	06	09		
Brake pull-in time [ms (Max)]	70	70	70	70	70	70	70	70	70		
Vibration grade (µm)					15						
Operating temperature				0°C to 4	.0℃ (32°F t	to 104°F)					
Storage temperature				-10℃ to	80℃ (-14℉	to 176°F)				
Operating humidity			20	0% to 90%	RH (non-	condensir	ng)				
Storage humidity			20	0% to 90%	RH (non-	condensi	ng)				
Vibration capacity					2.5G						
IP Rating		P65 (when waterproof connectors are used, or when an oil seal is used to be fitted to the rotating shaft (an oil seal model is used))									
Approvals				CE	C T	N _{US}					

Footnote:

*1 Rate torque values are continuous permissible values at 0~40°C ambient temperature when attaching with the sizes of heatsinks listed below:

ECMA-__04 / 06 / 08 : 250mm x 250mm x 6mm

ECMA-__10 : 300mm x 300mm x 12mm ECMA-__13 : 400mm x 400mm x 20mm ECMA-__18 : 550mm x 550mm x 30mm

Material type: Aluminum - F40, F60, F80, F100, F130, F180

*2 The holding brake is used to hold the motor shaft, not for braking the rotation. Never use it decelerating or stopping the machine.

1) Please refer to Section 1.2 for details about the model explanation.

11-10 Revision September 2012

Medium / Medium-High Inertia Series - 220V series

		F△	₄ 18		F122			
ECMA Series	30	45	55	75	1B	1F		
Rated output power (kW)	3.0	4.5	5.5	7.5	11	15		
Rated torque (N-m) *1	19.10	28.65	35.01	47.74	70	95.4		
Maximum torque (N-m)	57.29	71.62	87.53	119.36	175	224.0		
Rated speed (r/min)		<u> </u>	15	00				
Maximum speed (r/min)		30	00		20	100		
Rated current (A)	19.4	32.5	40.0	47.5	51.8	61.5		
Maximum current (A)	58.2	81.3 *3	100.0	118.8	129.5	145.7		
Power rating (kW/s)	66.4	105.5	122.9	159.7	148.9	164.6		
Rotor moment of inertia (Kg.m²) (without brake)	54.95	77.75	99.78	142.7	329	553		
Mechanical time constant (ms)	1.28	0.92	0.96	0.63	1.36	1.23		
Torque constant-KT (N-m/A)	0.98	0.88	0.88	1.01	1.35	1.55		
Voltage constant-KE (mV/(r/min))	35.0	32.0	31.0	35.5	49	55.65		
Armature resistance (Ohm)	0.077	0.032	0.025	0.015	0.026	0.018		
Armature inductance (mH)	1.27	0.89	0.60	0.40	0.64	0.45		
Electrical time constant (ms)	16.5	27.8	24.0	26.7	24.77	24.51		
Insulation class			Class A (UL),	Class B (CE)				
Insulation resistance			>100MΩ,	DC 500V				
Insulation strength			1500V AC, 50H	Hz, 60 seconds	5			
Weight (kg) (without brake)	18.5	23.5	30.5	37.0	56.4	86.4		
Weight (kg) (with brake)	22.5	29	36	53	-	-		
Max. radial shaft load (N)	1470	1470	1764	1764	3300	3300		
Max. thrust shaft load (N)	490	490	588	588	1100	1100		
Power rating (kW/s) (with brake)	63.9	101.8	119.4	156.6	-	-		
Rotor moment of inertia (Kg.m²) (with brake)	57.06	80.65	102.70	145.55	-	-		
Mechanical time constant (ms) (with brake)	1.33	0.96	0.99	0.64	-	-		
Brake holding torque [Nt-m (min)] *2	25.0	25.0	25.0	25.0	115	115		
Brake power consumption (at 20°C) [W]	20.4	20.4	20.4	20.4	28.8	28.8		
Brake release time [ms (Max)]	10	10	10	10	10	10		

ECMA Series		F∠	18		F122						
ECIMA Series	30	45	55	75	1B	1F					
Brake pull-in time [ms (Max)]	70 70 70 70 70 70										
Vibration grade (µm)		15									
Operating temperature		0℃ to 40℃ (32℉ to 104℉)									
Storage temperature		-10℃ to 80℃ (-14℉ to 176℉)									
Operating humidity		20	0% to 90% RH (non-condensir	ng)						
Storage humidity		20	0% to 90% RH (non-condensir	ng)						
Vibration capacity			2	5G							
IP Rating		P65 (when waterproof connectors are used, or when an oil seal is used to be fitted to the rotating shaft (an oil seal model is used))									
Approvals			(E								

Footnote:

*1 Rate torque values are continuous permissible values at 0~40°C ambient temperature when attaching with the sizes of heatsinks listed below:

ECMA-__04 / 06 / 08 : 250mm x 250mm x 6mm

ECMA-__10 : 300mm x 300mm x 12mm ECMA-__13 : 400mm x 400mm x 20mm ECMA-__18 : 550mm x 550mm x 30mm

Material type: Aluminum - F40, F60, F80, F100, F130, F180

- *2 The holding brake is used to hold the motor shaft, not for braking the rotation. Never use it decelerating or stopping the machine.
- *3 If reaching motor maximum torque limit of 250% is required, it is recommended to use the servo drives that the rated output power is higher than the connected servo motors.

1) Please refer to Section 1.2 for details about the model explanation.

11-12 Revision September 2012

11.2.2 ECMA 400V Series

Low / Medium Inertia Series - 400V series

Low / Medium mertia	Series - HOOV Series			
ECMA Series	J108	K113		
	07	10	15	20
Rated output power (kW)	0.75	1.0	1.5	2.0
Rated torque (N-m)*1	2.39	4.77	7.16	9.55
Maximum torque (N-m)	7.16	14.32	21.48	28.65
Rated speed (r/min)	3000	2000		
Maximum speed (r/min)	5000	3000		
Rated current (A)	3.07	3.52	5.02	6.66
Maximum current (A)	9.5	10.56	15.06	19.98
Power rating (kW/s)	50.4	27.1	45.9	62.5
Rotor moment of inertia (Kg.m²) (without brake)	1.13	8.41	11.18	14.59
Mechanical time constant (ms)	0.66	1.80	1.24	1.04
Torque constant-KT (N-m/A)	0.78	1.35	1.43	1.43
Voltage constant-KE (mV/(r/min))	28.24	53.2	55	55
Armature resistance (Ohm)	1.22	1.47	0.83	0.57
Armature inductance (mH)	10.68	17.79	11.67	8.29
Electrical time constant (ms)	8.75	12.04	14.04	14.39
Insulation class		-		
Insulation resistance	>100MΩ, DC 500V			
Insulation strength	1800V AC, 60 seconds			
Weight (kg) (without brake)	3.0	7.0	7.5	7.8
Weight (kg) (with brake)	3.8	8.4	8.9	9.2
Max. radial shaft load (N)	245	490	490	490
Max. thrust shaft load (N)	98	98	98	98
Power rating (kW/s) (with brake)	48.4	24.9	43.1	59.7
Rotor moment of inertia (Kg.m²) (with brake)	1.18	9.14	11.90	15.88
Mechanical time constant (ms) (with brake)	0.65	1.96	1.32	1.13
Brake holding torque [Nt-m (min)]	2.5	10.0	10.0	10.0
Brake power consumption (at 20°C) [W]	8.5	19.0	19.0	19.0

ECMA Carrian	J108 K113				
ECMA Series	07	10	15	20	
Brake release time [ms (Max)]	10	10	10	10	
Brake pull-in time [ms (Max)]	70	70	70	70	
Vibration grade (µm)	15				
Operating temperature	0°C to 40°C (32°F to 104°F)				
Storage temperature	-10℃ to 80℃ (-14℉ to 176℉)				
Operating humidity	20% to 90% RH (non-condensing)				
Storage humidity	20% to 90% RH (non-condensing)				
Vibration capacity	2.5G				
IP Rating	IP65 (when waterproof connectors are used, or when an oil seal is used to be fitted to the rotating shaft (an oil seal model is used))				
Approvals	CE cAN us				

Footnote:

*1 Rate torque values are continuous permissible values at 0~40°C ambient temperature when attaching with the sizes of heatsinks listed below:

ECMA-__08 : 250mm x 250mm x 6mm ECMA-__13 : 400mm x 400mm x 20mm ECMA-__18 : 550mm x 550mm x 30mm Material type : Aluminum - F80, F130, F180

*2 The holding brake is used to hold the motor shaft, not for braking the rotation. Never use it decelerating or stopping the machine.

11-14 Revision September 2012

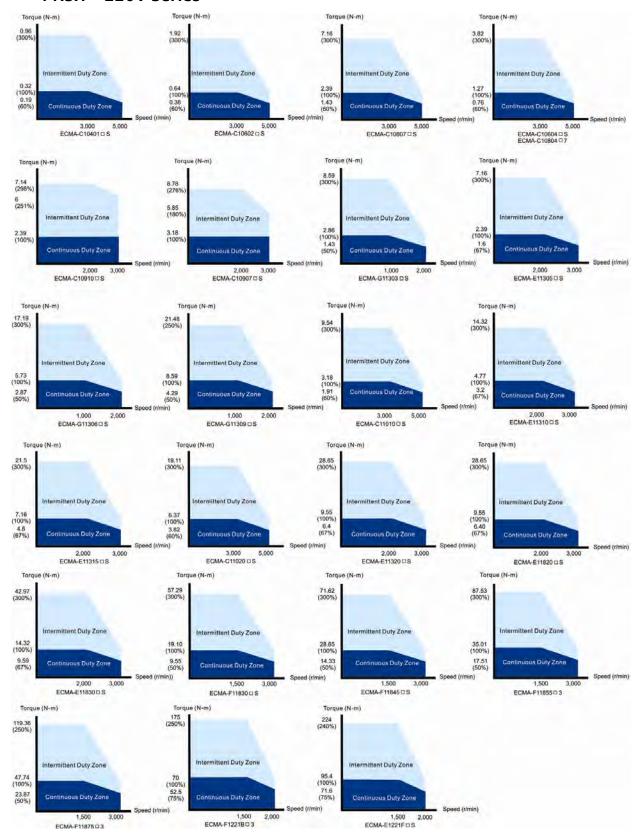
Medium-High Inertia Series - 400V series

	L∆18		L118		LI	22
ECMA Series	30	45	55	75	1B	1F
Rated output power (kW)	3.0	4.5	5.5	7.5	11	15
Rated torque (N-m)*1	19.10	28.65	35.0	47.74	70	95.4
Maximum torque (N-m)	57.29	71.62	87.53	119.36	175	224
Rated speed (r/min)			15	00		
Maximum speed (r/min)		30	00		20	00
Rated current (A)	11.53	20.8	22.37	27.3	30.9	36.7
Maximum current (A)	34.6	52	56	68.3	77.25	86.17
Power rating (kW/s)	66.4	105.5	122.9	159.7	148.9	164.6
Rotor moment of inertia (Kg.m²) (without brake)	54.95	77.75	99.78	142.7	329	553
Mechanical time constant (ms)	1.11	0.94	0.88	0.77	1.29	1.06
Torque constant-KT (N-m/A)	1.66	1.38	1.56	1.75	2.27	2.6
Voltage constant-KE (mV/(r/min))	64.4	53	58.9	66.4	87	97
Armature resistance (Ohm)	0.21	0.09	0.07	0.06	0.073	0.046
Armature inductance (mH)	4.94	2.36	2.2	1.7	1.87	1.34
Electrical time constant (ms)	23.97	28.07	27.6	28.29	25.34	29.13
Insulation class			-		Class A (UL)	, Class B (CE)
Insulation resistance			>100MΩ,	DC 500V		
Insulation strength		1800V AC, 50H	Hz, 60 seconds	S	1500V AC, 50Hz, 60 seconds	
Weight (kg) (without brake)	18.5	23.5	30.5	40.5	56.4	86.4
Weight (kg) (with brake)	22.5	29	36	46	-	-
Max. radial shaft load (N)	1470	1470	1764	1764	3300	3300
Max. thrust shaft load (N)	490	490	588	588	1100	1100
Power rating (kW/s) (with brake)	63.9	101.8	119.4	156.6	-	-
Rotor moment of inertia (Kg.m²) (with brake)	57.06	80.65	102.70	145.5	-	-
Mechanical time constant (ms) (with brake)	1.16	0.95	0.91	0.79	-	-
Brake holding torque [Nt-m (min)]	25.0	40.0	55.0	55.0	115	115
Brake power consumption (at 20°C) [W]	20.4	15.1	21	21	28.8	28.8

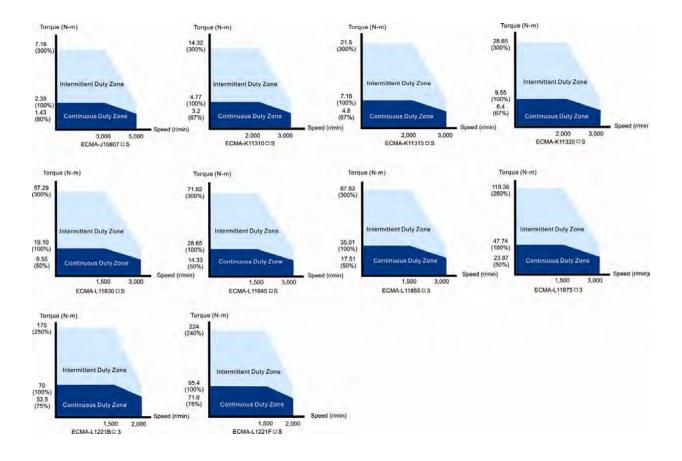
ECMA Caria	L∆18		L118	LI	22	
ECMA Series	30	45	55	75	1B	1F
Brake release time [ms (Max)]	10	10	10	10	10	10
Brake pull-in time [ms (Max)]	70	70	70	70	70	70
Vibration grade (µm)			1	5		
Operating temperature	0℃ to 40℃ (32℉ to 104℉)					
Storage temperature	-10℃ to 80℃ (-14℉ to 176℉)					
Operating humidity	20% to 90% RH (non-condensing)					
Storage humidity	20% to 90% RH (non-condensing)					
Vibration capacity	2.5G					
IP Rating	IP65 (when waterproof connectors are used, or when an oil seal is used to be fitted to the rotating shaft (an oil seal model is used))					
Approvals	In the process of application to CE and UL certifications.					CE and UL

Footnote:

*1 Rate torque values are continuous permissible values at $0\sim40^{\circ}$ C ambient temperature when attaching with the sizes of heatsinks listed below:


ECMA-__08: 250mm x 250mm x 6mm ECMA-__13: 400mm x 400mm x 20mm ECMA-__18: 550mm x 550mm x 30mm Material type: Aluminum - F80, F130, F180

*2 The holding brake is used to hold the motor shaft, not for braking the rotation. Never use it decelerating or stopping the machine.

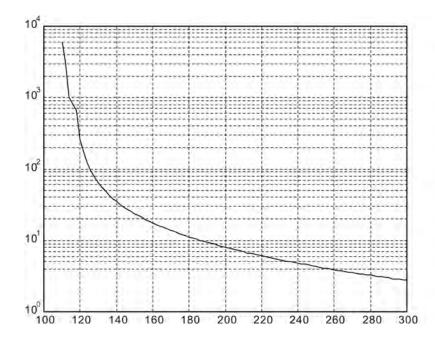

11-16 Revision September 2012

11.3 Servo Motor Speed-Torque Curves (T-N Curves)

11.3.1 220V Series

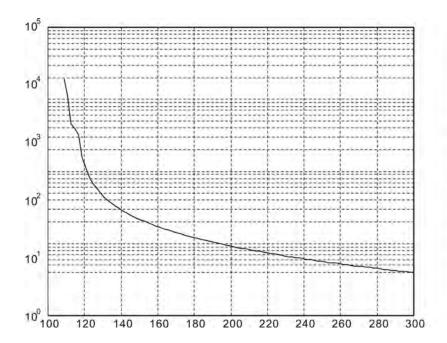
11.3.2 400V Series

11-18 Revision September 2012

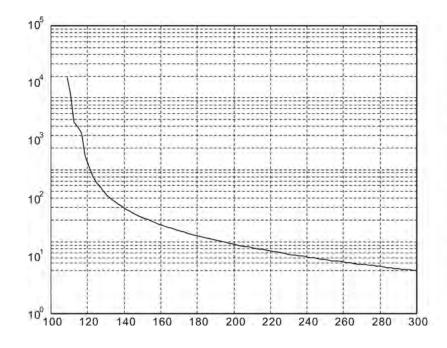

11.4 Overload Characteristics

Overload Protection Function

Overload protection is a built-in protective function to prevent a motor from overheating.


- Occasion of Overload
 - 1. Motor was operated for several seconds under a torque exceeding 100% torque.
 - 2. Motor had driven high inertia machine and had accelerated and decelerated at high frequency.
 - 3. Motor UVW cable or encoder cable was not connected correctly.
 - 4. Servo gain was not set properly and caused motor hunting.
 - 5. Motor holding brake was not released.
- Chart of load and operating time

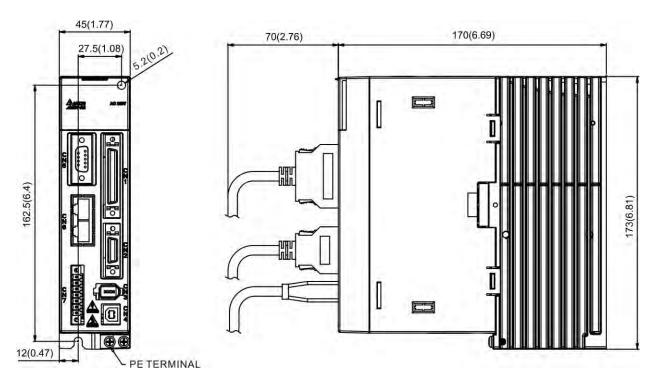
Low Inertia Series (ECMA C1, J1 Series)


Load	Operating Time
120%	263.8s
140%	35.2s
160%	17.6s
180%	11.2s
200%	8s
220%	6.1s
240%	4.8s
260%	3.9s
280%	3.3s
300%	2.8s

Medium and Medium-High Inertia Series (ECMA E1, F1, K1 and L1 Series)

Load	Operating Time
120%	527.6s
140%	70.4s
160%	35.2s
180%	22.4s
200%	16s
220%	12.2s
240%	9.6s
260%	7.8s
280%	6.6s
300%	5.6s

High Inertia Series (ECMA G1 Series)

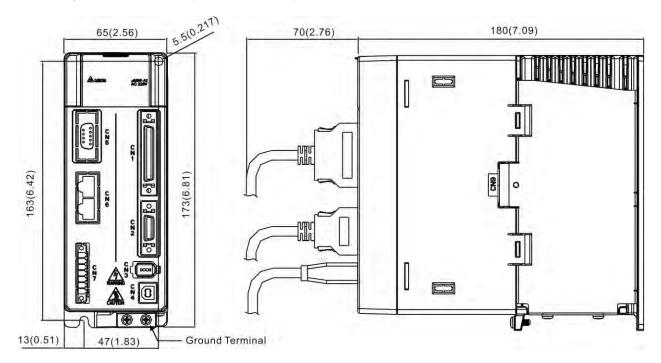

Load	Operating Time
120%	527.6s
140%	70.4s
160%	35.2s
180%	22.4s
200%	16s
220%	12.2s
240%	9.6s
260%	7.8s
280%	6.6s
300%	5.6s

11-20 Revision September 2012

11.5 Dimensions of Servo Drive

11.5.1 220V Series

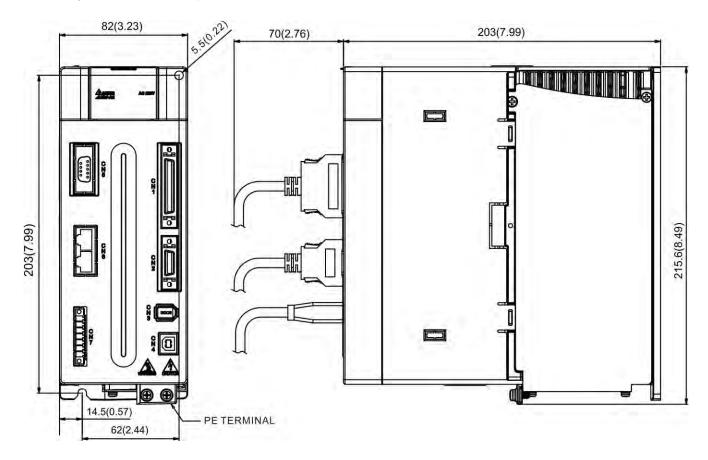
Order P/N: ASD-A2-0121; ASD-A2-0221; ASD-A2-0421 (100W ~ 400W)



WEIGHT 1.5 (3.3)

- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

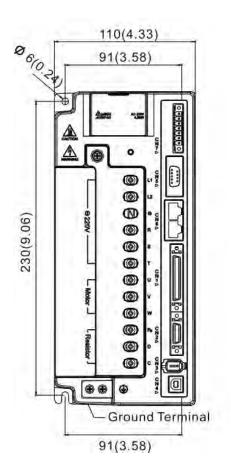
Order P/N: ASD-A2-0721; ASD-A2-1021; ASD-A2-1521 (750W ~ 1.5kW)

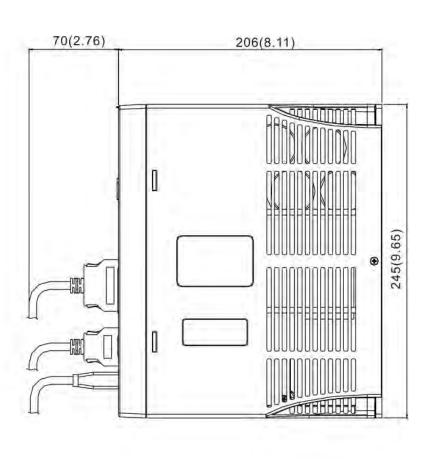


- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

11-22 Revision September 2012

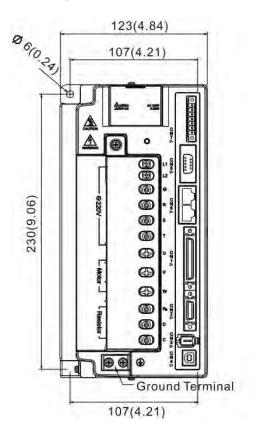
Order P/N: ASD-A2-2023; ASD-A2-3023 (2kW ~ 3kW)

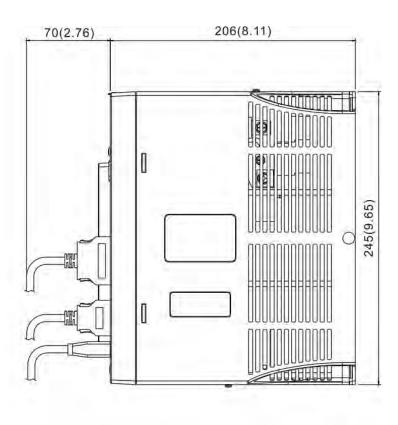



WEIGHT 2.89 (6.36)

- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

Order P/N: ASD-A2-4523 (4.5kW)

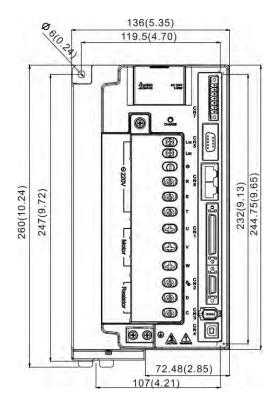

WEIGHT 4.4 (10.0)

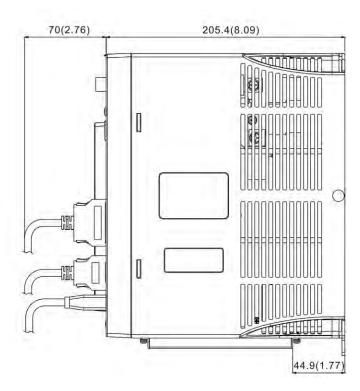


- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

11-24 Revision September 2012

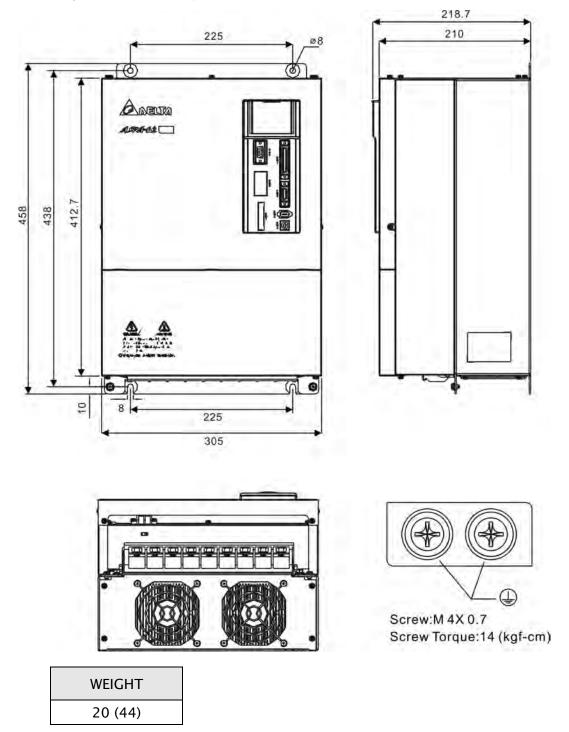
Order P/N: ASD-A2-5523 (5.5kW)




WEIGHT 5.5 (12.1)

- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

Order P/N: ASD-A2-7523 (7.5kW)


WEIGHT 5.9 (13)

- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

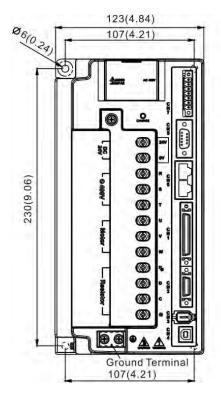
11-26 Revision September 2012

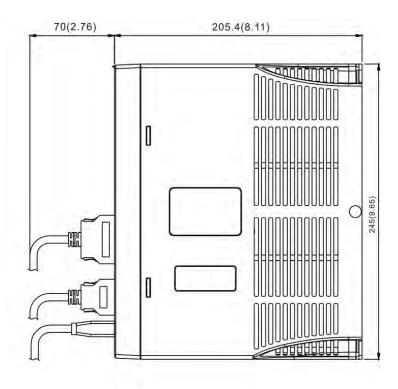
Order P/N: ASD-A2-1B23; ASD-A2-1F23 (11kW ~ 15kW)

- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

11.5.2 400V Series

Order P/N: ASD-A2-0743; ASD-A2-1043; ASD-A2-1543 (750W ~ 1.5kW)

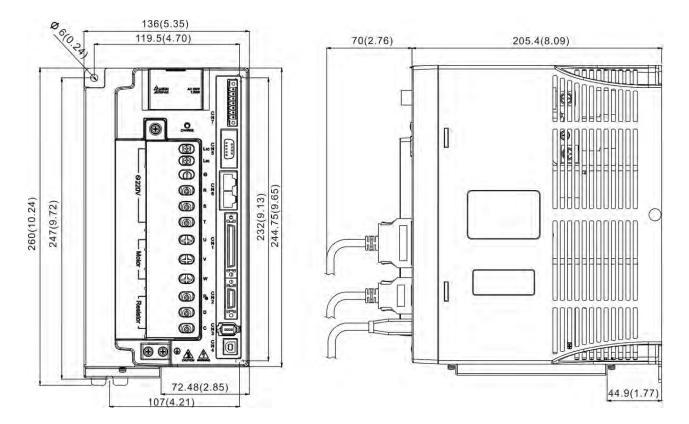

WEIGHT 2.89 (6.36)



- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

11-28 Revision September 2012

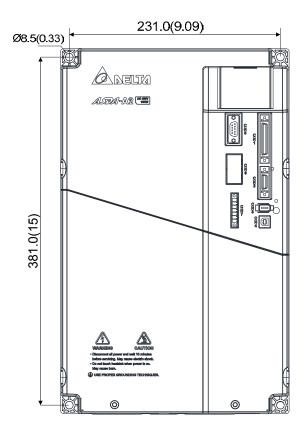
Order P/N: ASD-A2-2043; ASD-A2-3043, ASD-A2-4543; ASD-A2-5543 (2kW ~ 5.5kW)

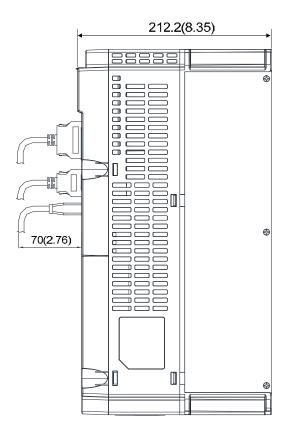


WEIGHT 5.5 (12.1)

- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

Order P/N: ASD-A2-7543 (7.5kW)


WEIGHT 5.5 (12.1)

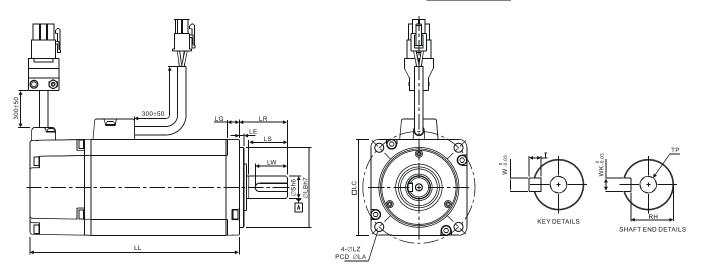


- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

11-30 Revision September 2012

Order P/N: ASD-A2-1B43; ASD-A2-1F43 (11kW ~ 15kW)

WEIGHT 8.5 (18.7)

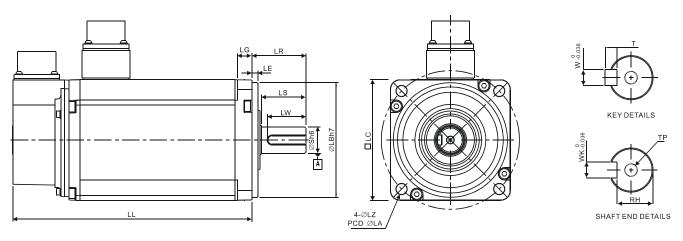


- 1) Dimensions are in millimeters (inches); Weights are in kilograms (kg) and (pounds (lbs)).
- 2) Actual measured values are in metric units. Dimensions and weights in (imperial units) are for reference only.
- 3) The servo drive images shown here may differ from actual product appearance. Please refer to actual product appearance.
- 4) Dimensions and weights of the servo drive may be revised without prior notice.

11.6 Dimensions of Servo Motors (ECMA Series)

11.6.1 220V Series

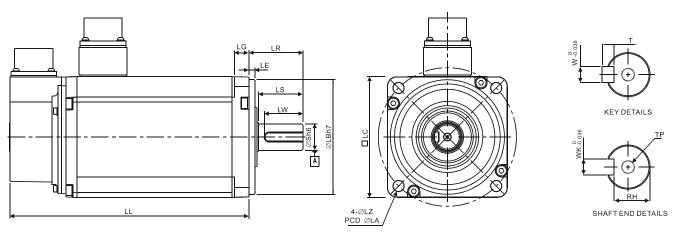
Motor Frame Size: 80mm and below Models (Units: mm) - 220V series


Model	C∆0401□S	C∆0602□S	C∆0604□S	C∆0804□S	C∆0807□S	C∆0907□S	C∆0910 <u></u> S
LC	40	60	60	80	80	86	86
LZ	4.5	5.5	5.5	6.6	6.6	6.6	6.6
LA	46	70	70	90	90	100	100
S	8(+0,009)	14(+0,-0.011)	14(+0,-0.011)	14(+0,-0.011)	19(+0,-0.013)	16(+0,011)	16(+0,-0.011)
LB	30(+0,021)	50(⁺⁰ _{-0.025})	$50(^{+0}_{-0.025})$	$70(^{+0}_{-0.030})$	$70(^{+0}_{-0.030})$	80(+0,030)	80(+0,030)
LL (without brake)	100.6	105.5	130.7	112.3	138.3	130.2	153.2
LL (with brake)	136.6	141.6	166.8	152.8	178	161.3	184.3
LS (without oil seal)	20	27	27	27	32	30	30
LS (with oil seal)	20	24	24	24.5	29.5	30	30
LR	25	30	30	30	35	35	35
LE	2.5	3	3	3	3	3	3
LG	5	7.5	7.5	8	8	8	8
LW	16	20	20	20	25	20	20
RH	6.2	11	11	11	15.5	13	13
WK	3	5	5	5	6	5	5
W	3	5	5	5	6	5	5
Т	3	5	5	5	6	5	5
TP	M3 Depth 8	M4 Depth 15	M4 Depth 15	M4 Depth 15	M6 Depth 20	M5 Depth 15	M5 Depth 15

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

11-32 Revision September 2012

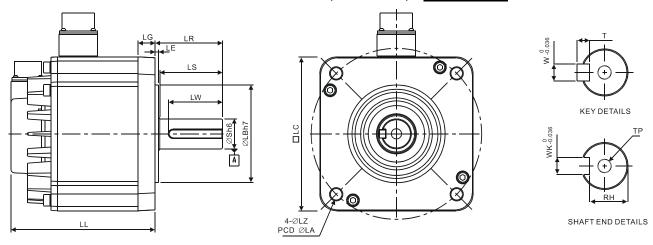
Motor Frame Size: 100mm~130mm Models (Units: mm) - 220V series



Model	G∆1303□S	E∆1305□S	G∆1306□S	G∆1309 <u></u> S	C△1010ES
LC	130	130	130	130	100
LZ	9	9	9	9	9
LA	145	145	145	145	115
S	22(+0 -0.013)	22(+0 -0.013)	22(+0 -0.013)	22(+0 -0.013)	22(+0 -0.013)
LB	110(+00.035)	110(+0 -0.035)	110(+0 -0.035)	110(+0 -0.035)	95(+0 -0.035)
LL (without brake)	147.5	147.5	147.5	163.5	153.3
LL (with brake)	183.5	183.5	183.5	198	192.5
LS	47	47	47	47	37
LR	55	55	55	55	45
LE	6	6	6	6	5
LG	11.5	11.5	11.5	11.5	12
LW	36	36	36	36	32
RH	18	18	18	18	18
WK	8	8	8	8	8
W	8	8	8	8	8
Т	7	7	7	7	7
TP	M6 Depth 20	M6 Depth 20	M6 Depth 20	M6 Depth 20	M6 Depth 20

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\triangle) in the model names are for encoder resolution types $(\triangle=1)$: Incremental encoder, 20-bit; $\triangle=2$: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

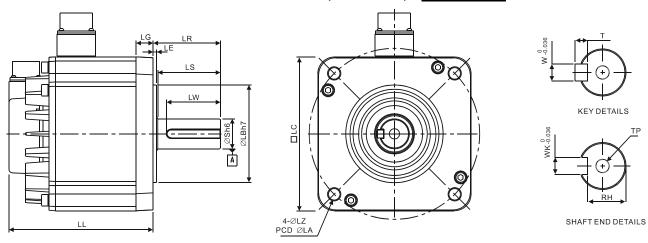
Motor Frame Size: 100mm~130mm Models (Units: mm) - 220V series


Model	E∆1310□S	E∆1315□S	C∆1020□S	E∆1320□S
LC	130	130	100	130
LZ	9	9	9	9
LA	145	145	115	145
S	22(+0,013)	22(+0,-0.013)	22(+0,-0.013)	22(+0,-0.013)
LB	110(+0 -0.035)	110(+0 -0.035)	95(⁺⁰ _{-0.035})	110(+0 -0.035)
LL (without brake)	147.5	167.5	199	187.5
LL (with brake)	183.5	202	226	216
LS	47	47	37	47
LR	55	55	45	55
LE	6	6	5	6
LG	11.5	11.5	12	11.5
LW	36	36	32	36
RH	18	18	18	18
WK	8	8	8	8
W	8	8	8	8
Т	7	7	7	7
ТР	M6 Depth 20	M6 Depth 20	M6 Depth 20	M6 Depth 20

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

11-34 Revision September 2012

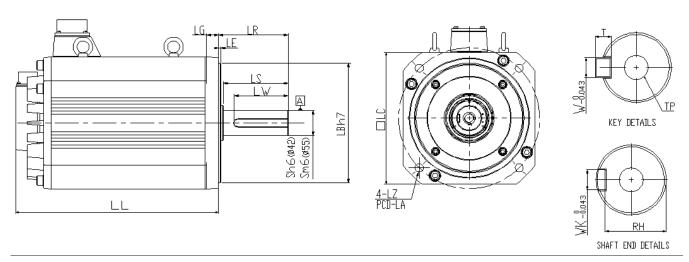
Motor Frame Size: 180mm and above Models (Units: mm) - 220V series



		T. 1000	
Model	E∆1820□S	E∆1830□S	F∆1830□S
LC	180	180	180
LZ	13.5	13.5	13.5
LA	200	200	200
S	35(⁺⁰ _{-0.016})	35(⁺⁰ _{-0.016})	35(⁺⁰ _{-0.016})
LB	114.3(⁺⁰ _{-0.035})	114.3(+00.035)	114.3(+0 -0.035)
LL (without brake)	169	202.1	202.1
LL (with brake)	203.1	235.3	235.3
LS	73	73	73
LR	79	79	79
LE	4	4	4
LG	20	20	20
LW	63	63	63
RH	30	30	30
WK	10	10	10
W	10	10	10
Т	8	8	8
TP	M12 Depth 25	M12 Depth 25	M12 Depth 25

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\triangle) in the model names are for encoder resolution types $(\triangle=1)$: Incremental encoder, 20-bit; $\triangle=2$: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

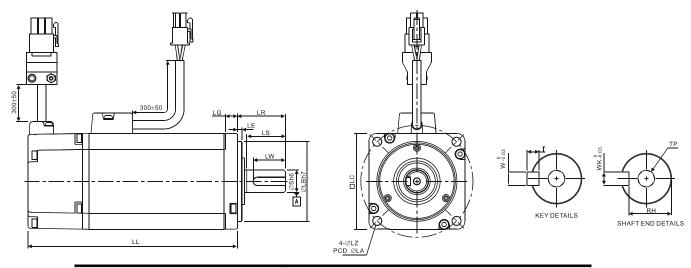
Motor Frame Size: 180mm and above Models (Units: mm) - 220V series


Model	F∆1845□S	F△1855□3	F∆1875□3
LC	180	180	180
LZ	13.5	13.5	13.5
LA	200	200	200
S	35(⁺⁰ _{-0.016})	42(+0,016)	42(+0,-0.016)
LB	114.3(⁺⁰ _{-0.035})	114.3(⁺⁰ _{-0.035})	114.3
LL (without brake)	235.3	279.7	342.0
LL (with brake)	279.3	311.7	376.1
LS	73	108.5	108.5
LR	79	113	113
LE	4	4	4
LG	20	20	20
LW	63	90	90
RH	30	37	37
WK	10	12	12
W	10	12	12
Т	8	8	8
ТР	M12 Depth25	M16 Depth32	M16 Depth32

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\triangle) in the model names are for encoder resolution types $(\triangle=1)$: Incremental encoder, 20-bit; $\triangle=2$: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

11-36 Revision September 2012

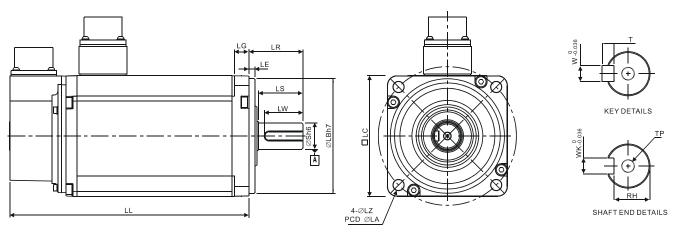
Motor Frame Size: 220mm and above Models (Units: mm) - 220V series


Model	F1221B□3	F1221F□S
LC	220	220
LZ	13.5	13.5
LA	235	235
S	42(⁺⁰ _{-0.016}) 200(⁺⁰ _{-0.046})	55(^{+0.03} _{+0.011})
LB	$200(^{+0}_{-0.046})$	200(⁺⁰ _{-0.046})
LL (without brake)	338	457
LL (with brake)	-	-
LS	108	108
LR	116	116
LE	4	4
LG	20	20
LW	90	90
RH	37	49
WK	12	16
W	12	16
Т	8	10
TP	M16 Depth 32	M20 Depth 40

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

11.6.2 400V Series

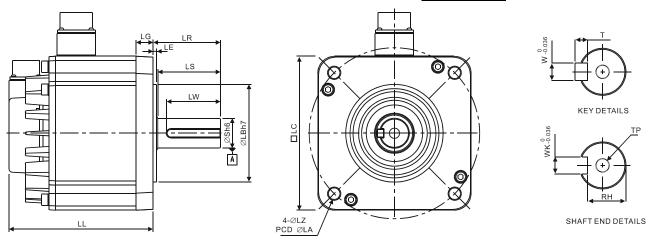
Motor Frame Size: 80mm and below Models (Units: mm) - 400V series


Model	J10807□S
LC	80
LZ	6.6
LA	90
S	19(+0,013)
LB	70(+0,030)
LL (Without Brake)	138.3
LL (With Brake)	178
LS (Without Oil Seal)	32
LS (With Oil Seal)	29.5
LR	35
LE	3
LG	8
LW	25
RH	15.5
WK	6
W	6
Т	6
TP	M6 Depth 20

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

11-38 Revision September 2012

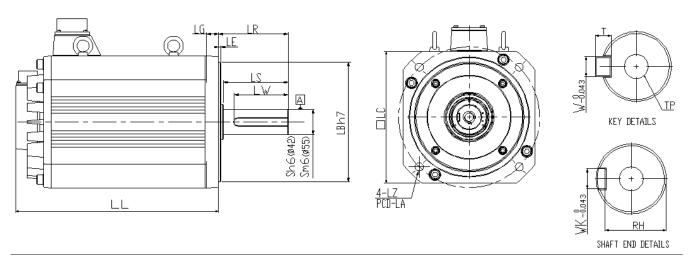
Motor Frame Size: 130mm Models (Units: mm) - 400V series



		1	
Model	K11310□S	K11315□S	K11320□S
LC	130	130	130
LZ	9	9	9
LA	145	145	145
S	22(+0 -0.013)	22(+0 -0.013)	22(+0 -0.013)
LB	110(+0 -0.035)	110(+00.035)	110(+0,-0.035)
LL (Without Brake)	147.5	167.5	187.5
LL (With Brake)	183.5	202	216
LS	47	47	47
LR	55	55	55
LE	6	6	6
LG	11.5	11.5	11.5
LW	36	36	36
RH	18	18	18
WK	8	8	8
W	8	8	8
Т	7	7	7
TP	M6 Depth 20	M6 Depth 20	M6 Depth 20

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

Motor Frame Size: 180mm and above Models (Units: mm) - 400V series


Model	L∆1830 <u></u> S	L11845□S	L11855□S	L11875□S
LC	180	180	180	180
LZ	13.5	13.5	13.5	13.5
LA	200	200	200	200
S	35(⁺⁰ _{-0.016})	35(⁺⁰ _{-0.016})	42(+0,016)	42(+0,016)
LB	114.3(+0 -0.035)	$114.3(^{+0}_{-0.035})$	114.3(+0 -0.035)	114.3(+0,-0.035)
LL (Without Brake)	202.1	235.3	279.7	342.0
LL (With Brake)	235.3	279.3	311.7	376.1
LS	73	73	108.5	108.5
LR	79	79	113	113
LE	4	4	4	4
LG	20	20	20	20
LW	63	63	90	90
RH	30	30	37	37
WK	10	10	12	12
W	10	10	12	12
Т	8	8	8	8
TP	M12 Depth 25	M12 Depth 25	M16 Depth 32	M16 Depth 32

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\triangle) in the model names are for encoder resolution types $(\triangle=1)$: Incremental encoder, 20-bit; $\triangle=2$: Incremental encoder, 17-bit). The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

11-40 Revision September 2012

Motor Frame Size: 220mm and above Models (Units: mm) - 400V series

Model	F1221B□3	F1221F□S
LC	220	220
LZ	13.5	13.5
LA	235	235
S	42(⁺⁰ _{-0.016}) 200(⁺⁰ _{-0.046})	$55(^{+0.03}_{+0.011})$
LB	$200(^{+0}_{-0.046})$	200(⁺⁰ _{-0.046})
LL (without brake)	338	457
LL (with brake)	-	-
LS	108	108
LR	116	116
LE	4	4
LG	20	20
LW	90	90
RH	37	49
WK	12	16
W	12	16
Т	8	10
TP	M16 Depth 32	M20 Depth 40

- 1) Dimensions are in millimeters. Actual measured values are in metric units.
- 2) Dimensions of the servo motor may be revised without prior notice.
- 3) The boxes (\square) in the model names are for optional configurations. (Please refer to section 1.2 for model explanation.)

This page intentionally left blank.

11-42 Revision September 2012

Chapter 12 Absolute System

Introduction

Usually, an absolute system is used in industrial applications which require knowing the actual position and continuing the operation at any time even if the power is turned off. To prevent errors in operation, an absolute system is necessary.

Delta's absolute system includes at least an ASDA-A2 series servo drive, an ECMA series servo motor with an absolute encoder and a backup battery box for an absolute encoder.

An ECMA series servo motor with an absolute encoder has an encoder which is able to rotate and tell the servo motor the actual position when the power is turned on. An absolute encoder in an ECMA series servo motor will constantly record the actual positions by its built-in coordinate system at any time. So the real position of the servo motor will be measured and recorded even if the motor shaft rotates after the power is turned off.

An ECMA series servo motor with an absolute encoder is essential and must be connected with an ASDA-A2 series servo drive for a Delta's absolute system. When an ECMA series servo motor with an incremental encoder is connected to an ASDA-A2 series servo drive, if the users enable the servo parameters for absolute system, a fault code, AL069 will be shown on the drive's LCD display to alert that an error occurs. When AL069 is displayed, please examine if the connected servo motor is a servo motor with an absolute encoder. The model name of a servo motor with an absolute encoder is shown as below

(The boxes (\Box) in the servo motor model names are for rated voltage and rated speed, please refer to the ordering information of the actual purchased products.)

An absolute system needs one or more backup battery boxes for operation. When the backup battery boxes are connected, the servo motors will continue working with the batteries after a power interruption. One servo drive uses one single battery box. Two servo drives can share a dual battery box. We recommend the users to choose Delta's backup battery boxes and Delta's encoder connection cables for Delta's absolute systems for wiring and connection. Please perform the installation in order as specified in the quick start and user manual when connecting to an absolute system. Regarding the descriptions and specifications of battery boxes and corresponding accessories, please refer to the contents in the following sections.

12.1 Backup Battery Boxes

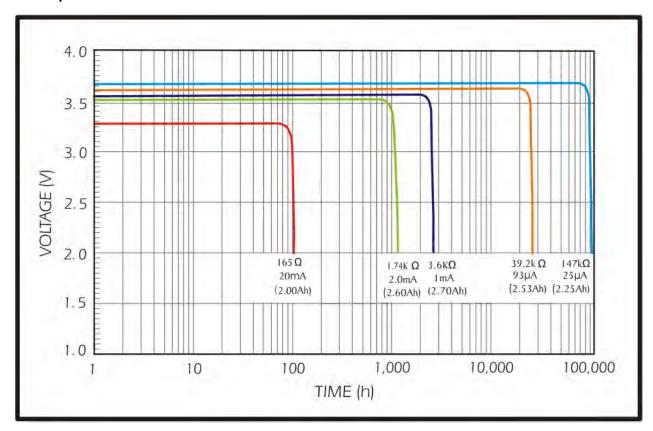
12.1.1 Specifications

Precautions

Please thoroughly understand and observe the following safety precautions. Failure to observe these precautions may void warranty! In order to prevent damage and danger, please use batteries in accordance with the specified specification.

- > Do not use the product in a potentially explosive environment. Install the product in a clean and dry location free from corrosive and inflammable gases or liquids.
- > Do not place the battery dispersedly to prevent short circuiting and accidents.

- > Do not short circuit the positive pole and the negative pole of the batteries or install batteries in reverse polarity.
- > To prevent electric energy loss and lifetime reduction, it is recommended to use new batteries only.


- > Do not store batteries within an ambient temperature above +100°C. Failure to observe this precaution may cause fire or explosion.
- > The batteries are non-rechargeable. Do not charge the batteries or explosion may result.
- > Do not directly solder the battery surface.

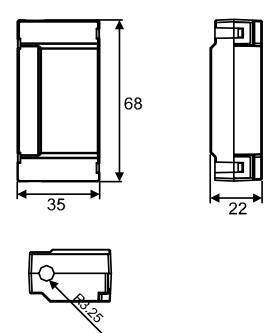
Battery Specifications

ltems	Li/SOCI2 Cylindrical Battery	
Model Number	ER14505	
Delta Model Number	ASD-CLBT0100	
International Standard Size	AA	
Nominal Voltage	3.6V	
Nominal Capacity	2700mAh	
Maximum Continuous Operating Current	100 mA	
Maximum Pulse Current	200 mA	
Dimensions (D x H)	14.5 x 50.5mm	
Weight	Approx. 19g	
Operating Temperature	-40 ~ +85°C	

12-2 Revision September 2012

Battery Life

- (1) The battery life changes depending on many factors. The graph above shows how the performance of the battery deteriorates on different current at the same temperature. The graph above illustrates four discharge curves on different current and the effects. According to the testing result shown on the graph above, when the power consumption of an absolute encoder is 65uA or lower, if the voltage of the battery keeps 3V or higher, the expected battery life is about 21900hr, approximately 2.5 years (Note 1). Therefore, the lowest voltage level of battery for an absolute encoder is set to 3.1V.
- (2) The battery life expectancy is about 5 years and is able to provide 3.6V or higher voltage under normal temperature and humidity conditions.

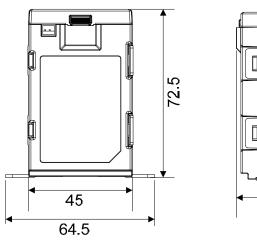


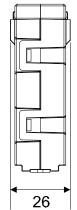
The battery life was measured when one single battery box is connecting to one servo drive and one servo motor.

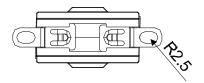
12.1.2 Battery Box Dimensions

Single Battery Box

Delta Model Number: ASD-MDBT0100

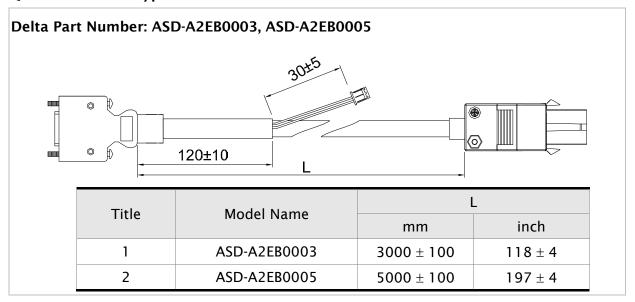



Weight 44 g

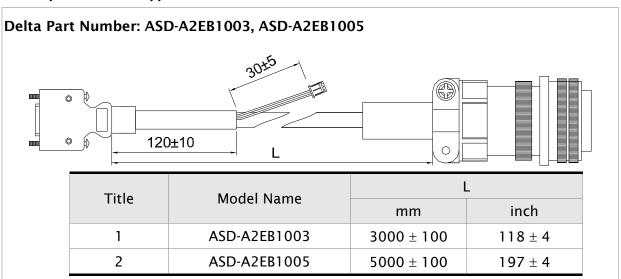

Units: mm

Dual Battery Box

Delta Model Number: ASD-MDBT0200



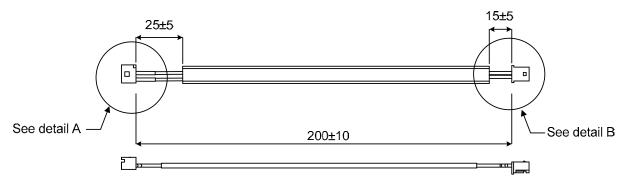
Weight 80 g

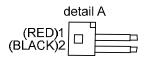

Units: mm

12.1.3 Connection Cables for Absolute Encoder

Quick Connector Type

Military Connector Type


Terminal Signal Identification

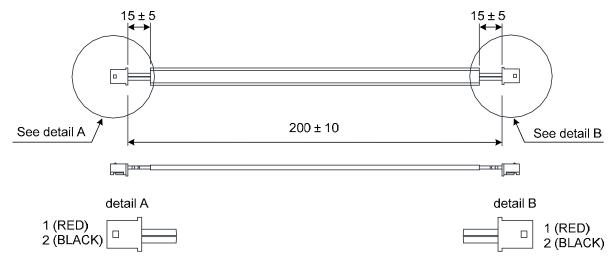

Servo Drive Connector		Servo Motor	Connector	
Pin No	Terminal Identification	Function/Description	Military Connector	Quick Connector
5	T+	Serial Communication Signal Input / Output (+)	А	1
4	T-	Serial Communication Signal Input / Output (-)	В	4
7	BAT+	Battery 3.6V	С	2
9	BAT-	Battery Grounding	D	5
14, 16	+5V	+5V power	S	7
13, 15	GND	Power Grounding	R	8
-	Shield	Shielding	Ĺ	9

12.1.4 Battery Box Cords

Battery Box Cord AW

Delta Part Number: 3864573700

Detail A

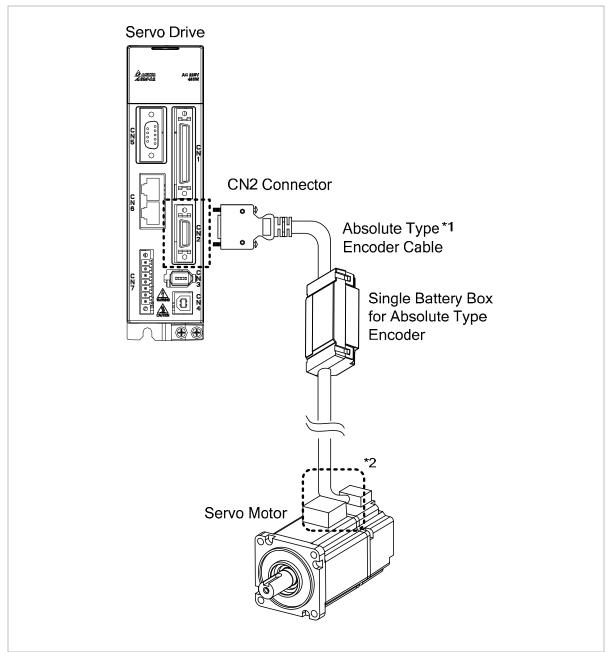

Title	Part No.	Manufacturer
Housing	A2004H00-2P	JWT
Terminal	A2004WV0-2P	JWT

Detail B

Title	Part No.	Manufacturer
Housing	A2004H00-2P	JWT
Terminal	A2004TOP-2	JWT

Battery Box Cord IW

Delta Part Number: 3864811900

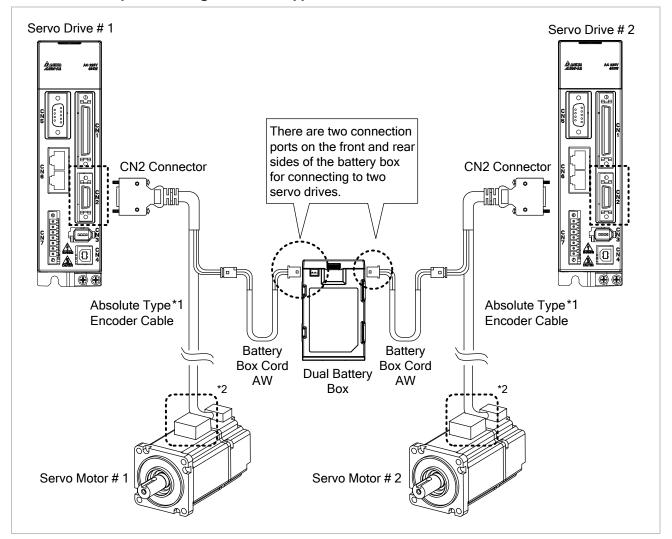

Detail A, B

Title	Part No.	Manufacturer
Housing	A2004H00-2P	JWT
Terminal	A2004TOP-2	JWT

12.2 Installation

12.2.1 Connection Examples

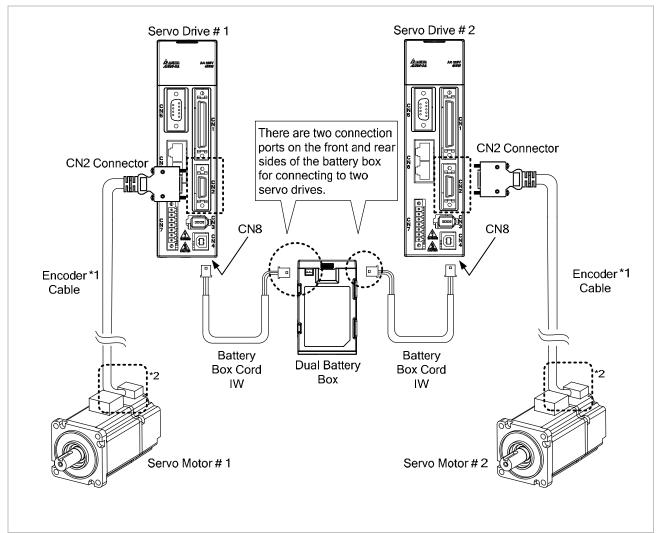
Single Battery Box



This is the wiring diagram for connecting to a single battery box. The scale of the objects does not match the dimensions as shown in the drawing above. For different models of AC servo drives and motors, the connection cables may differ.

- 1) Please refer to section 12.1.3 Connection Cables for Absolute Encoder to choose the encoder cables.
- 2) For more information on the encoder connector specifications and the connection of servo drive and servo motor, please refer to section 3.1.5 Encoder Connector Specifications.

Dual Battery Box (Using Absolute Type Encoder Cables)

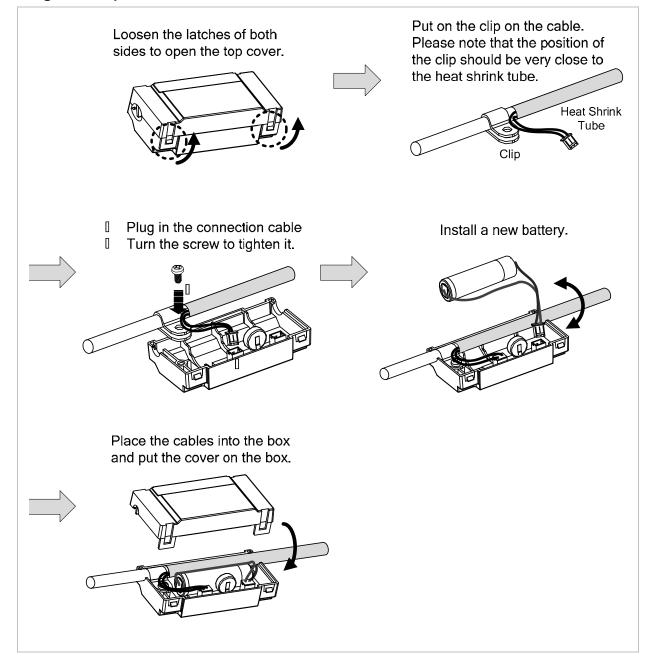


This is the wiring diagram for connecting to a dual battery box. The scale of the objects does not match the dimensions as shown in the drawing above. For different models of AC servo drives and motors, the connection cables may differ.

- 1) Please refer to section 12.1.3 Connection Cables for Absolute Encoder to choose the encoder cables.
- 2) For more information on the encoder connector specifications and the connection of servo drive and servo motor, please refer to section 3.1.5 Encoder Connector Specifications.

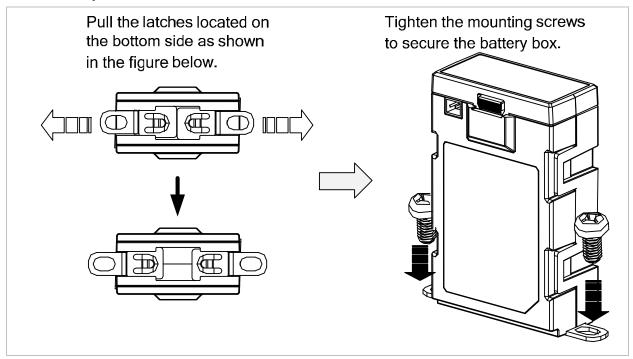
12-8 Revision September 2012

Dual Battery Box (Using Incremental Type Encoder Cables)



This is the wiring diagram for connecting to a dual battery box. The scale of the objects does not match the dimensions as shown in the drawing above. For different models of AC servo drives and motors, the connection cables may differ.

- 1) Please refer to section 12.1.3 Connection Cables for Absolute Encoder to choose the encoder cables.
- 2) For more information on the encoder connector specifications and the connection of servo drive and servo motor, please refer to section 3.1.5 Encoder Connector Specifications.


12.2.2 How To Install A Battery

Single Battery Box

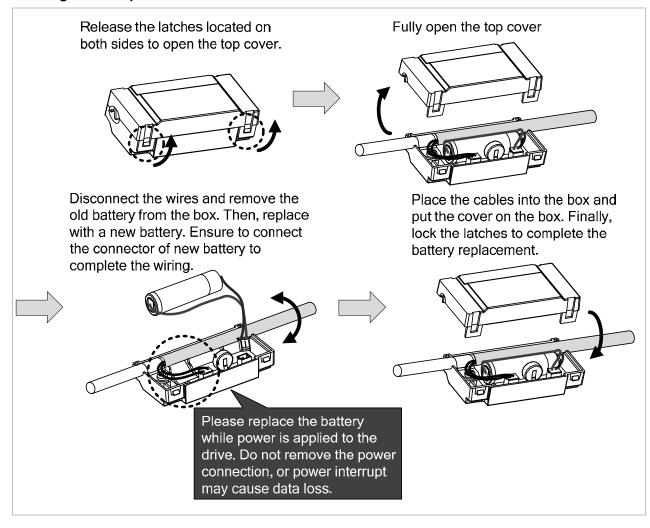
12-10 Revision September 2012

Dual Battery Box

12.2.3 How to Replace A Battery

When the following conditions occur, in order to prevent data loss, we recommend the users to replace with a new battery:

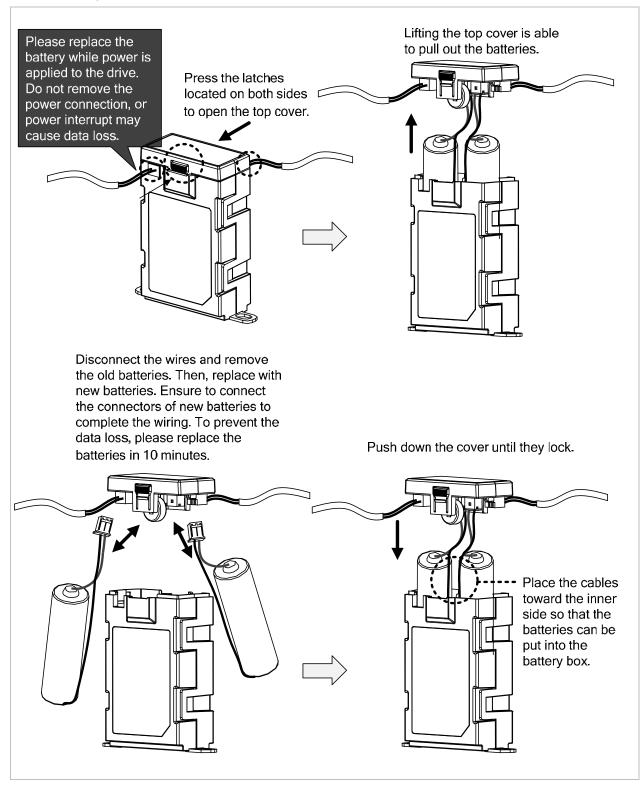
- 1) When the fault code, AL061 is shown on the drive's LCD display, it indicates that the voltage level of battery has fallen below its minimum allowable value (see section 12.7.1 for explanation).
- 2) When the users use servo parameter P0-02 to read the battery capacity, if the value 31 is displayed on the drive's LCD display, it indicates that the voltage level of battery has fallen to its minimum allowable value, i.e. 3.1V.


Please note that when AL061 is display, it indicates that the voltage level of battery has fallen below 2.7V and the motor position data may get lost or become inaccessible immediately. Please perform homing procedure again after battery replacement. For more descriptions of AL061, please refer to section 12.7.1.

In addition, when the power is supplied to the servo drive, please replace the battery within 10 minute. To avoid injury and prevent damage to the system, please use backup batteries in accordance with the specified specifications. For more information regarding the specifications of backup batteries, please refer to section 12.1.1.

> Caution: Please replace the battery while power is applied to the drive to prevent the absolute position data loss.

Single Battery Box



12-12 Revision September 2012

> Caution: Please replace the battery while power is applied to the drive to prevent the absolute position data loss.

Dual Battery Box

12.3 System Initialization Procedure and Operation

12.3.1 System Initialization Procedure

When the servo system is power on, the host controller can get the motor coordinate position via communication with RS-485 or DI/O. There are two data in different units can be read, and they are in PULSE and PUU.

At the very first time to operate absolute system, there will be a fault code, AL060 shown when power on because the initialization procedure still not yet be done. The fault will be kept until the initialization procedure is finished. Besides, the AL060 will be displayed when the power from the servo and battery is discontinued that will lead to the coordinate system lost. There is a fault code, AL062 which is used to indicate when the motor position is exceeding the design range where -32768~32767 for motor turns. But from the view of PUU, the coordinate value must fall into the range -2147483648 ~ 2147483647 to avoid triggering the fault AL289.

For some applications which will rotate motor in one direction, the fault AL062 for checking turns number within -32763~32768 and the fault AL289 for detecting PUU within -2147483648~2147483647 can be turned off by parameter P2-70.

Parameter Settings:

1. The AL060 will be cleared when the coordinate system has been initialized.

PR mode: The absolute coordinate system will be reset after any homing operation under PR mode.

Other modes: Two methods can be used to initialize the coordinated system. One is via digital inputs described in section 12.3.4, and another one is applying parameters in section 12.3.5.

2. For an initialized system when every time the power is turned on, the host controller can read the absolute coordinate data via digital inputs and digital outputs (see section 12.3.6) or parameters with communication (see section 12.2.6). Through the settings of parameter P2-70, the host controller can read the coordinated data in PUU (see section 12.3.3) or in number of turn plus the number of pulse within one turn (see section 12.3.2).

12-14 Revision September 2012

12.3.2 Pulse Counting

When the motor is running in clockwise direction, the counting number of turns will be minus where the counter clockwise rotating is plus. The number range for turns is from - 32768 to 32767. The fault code, AL062 will appear when exceeding this counting range and it can be cleared by resetting the coordinate system. If parameter P2-70 has been set to ignore the over range alarming, the AL062 is disabled even exceeding the counting range. When the value reaches its largest number, it will rewind. For the counter clockwise counting, the sequence of the number is ...32767, -32768, -32767, -32766 and the clockwise will have a sequence like ...-32768, 23767, 32766

In addition, there are 1280000 pulses (0 \sim 1279999) in one rotation. Please pay attention on its direction. The communication or digital inputs/digital outputs can be used to read it.

Pulse number for the distance = $m (turn) \times 1280000 + pulse number within one turn (0~1279999)$

The conversion between Pulse and PUU:

When the rotating direction is CCW defined in P1-01.

PUU number = pulse number
$$\times \frac{(P1-45)}{(P1-44)}$$
 + (P6-01)

When the rotating direction is CW defined in P1-01.

PUU number = (-1) × pulse number ×
$$\frac{(P1-45)}{(P1-44)}$$
 + (P6-01)

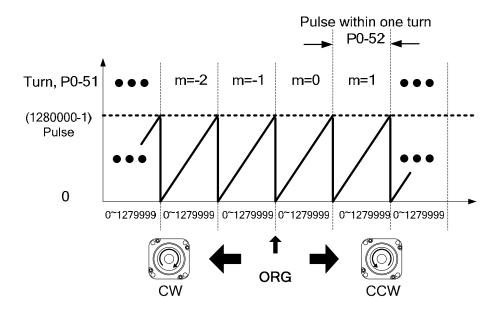


Figure 12.1 Pulse counting in absolute coordinate system

12.3.3 PUU Counting

A 32 bits number with sign is used to denote PUU number in an absolute system. The PUU number is increasing when motor is in positive rotating direction and decreasing for a negative running direction. The motor's rotating direction is defined in P1-01 Z setting.

In a word, the encoder feedback number is an easy way to distinguish the motor's rotating direction. Increasing number sequence is for positive direction and decreasing number sequence is for negative direction.

If the motor keeps rotating in one direction, the AL062 will be shown when exceeding the number range -32768 to 32767 for turns, and the AL289 is for PUU out of the range -2147483648 to 22147483647. Both of these fault codes can be cleared by homing.

And the parameter P2-70 can be used to take the range restrictions away in order to avoid occurring AL062 and AL289. When the counting number reaches the maximum number, the PUU pulse number sequence for forward rotation is ... 2147483647, -2147483648, - 2147483647...where the number sequence -2147483648, 2147483647, 2147483646... is for reverse rotation.

Two examples for evaluating the timing of overflow are as below:

Example 1:

When P1-44=128 and P1-45=10, there are 100000 PUU for motor to rotate one turn. $2147483647 \div 100000 = 21474.8$.

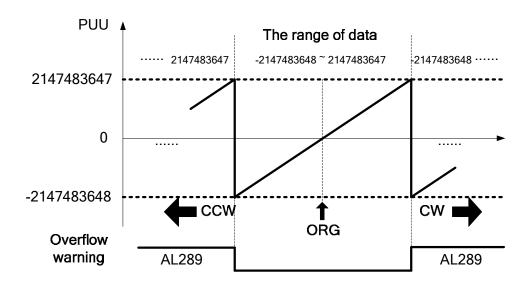
The limit to trigger the fault AL289 is 21474.8 (< 32767).

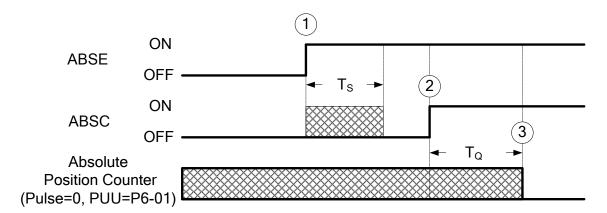
Example 2:

When P1-44=128 and P1-45=1, there are 10000 PUU for motor to rotate one turn. $2147483647 \div 10000 = 214748.3$.

The limit to trigger the fault AL062 is 32767 (< 214748.3).

12-16 Revision September 2012




Figure 12.2 PUU counting in absolute coordinate system

When an absolute system has been initialized, if the parameter P1-01 Z setting, P1-44, and P1-45 be changed, the absolute coordinate system will be destroyed. A homing procedure is necessary at that moment.

12.3.4 Use Digital Inputs/Outputs to Initialize an Absolute System

Except PR mode, the digital inputs and outputs can be used for a driver to do homing when other modes are selected. Move the motor to home place, enable digital input, ABSE, then enable digital input, ABSC from OFF to ON, and the system will start to initialization. The pulse number will be set to zero and the number in P6-01 is for PUU to reference. Please refer to Figure 12.3 below for the signal controlling chart.

	T _{S(ms)}	T _{Q(ms)}	
Min.	P2-09+2		
Max.	P2-09+10		

Figure 12.3 The controlling chart for initializing an absolute system via digital inputs/outputs

The descriptions for the timing:

- 1. When the host controller switches ABSE from OFF to ON, a period of time Ts have to be waited for the next step to process.
- 2. After waiting time Ts, the host controller now can enable the ABSC from OFF to ON and hold the signal for T_Q to reset the coordinate system where pulse number will be zero and PUU number is defined in P6-01.

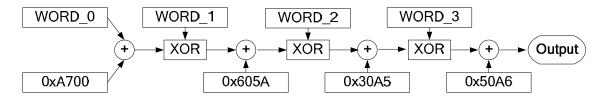
12-18 Revision September 2012

12.3.5 Use Parameters to Initialize an Absolute System

When the parameter P2-71 is set to 1(one) via digital keypad or communication, the system starts to initialization. In order to protect from accidentally writing on P2-71 to reset an absolute system, the number 271 should be written to P2-08 to unlock the writing of 1(one) to P2-71. The procedure is P2-08=271 and then P2-71=1. This mode is only for the other modes except PR mode that already has its homing procedure to apply.

12.3.6 Use Digital Inputs/Outputs to Read the Absolute Coordinate Data

When Bit 0 is 0 in P2-70, the PUU number can be read by using digital inputs and outputs. The frame is as below.


Bit 79 ~ Bit 64	Bit 63 ~ Bit 32	Bit 31 ~ Bit 16	Bit 15 ~ Bit 0
Check Sum	Encoder PUU -2147483648 - 2147483647	0	Encoder status, P0-50

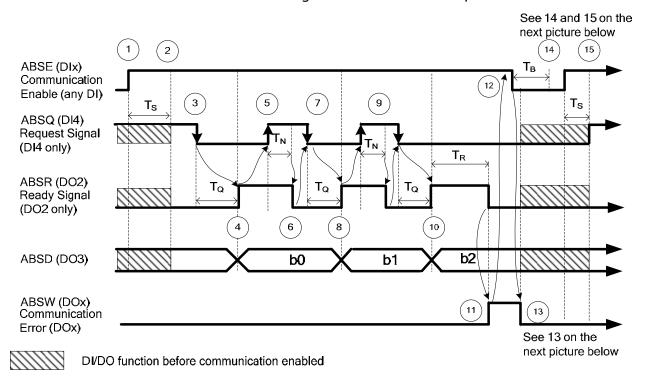
When Bit 0 is 1 in P2-70, the PULSE number can be read by using digital inputs and outputs. The frame is as below.

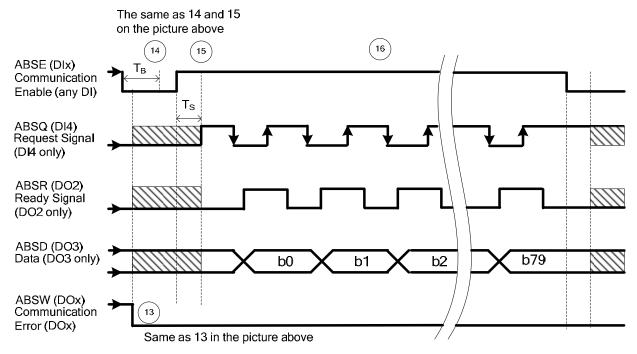
Bit 79 ~ Bit 64	Bit 63 ~ Bit 32	Bit 31 ~ Bit 16	Bit 15 ~ Bit 0
Check Sum	Pulse within one turn	Encoder turn	Encoder status,
	0 ~ 1279999 (= 1280000-1)	-32768 ~ +32767	P0-50

Explanation:

Check Sum = (((((((WORD_0+0 \times A700) XOR WORD_1)+0 \times 605A) XOR WORD_2)+0 \times 30A5) XOR WORD_3)+0 \times 5A06)

Note:


- 1. This algorithm has no plus or minus sign.
- 2. 0xA700, 0x605A, 0x30A5 and 0x50A6 are the constans of hexadecimal.
- 3. WORD_0: encoder status (Bit 15~0)


WORD_1: encoder turn (Bit 31~16)

WORD_2: encoder pulse (Bit 47~32)

WORD_3: encoder pulse (Bit 63~48)

The setting in P2-70 with digital inputs/outputs communication can be used to read PULSE number or PUU data with below signal communication sequence.

	T _{R(ms)}	$T_{S(ms)}$	$T_{Q(ms)}$	T _{N(ms)}	T _{B(ms)}
Min	-	P2-09+2			
Max	200	P2-09+10			

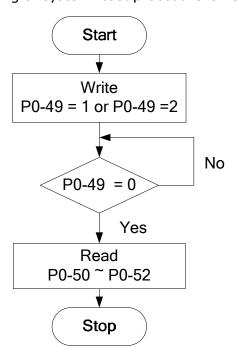
Figure 12.4 Timing of using digital inputs/outputs to read absolute data

12-20 Revision September 2012

The step explanation for the communication:

- 1 At the very beginning of communication, the host controller must enable ABSE and all the communication starts from here.
- 2 A threshold time Ts for confirming the signal ABSE is necessary. After the signal has been recognized, the DI4, DO2, and DO3 (no matter what their functions are), will be switched to the function of ABSQ, ABSR, and ABSD respectively. At the moment of the communication function enabled, if the signal of ABSQ is in high level, it will keep high level for its original function and also will be high level signal for ABSQ. DI4, DO2, and DO3 are multiple functions pins, please be noted especially at the moment of communication function switching on and off. For the purpose of simplifying the application, the functions of these three digital inputs and outputs could to set to 0 for communication use only.
- 3 When ABSE is at high level and retaining Ts long, the function of DI4 will be switched to ABSQ. If the host controller switch ABSQ to low after it is defined, the servo drive will recognize that host controller wants to read data from it.
- After confirming time T_Q , the data for communication is already well prepared on ABSD and the signal ABSR is enabled for signaling the host controller to get data from the servo drive side. If the longest possible waiting time of T_Q (see Figure 12.4) expired, the host controller still cannot get the signal ABSR from low to high which could be a problem of wiring disconnection.
- (5) After the host controller detects that ABSR is high, the data is fetched. The ABSQ will be set to signal high to inform the drive after dada read.
- \bigcirc After confirming time T_N for ABSQ kept high, the servo drive will maintain ABSR to low for signaling the host controller to be ready for accessing next bit.
- (7) The host will set ABSQ to low when it detects that ABSR is low for requesting the next bit from drive.
- 8 The servo drive will repeat the steps 3 to 4 to put its data at ABSD for next bit communication
- (9) By repeating steps 5 to 7, the host controller will get the data, bit, and have an acknowledgement to the servo drive.
- (10) The third bit data is ready on the servo drive side.
- $\widehat{11}$ After the data is ready and has been held for time T_R , the servo drive still does not see the signal ABSQ controlled by the host controller, and then the servo drive will have a communication error flag ABSW raise to terminate the communication procedure.
- (12) The host controller will set the ABSE to low for restart the communication cycle after getting the communication error message from the servo drive.

- (3) The communication error flag on servo drive side will be reset after detecting a low signal ABSE from the host controller.
- (14) A new communication cycle on host controller will be restarted after the buffering time T_B .
- 15 Repeat the step 1 for the host controller to start a new communication cycle.
- (16) If there doesn't have any error occurred during communication course for the host controller to finish bit 0 to bit 79 (80 bits data), the functions of DI4, DO2, DO3 will be changed back to their original functions before communication cycle started.


If ABSW does not go back to high level signal after the changing of ABSE for signal low to high that is a sign of error occurring, there must be some other errors existing. Please check if the coordinate data still there, the voltage level of battery, or overflowing on the coordinate value.

A new communication cycle can be started only all of these errors been removed.

12-22 Revision September 2012

12.3.7 Use Parameter to Read the Absolute Coordinate Data

The servo drive will update its encoder status to P0-50 and encoder position to P0-51 and P0-52 when the parameter P0-49 is set. The Bit 1 of P2-70 is used to select which type of the data will be read, PULSE or PUU. While the servo motor is stalling, it is always maintaining its position with a very tiny forward and backward movement. At the moment the encoder data read, the coordinate data in servo drive side will be reset to the current position of motor if P0-49=2 where it is just read without changing any from the servo motor when P0-49=1. For example of P0-49=2, if the motor is positioning at the place of 20000, it will move around position from 19999 to 20001 normally. The command for reading the encoder data is put when the motor is at the place 20001, and the data 20001 will be read and the coordinate data in servo drive will be revised to 20001. There will avoid the error from the data at encoder side and the data at drive side. The P0-49 will be reset to 0 when all the encoder data put in P0-50 to P0-52 is ready, and it means that the host controller can get the data now. When the status already signals absolute coordinate data lost or overflow of number for turns in P0-50, the values in P0-51 to P0-52 are not correct. A homing or system reset procedure is necessary now.

12.4 Related Parameters for Absolute System

P2-69•	ABS	Absolute Encoder Sett	ing	Address: 028AH 028BH
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ult: 0x0	· · ·	
	Con Mo	trol ode: ALL		
	Unit: N/A		: :	
	Range::0 ~ 1			
	Data S	ize: 16-bit		• •
	Disp Forn	Hexadecimal		

Settings:

This parameter should be set when the servo motor with absolute encoder need to be operated as an incremental motor.

- 0: Incremental mode. Servo motor with absolute encoder can be operated as incremental motor.
- 1: Absolute mode. (This setting is only available for the servo motor with absolute encoder. When an incremental servo motor is connected, if P2-69 is set to 1, a fault will be detected and the fault code, AL069 will be displayed on the drive's LCD display.)

Please note:

This parameter is effective only after the servo drive is restarted (after switching power off and on).

P2-70	MRS	Read Data Format Sele	ection	Address: 028CH 028DH		
	Opera Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A		
		nult::0x0				
	Con Mo	otrol ode: ALL				
	U	Jnit: N/A				
	Rar	nge: 0x00 ~ 0x07		- 		
	Data S	ize: 16-bit				
	Disp Forr	Hexadecimal				
	Settings:	:		:		

Settings:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8

12-24 **Revision September 2012** Bit0: Data unit setting of digital input/output (DI/DO)

Bit0=0: PUU

Bit0=1: Pulse

Bit1: Communication data unit setting

Bit0=0: PUU Bit0=1: Pulse

Bit2: Overflow warning

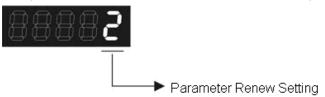
Bit0=0: Without overflow warning

Bit0=1: With overflow warning AL289 (for PUU counting), AL062 (for Pulse

counting)

Bit3 ~ Bit15: Reserved. Must be set to 0.

P2-71 ■	CAP	Absolute Position Hon	ning	Address: 028EH 028FH
	Operation Keypad / Software Communication		Related Section: N/A	
		ıult: 0x0		
	Con Mo	trol ode:		
	U	Init: N/A		
	Rar	nge: 0 ~ 1		
	Data S	ize: 16-bit		7 : :
	Disp Forn	lay : :Hexadecimal		


Settings:

When P2-71 is set to 1, the current position will be set as home position. This function is the same as the digital input, ABSC. This function can be enabled only when parameter P2-08 is set to 271.

P0-49 ■	UAP	Renew Encoder Absolu	ute Position	Address: 0062H 0063H
	Operat Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ıult: 0x0		
	Con Mo	trol ode: ALL		
	U	Init: N/A		- - -
	Ran	nge: 0x00 ~ 0x02		· · · · · · · · · · · · · · · · · · ·
	Data S	ize: 16-bit		•
	Disp Forn	Hexagecimai		

Settings:

This parameter is used to renew the absolute position data of the encoder.

Parameter Renew Setting:

- 1: Renew the encoder data to parameters P0-50~P0-52 only.
- 2: Renew the parameters P0-50~P0-52, and clear the position error as well. While this setting is activated, the current position of the motor will be reset as the target position of position command (same function as CCLR).

DO		N.	7
Гυ	-0	v	٠. •

APSTS	Absolute Coordinate S	bsolute Coordinate System Status			
Operati Interfac	on ce: Keypad / Software	Communication	Related Section: N/A		
Defau	ılt::0x0		· · ·		
Cont Mod	rol de:				
Ur	nit::N/A				
Rang	ge: 0x00 ~ 0x1F		7 : :		
Data Siz	ze: 16-bit				
Displa Form	Hexadecimai				

Settings:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8

Bit0: Absolute position status

Bit0=0: Normal

Bit0=1: Absolute position is lost

Bit1: Voltage level of battery

Bit0=0: Normal

Bit0=1: Low battery

Bit2: Status of encoder multiturn

Bit0=0: Normal

Bit0=1: Overflow

Bit3: Status of PUU

Bit0=0: Normal

Bit0=1: Overflow

Bit4: Absolute coordinate system status

Bit0=0: Normal

Bit0=1: Absolute coordinate system has not been set

Bit5 ~ Bit15: Reserved. Must be set to 0.

P0-51★	APR	Encoder Absolute Posi	tion (Multiturn)	Address: 0066H 0067H
	Operat Interfa	ion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ult: 0x0		1 : :
	Cont Mo	trol de: ALL		
	Uı	nit: rev		
	Ran	ge: -32768~+32767		7 : :
	Data Si	ize: 32-bit		· · ·
	Displ Form	:Decimal		

Settings:

While the Bit 1 of P2-70 is set to read the encoder pulse number, this parameter represents the turns of encoder absolute position. While the Bit 1 of P2-70 is set to read the PUU number, the setting value of this parameter is 0.

P0-52★	APP	Encoder Absolute Posi (Pulse number within S		Address: 0068H 0069H
	Opera Interfa	tion ace: Keypad / Software	Communication	Related Section: N/A
	Defa	ault: 0x0		
	Con Mo	itrol ode: ALL		
	U	Jnit: Pulse or PUU		
	Rar	nge::0~1280000-1 (Pulse -2147483648 ~ 214		
	Data S	ize: 32-bit		
	Disp Forr	olay Decimal mat:		

Settings:

While the Bit 1 of P2-70 is set to read the pulse number, this parameter represents the pulse number of encoder absolute position. While the Bit 1 of P2-70 is set to read the PUU number, this parameter represents PUU number of motor absolute position.

P0-02

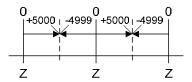
STS Drive Status (Front Keypad Display)

Operation Interface: Keypad / Software Communication

Default: 00

Control Mode: Unit: N/A

Range: 0 ~ 127


Data Size: 16-bit

Display Format: Decimal

Settings:

This parameter shows the servo drive status.

- 00: Motor feedback pulse number (after electronic gear ratio is set) [user unit]
- 01: Input pulse number of pulse command (after electronic gear ratio is set) [user unit]
- 02: Position error counts between control command pulse and feedback pulse [user unit]
- 03: Motor feedback pulse number (encoder unit, 1280000 pulse/rev) [pulse]
- 04: Input pulse number of pulse command (before electronic gear ratio is set) [pulse]
- 05: Position error counts [pulse]
- 06: Input frequency of pulse command [Kpps]
- 07: Motor rotation speed [r/min]
- 08: Speed input command [Volt]
- 09: Speed input command [r/min]
- 10: Torque input command [Volt]
- 11: Torque input command [%]
- 12: Average load [%]
- 13: Peak load [%]
- 14: Main circuit voltage [Volt]
- 15: Ratio of load inertia to Motor inertia [0.1times]
- 16: IGBT temperature
- 17: Resonance frequency [Hz]
- 18: Absolute pulse number relative to encoder (use Z phase as home). The value of Z phase home point is 0, and it can be the value from -5000 to +5000 pulses.

The interval of two Z phase pulse command is 10000 pulses.

12-28 Revision September 2012

- 19: Mapping Parameter 1: Display the content of parameter P0-25 (mapping target is specified by parameter P0-35)
- 20: Mapping Parameter 2: Display the content of parameter P0-26 (mapping target is specified by parameter P0-36)
- 21: Mapping Parameter 3: Display the content of parameter P0-27 (mapping target is specified by parameter P0-37)
- 22: Mapping Parameter 4: Display the content of parameter P0-28 (mapping target is specified by parameter P0-38)
- 23: Status Monitor 1: Display the content of parameter P0-09 (the monitor status is specified by parameter P0-17)
- 24: Status Monitor 2: Display the content of parameter P0-10 (the monitor status is specified by parameter P0-18)
- 25: Status Monitor 3: Display the content of parameter P0-11 (the monitor status is specified by parameter P0-19)
- 26: Status Monitor 4: Display the content of parameter P0-12 (the monitor status is specified by parameter P0-20)
- 38: Voltage level of battery [0.1 Volt]. For example, when the display value is 36, it indicates that the voltage level of the battery is 3.6V.

12.5 Digital Input (DI) Function Definition (for Absolute System)

Setting Va	Setting Value: 0x1D			
DI Name	DI Function Definition	Trigger Method	Control Mode	
ABSE	When ABSE is activated (ON), it can initialize an Absolute System and enable ABSQ, ABSC, ABSR, and ABSD as well. Please refer to Figure 12.3 and 12.4 for timing diagram.	Level Triggered	ALL	
	No matter what the original functions of DI4, DO2, and DO3 are, they will be switched to the function of ABSQ, ABSR, and ABSD respectively. DI4 will be changed to ASDQ, DO2 will be changed to ABSR, and DO3 will be changed to ABSD. The ABSC can be set via the parameter setting (DI function setting). When ABSE is ON, the setting value of parameter P2-13 cannot be changed.			

Setting Value: When ABSE is activated (ON), DI4 is switched to the function of ABSQ to replace the DI function set by parameter P2-13.			
DI Name	DI Function Definition	Trigger Method	Control Mode
controlled by DI4	When ABSQ is activated (ON), it indicates that the host controller has read and put its data at ABSD for next bit communication. When ABSQ is OFF, the host controller will send the command for requesting next bit communication. This function is for communication handshaking during digital I/O signal transmission. ABSQ is effective only when the digital input, ABSE is ON. Please refer to Figure 12.4 for timing diagram.	Rising / Falling- edged Triggered	ALL

Setting Va	Setting Value: 0x1F				
DI Name	DI Function Definition	Trigger Method	Control Mode		
ABSC	When ABSC is activated (ON), the pulse number of absolute encoder will be reset to zero, and PUU number will be reset to the setting value of P6-01. ABSC is effective only when the digital input, ABSE is ON. Please refer to Figure 12.3 for timing diagram.	Rising- edge Triggered	ALL		

12-30 Revision September 2012

12.6 Digital Output (DO) Function Definition (for Absolute System)

Setting Value: When ABSE is activated (ON), DO2 is switched to the function of ABSR to replace the DO function set by parameter P2-19. Trigger Control DO Name **DO Function Definition** Method Mode When ABSR is OFF, it indicates that the host controller is ready ALL Level ABSR is for accessing next bit communication. When ABSR is activated Triggered controlled (ON), it indicates that the host controller has read and fetched the data. ABSR is effective only when the digital input, ABSE is by DO2 ON. Please refer to Figure 12.4 for timing diagram.

	Setting Value: When ABSE is activated (ON), DO3 is switched to the function of ABSD to replace the DO function set by parameter P2-20.			
DO Name	DO Function Definition	Trigger Method	Control Mode	
controlled	After data read, the absolute position data will be output and put at ABSD. The data is guaranteed correct when ABSR is ON. ABSD is effective only when the digital input, ABSE is ON. Please refer to Figure 12.4 for timing diagram.	Level Triggered	ALL	

Setting Va	Setting Value: 0x0D				
DO Name	DO Function Definition	Trigger Method	Control Mode		
ABSW	The fault messages regarding the absolute encoder will be output via ABSW. Please refer to Figure 12.4 for timing diagram.	Level Triggered	ALL		

12.7 Fault Messages for Absolute System

Display	Fault Name	Description
85038	Voltage Level Above Specification	The voltage level of the battery is higher than the specified voltage (> 3.8V). Maybe an electrical charge still remains in the servo drive.
85038	Gray Code Error	An absolute position error within one turn.
8L060	Absolute Position Lost	The recorded turn numbers are lost as the voltage level of battery is too low or after a power interruption.
8L06 I	Voltage Level Below Specification	The voltage level of the battery is lower than the specified voltage or there is an error of the battery voltage.
8L062	Overflow Warning of Absolute Position	The normal range of turn numbers of absolute position is -32768~+32767.
8L068	I/O Data Transmission Error of Absolute Position	A timing error occurs when reading the data of absolute position via the digital inputs and outputs.
81089	Motor Type Error	Possible an incremental type motor is connected. Possible the setting value of P2-69 is not set to 0.
85588	Position counter overflow	Position counter overflow occurs.

12-32 Revision September 2012

12.7.1 Potential Cause and Corrective Actions

81028 : Voltage Level Above Specification

Potential Cause	Checking Method	Corrective Actions
The voltage level of the battery is higher than the specified voltage (> 3.8V).	remains in the servo drive.	This fault message can be removed automatically after the voltage level has returned within its specification.

81029 : Gray Code Error

Potential Cause	Checking Method	Corrective Actions
error within one	fault message will disappear.	If this fault message cannot be clear by restarting the servo system, replace the encoder.

8L060: Absolute Position Lost

Potential Cause	Checking Method	Corrective Actions
The voltage level of the battery is too low.	Check if the voltage level of the battery is lower than 2.7V.	Replace the battery and execute the homing procedure again. Please refer to section 12.3.4 to 12.3.5 for initialization procedure of an absolute system.
The initialization procedure of an absolute system has not finished after enabling the absolute function.	 Install a battery box. Check the wiring connection between the battery box and the servo drive. Check if the wiring is correct of the encoder. 	Execute the homing procedure again. Please refer to section 12.3.4 to 12.3.5 for initialization procedure of an absolute system.
Bad connection or an open circuit occurred in the wiring between the battery box and the servo drive.	 Check the wiring connection between the battery box and the servo drive. Check if the wiring is correct of the encoder. 	Conduct the wiring again. Then, execute the homing procedure again. Please refer to section 12.3.4 to 12.3.5 for initialization procedure of an absolute system.

8106: Voltage Level Below Specification

Potential Cause	Checking Method	Corrective Actions
The voltage level of the battery is too low.	 Check if the voltage level of the battery that is displayed on the keypad is lower than 3.1 V. Measure if the voltage level of the battery is lower than 3.1 V. 	Replace the battery when the control power is applied to the servo drive. This fault message can be removed automatically after conducting battery replacement.
There is an error of battery voltage.	The battery polarity is incorrect.	Check if the battery polarity is reversed.

12-33 **Revision September 2012**

RL062 : Overflow Warning of Absolute Position

Potential Cause	Checking Method	Corrective Actions
	within the range of -32768 to +32767.	Execute the homing procedure again. Please refer to section 12.2.3 to 12.2.4 for initialization procedure of an absolute system.

81068 : I/O Data Transmission Error of Absolute Position

Potential Cause	Checking Method	Corrective Actions
Timing error	 The digital input, ABSQ cannot be turned OFF before the digital output, ABSR is set to be OFF. The digital input, ABSQ cannot be turned ON before the digital output, ABSR is set to be ON. 	Correct the read/write timing of ABSQ and ABSR.
Reading timeout	Check if the period of time from enabling ASBR to be ON to ABSQ kept high has exceeded 200ms.	When ASBR is activated to be ON, it indicates that the absolute position data is ready. The host controller will read and put the data at ABSD in 200ms and enable ABSQ to be ON to inform the servo drive the bit reading procedure has been done.
The wiring is disconnected.	Examine if the wiring is disconnected.	Reconnect the wiring.

8L069 : Motor Type Error

	B : :: 1.6	Cl. III M. I	C A
	Potential Cause	Checking Method	Corrective Actions
2	. Possible an incremental type motor is connected.	 Examine the connected motor is an absolute type or an incremental type motor. Check the setting value of P2-69 	 Please choose an absolute type motor. Please set the setting value of P2-69 to 0.
	setting value of P2-69 is not set to 0.		

12-34 Revision September 2012

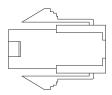
81289 : Position counter overflow

Potential Cause	Checking Method	Corrective Actions
Position counter overflow occurs.	If this fault occurs, please contact your distributor for assistance or contact with Delta.	NMT Maser send "Reset node" command to its slave or reset the fault by sending the control word (0x6040) through CAN communication (the value of CANopen object 0x6040 should be reset)

12.8 Related Monitoring Variables

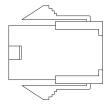
Code	Monitoring Variables / Attribute	Explanation
038 (26h)	Voltage level of battery	The voltage level of battery for an absolute encoder.

12-35 Revision September 2012

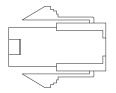

This page intentionally left blank

12-36

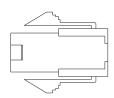
Appendix A Accessories


■ Power Connectors

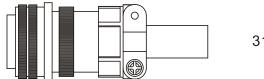
Delta Part Number: ASDBCAPW0000


Title	Part No.	Manufacturer
Housing	C4201H00-2*2PA	JOWLE
Terminal	C4201TOP-2	JOWLE

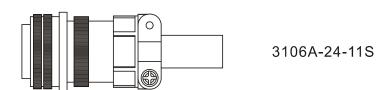
Delta Part Number: ASDBCAPW0100


Title	Part No.	Manufacturer
Housing	C4201H00-2*3PA	JOWLE
Terminal	C4201TOP-2	JOWLE

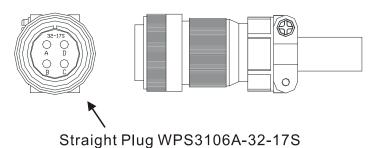
Delta Part Number: ASD-CAPW5400


Title	Part No.	Manufacturer
Housing	39-01-2041	MOLEX
Terminal	39-00-0040	MOLEX

Delta Part Number: ASD-CAPW5100

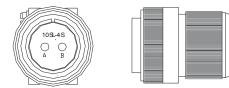

Title	Part No.	Manufacturer
Housing	39-01-2061	MOLEX
Terminal	39-00-0040	MOLEX

Delta Part Number: ASD-CAPW1000

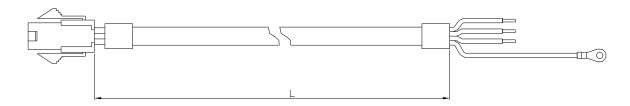

3106A-20-18S

Delta Part Number: ASD-CAPW2000

Delta Part Number: ASD-CAPW4000

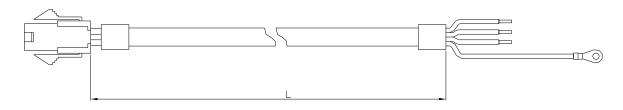

CLAMP: WPS3057-20A

A-2 Revision September 2012


Motor Brake Connector: ASD-CNBR1000

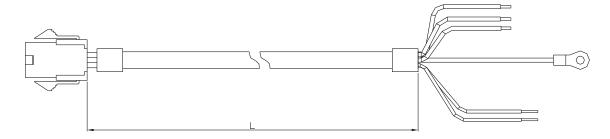
CLAMP: WPS3106A 10SL-4S-R

Power Cables


Delta Part Number: ASD-ABPW0003, ASD-ABPW0005

Title	Part No.	Manufacturer
Housing	C4201H00-2*2PA	JOWLE
Terminal	C4201TOP-2	JOWLE

Tielo	Dort No.	I	_
Title	Part No.	mm	inch
1	ASD-ABPW0003	3000 ± 100	118 ± 4
2	ASD-ABPW0005	5000 ± 100	197 ± 4


Delta Part Number: ASD-CAPW5403, ASD-CAPW5405

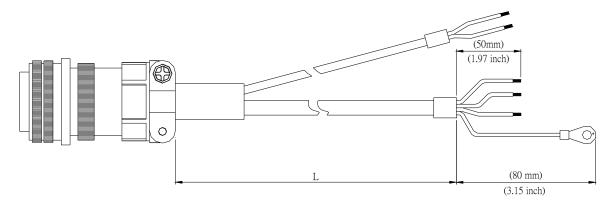
Title	Part No.	Manufacturer
Housing	39-01-2041	MOLEX
Terminal	39-00-0040	MOLEX

Title	Dart No.	L	
ritie	Part No.	mm 3000 + 100	inch
1	ASD-CAPW5403	3000 ± 100	118 ± 4
2	ASD-CAPW5405	5000 ± 100	197 ± 4

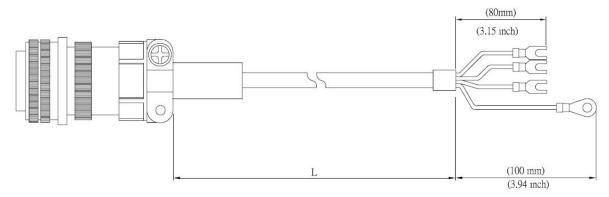
Delta Part Number: ASD-ABPW0103, ASD-ABPW0105

Title	Part No.	Manufacturer
Housing	C4201H00-2*3PA	JOWLE
Terminal	C4201TOP-2	JOWLE

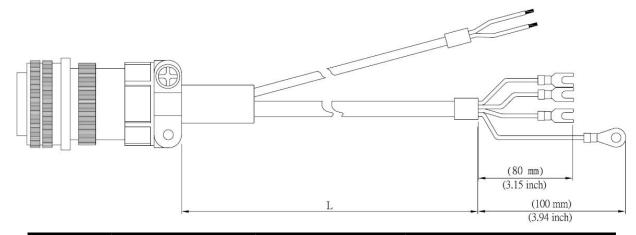
Title	Part No.	Part No.	
Title	Part No.	mm	inch
1	ASD-ABPW0103	3000 ± 100	118 ± 4
2	ASD-ABPW0105	5000 ± 100	197 ± 4


Delta Part Number: ASD-CAPW5103, ASD-CAPW5105

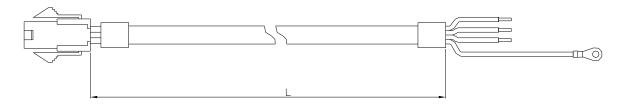
Title	Part No.	Manufacturer
Housing	39-01-2041	MOLEX
Terminal	39-00-0040	MOLEX


A-4 Revision September 2012

Delta Part Number: ASD-CAPW1103, ASD-CAPW1105


Tiele	Down No.	Straight	L	
Title	Part No.		mm	inch
1	ASD-CAPW1103	3106A-20-18S	3000 ± 100	118 ± 4
2	ASD-CAPW1105	3106A-20-18S	5000 ± 100	197 ± 4

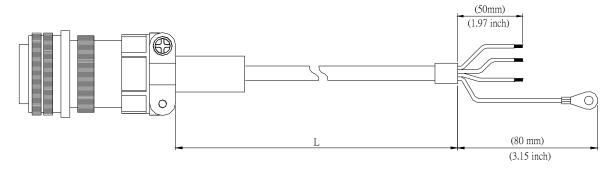
Delta Part Number: ASD-CAPW1203, ASD-CAPW1205


Title	Part No.	Straight	Part No. Straight	L	
Title	Pail NO.		mm	inch	
1	ASD-CAPW1203	3106A-20-18S	3000 ± 100	118 ± 4	
2	ASD-CAPW1205	3106A-20-18S	5000 ± 100	197 ± 4	

Delta Part Number: ASD-CAPW1303, ASD-CAPW1305

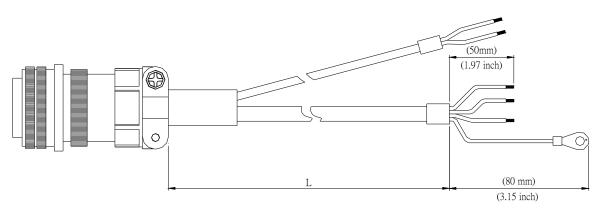
Title	Part No.	Straight	L	
Title	Part NO.		mm	inch
1	ASD-CAPW1303	3106A-20-18S	3000 ± 100	118 ± 4
2	ASD-CAPW1305	3106A-20-18S	5000 ± 100	197 ± 4

Delta Part Number: ASD-A2PW2003, ASD-A2PW2005

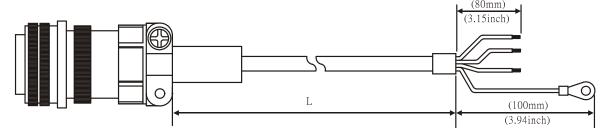


Title	Part No.	Manufacturer
Housing	50-36-1735	Molex
Terminal	39-00-0040	Molex

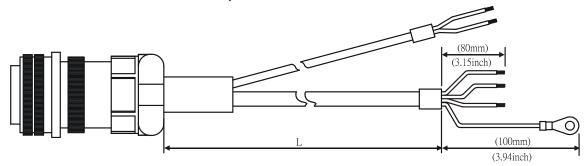
Title	Dort No.		L
Title	Part No.	mm	inch
1	ASD-A2PW2003	3000 ± 100	118 ± 4
2	ASD-A2PW2005	5000 ± 100	197 ± 4


A-6 Revision September 2012

Delta Part Number: ASD-A2PW1003, ASD-A2PW1005

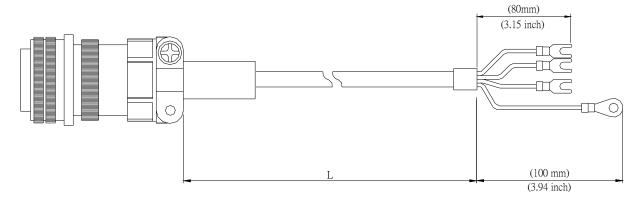

Title	Title Part No. Straight	L		
Title		Straight	mm	inch
1	ASD-A2PW1003	3106A-20-18S	3000 ± 100	118 ± 4
2	ASD-A2PW1005	3106A-20-18S	5000 ± 100	197 ± 4

Delta Part Number: ASD-A2PW1103, ASD-A2PW1105

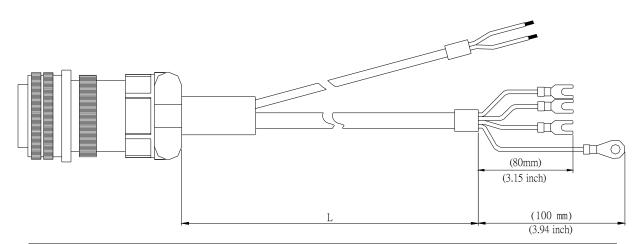

Titlo	Part No	Part No. Straight	L	
TILLE	Title Part No.		mm	inch
1	ASD-A2PW1103	3106A-20-18S	3000 ± 100	118 ± 4
2	ASD-A2PW1105	3106A-20-18S	5000 ± 100	197 ± 4

Delta Part Number

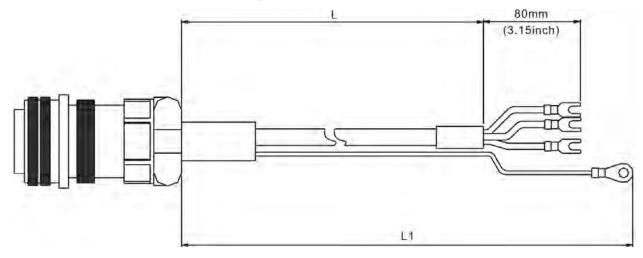
Title Part No.		Ctroimbt	L		
Title	Title Part No.	Straight	mm	inch	
1	ASD-CAPW2003	3106A-24-11S	3000 ± 100	118 ± 4	
2	ASD-CAPW2005	3106A-24-11S	5000 ± 100	197 ± 4	


Delta Part Number: ASD-CAPW2103, ASD-CAPW2105

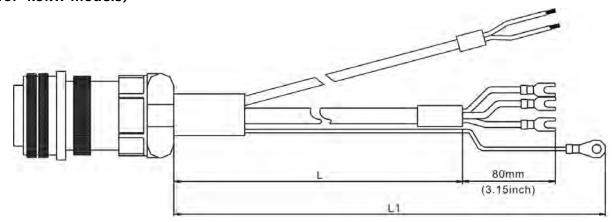
Title	Part No.	Straight	L	:
TILLE	rait NO.	Straight	mm	inch
1	ASD-CAPW2103	3106A-24-11S	3000 ± 100	118 ± 4
2	ASD-CAPW2105	3106A-24-11S	5000 ±100	197 ± 4


A-8 Revision September 2012

Delta Part Number: ASD-CAPW2203, ASD-CAPW2205


Title	Part No.	Straight	L	
Title	rait NO.	Straight	mm	inch
1	ASD-CAPW2203	3106A-24-11S	3000 ± 100	118 ± 4
2	ASD-CAPW2205	3106A-24-11S	5000 ±100	197 ± 4

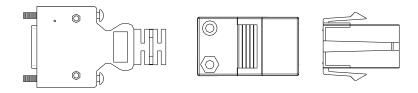
Delta Part Number: ASD-CAPW2303, ASD-CAPW2305 (for motors with brake)


Title Part No.		Straight	L		
Title	Title Part No.	Straight	mm	inch	
1	ASD-CAPW2303	3106A-24-11S	3000 ± 100	118 ± 4	
2	ASD-CAPW2305	3106A-24-11S	5000 ±100	197 ± 4	

Delta Part Number: ASD-CAPW3203, ASD-CAPW3205 (for 4.5kW models)

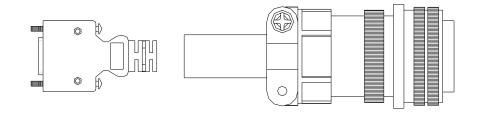
Item Part No.	Part No. Straight		L		L1	
Item	Part NO.	Straight	mm	inch	mm	inch
1	ASD-CAPW3203	MS 3106-24-11S	3000 ± 100	118 ± 4	3100 ± 100	122 ± 4
2	ASD-CAPW3205	MS 3106-24-11S	5000 ± 100	197 ± 4	5100 ± 100	201 ± 4

Delta Part Number: ASD-CAPW3303, ASD-CAPW3305 (for motors with brake) (for 4.5kW models)



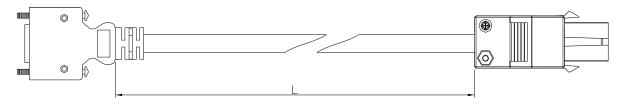
Itom Part No.		Straight	L		Ll	
Item	m Part No. Straight		mm	inch	mm	inch
1	ASD-CAPW3303	MS 3106-24-11S	3000 ± 100	118 ± 4	3100 ± 100	122 ± 4
2	ASD-CAPW3305	MS 3106-24-11S	5000 ± 100	197 ± 4	5100 ± 100	201 ± 4

A-10 Revision September 2012


Encoder Connectors

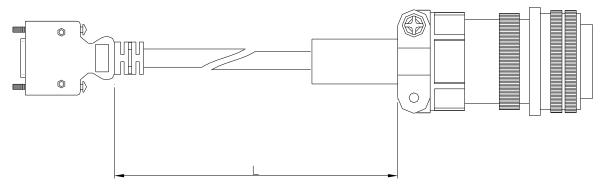
Delta Part Number: ASD-ABEN0000

Title		Part No.	Manufacturer
	Housing	AMP (1-172161-9)	AMP
MOTOR SIDE	Terminal	AMP (170359-3)	AMP
	CLAMP	DELTA (34703237XX)	DELTA
DDIVE CIDE	PLUG	3M 10120-3000PE	3M
DRIVE SIDE	SHELL	3M 10320-52A0-008	3M


Delta Part Number: ASD-CAEN1000

Title		Part No.	Manufacturer
MOTOR	SIDE	3106A-20-29S	-
DRIVE SIDE	PLUG	3M 10120-3000PE	3M
	SHELL	3M 10320-52A0-008	3M

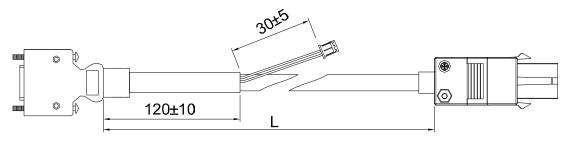
■ Incremental Type Encoder Cables


Delta Part Number: ASD-ABEN0003, ASD-ABEN0005

Title		Part No.	Manufacturer
	Housing	AMP (1-172161-9)	AMP
MOTOR SIDE	Terminal	AMP (170359-3)	AMP
	CLAMP	DELTA (34703237XX)	DELTA
DDIVE CIDE	PLUG	3M 10120-3000PE	3M
DRIVE SIDE	SHELL	3M 10320-52A0-008	3M

Title	Dovt No	L		
Title	Title Part No.		inch	
1	ASD-ABEN0003	3000 ± 100	118 ±4	
2	ASD-ABEN0005	5000 ± 100	197 ± 4	

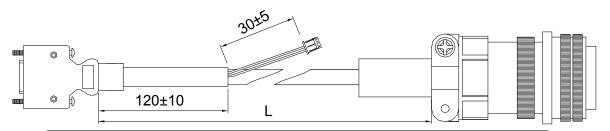
Delta Part Number: ASD-CAEN1003, ASD-CAEN1005


Title		Part No.	Manufacturer
MOTOR SIDE		3106A-20-29S	-
DRIVE SIDE	PLUG	3M 10120-3000PE	3M
	SHELL	3M 10320-52A0-008	3M

Title	Part No	Straight	L	
Title	itle Part No.	Straight	mm	inch
1	ASD-CAEN1003	3106A-20-29S	3000 ± 100	118 ± 4
2	ASD-CAEN1005	3106A-20-29S	5000 ± 100	197 ± 4

A-12 Revision September 2012

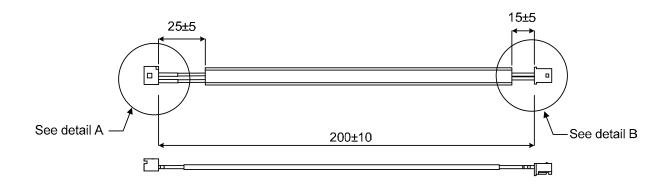
■ Absolute Type Encoder Cables


Delta Part Number: ASD-A2EB0003, ASD-A2EB0005

Title		Part No.	Manufacturer
	Housing	AMP (1-172161-9)	AMP
MOTOR SIDE	Terminal	AMP (170359-3)	AMP
	CLAMP	DELTA (34703237XX)	DELTA
DDIVE CIDE	PLUG	3M 10120-3000PE	3M
DRIVE SIDE	SHELL	3M 10320-52A0-008	3M

Title	Down No.	L	
Title Part No.	mm	inch	
1	ASD-A2EB0003	3000 ± 100	118 ± 4
2	ASD-A2EB0005	5000 ± 100	197 ± 4

Delta Part Number: ASD-A2EB1003, ASD-A2EB1005



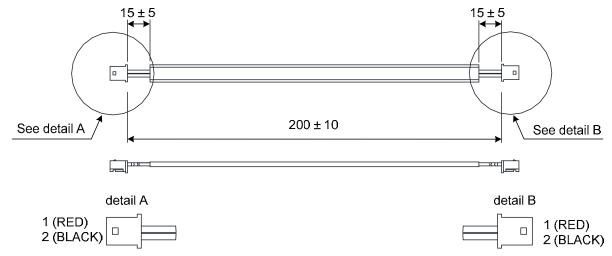
Title		Part No.	Manufacturer
MOTOR SIDE		3106A-20-29S	-
DBIVE SIDE	PLUG	3M 10120-3000PE	3M
DRIVE SIDE	SHELL	3M 10320-52A0-008	3M

Title	Down No.	L	
Title Part No.	Part NO.	mm	inch
1	ASD-A2EB1003	3000 ± 100	118 ± 4
2	ASD-A2EB1005	5000 ± 100	197 ± 4

■ Battery Box Cord AW

Delta Part Number: 3864573700

Detail A

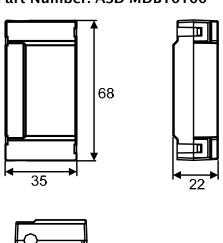

Title	Part No.	Manufacturer
Housing	A2004H00-2P	JWT
Terminal	A2004WV0-2P	JWT

Detail B

Title	Part No.	Manufacturer
Housing	A2004H00-2P	JWT
Terminal	A2004TOP-2	JWT

■ Battery Box Cord IW

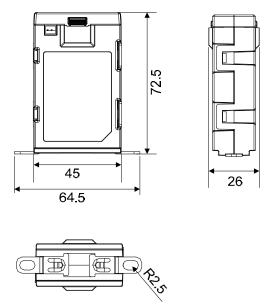
Delta Part Number: 3864811900


Detail A, B

Title	Part No.	Manufacturer
Housing	A2004H00-2P	JWT
Terminal	A2004TOP-2	JWT

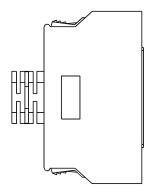
■ Battery Boxes

Single Battery Box


Delta Part Number: ASD-MDBT0100

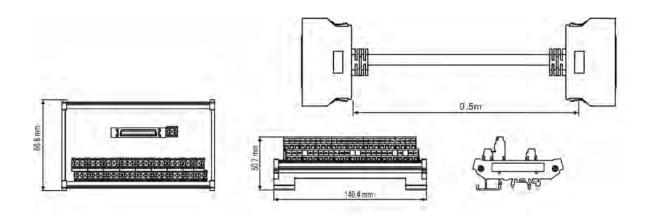
Dual Battery Box

Delta Part Number: ASD-MDBT0200

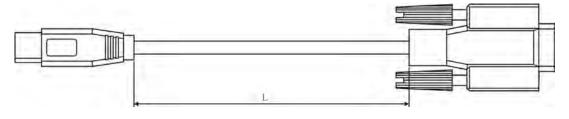


Units: mm

■ I/O Signal Connector (CN1)


Delta Part Number: ASD-CNSC0050

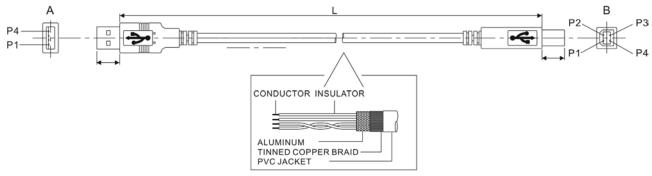
Vendor Name	Vendor P/N
3M TAIWAN LTD	10150-3000PE
3M TAIWAN LTD	10350-52A0-008


■ Terminal Block Module

Delta Part Number: ASD-BM-50A

■ RS-232 Communication Cable

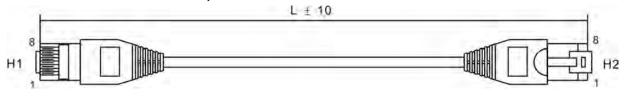
Delta Part Number: ASD-CARS0003



Title	Dart No	mm inch	L
Title	Part No.		inch
1	ASD-CARS0003	3000 ± 100	118 ±4

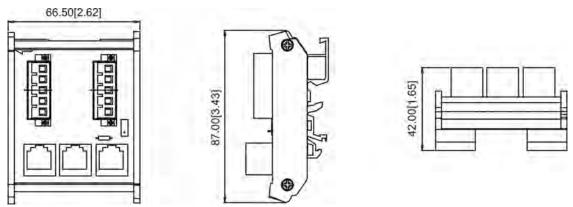
A-16 Revision September 2012

■ Communication Cable between Drive and Computer (for PC)

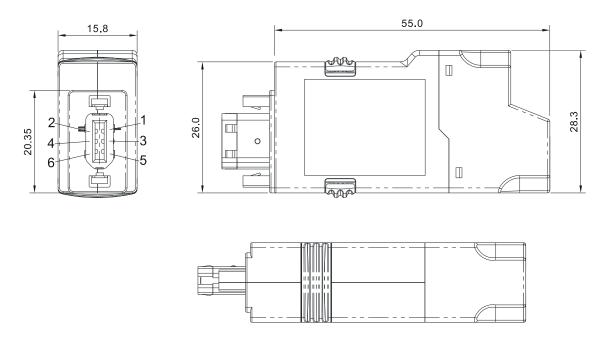

Delta Part Number: DOP-CAUSBAB

Title	Dart No	L	
Title	Part No.	mm inch	inch
1	DOP-CAUSBAB	1400 ± 30	55 ±1.2

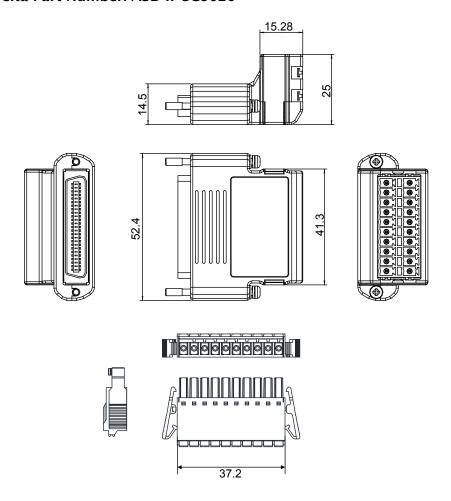
■ CANopen Communication Cable


Delta Part Number: TAP-CB03, TAP-CB04

Title	Down No.	L	
	Part No.	mm	inch
1	TAP-CB03	500 ± 10	19 ± 0.4
2	TAP-CB04	1000± 10	39 ± 0.4


■ CANopen Distribution Box

Delta Part Number: TAP-CN03


■ RS-485 Connector

Delta Part Number: ASD-CNIE0B06

■ CN1 Convenient Connector

Delta Part Number: ASD-IF-SC5020

A-18

Servo Drive, Servo Motor and Accessories Combinations - 220V Series

100W Servo Drive and 100W Low Inertia Servo Motor

Servo Drive	ASD-A2-0121-□
Low Inertia Servo Motor	ECMA-C△0401□S
Motor Power Cable (Without Brake)	ASD-ABPW000X
Power Connector (Without Brake)	ASDBCAPW0000
Motor Power Cable (With Brake)	ASD-ABPW010X
Power Connector (With Brake)	ASDBCAPW0100
Incremental Type Encoder Cable	ASD-ABEN000X
Absolute Type Encoder Cable	ASD-A2EB000X
Encoder Connector	ASD-ABEN0000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

750W Servo Drive and 750W Low Inertia Servo Motor

Servo Drive	ASD-A2-0221-□
Low Inertia Servo Motor	ECMA-C∆0602□S
Motor Power Cable (Without Brake)	ASD-ABPW000X
Power Connector (Without Brake)	ASDBCAPW0000
Motor Power Cable (With Brake)	ASD-ABPW010X
Power Connector (With Brake)	ASDBCAPW0100
Incremental Type Encoder Cable	ASD-ABEN000X
Absolute Type Encoder Cable	ASD-A2EB000X
Encoder Connector	ASD-ABEN0000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

400W Servo Drive and 400W Low Inertia Servo Motor

Servo Drive	ASD-A2-0421-□
Low Inertia	ECMA-C∆0604□S
Servo Motor	ECMA-C∆0804□7
Motor Power Cable (Without Brake)	ASD-ABPW000X
Power Connector (Without Brake)	ASDBCAPW0000
Motor Power Cable (With Brake)	ASD-ABPW010X
Power Connector (With Brake)	ASDBCAPW0100
Incremental Type Encoder Cable	ASD-ABEN000X
Absolute Type Encoder Cable	ASD-A2EB000X
Encoder Connector	ASD-ABEN0000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

400W Servo Drive and 500W Medium Inertia Servo Motor

Servo Drive	ASD-A2-0421-□
Medium Inertia Servo Motor	ECMA-E△1305□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

A-20 Revision September 2012

400W Servo Drive and 300W High Inertia Servo Motor

Servo Drive	ASD-A2-0421-□
High Inertia Servo Motor	ECMA-G△1303□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

750W Servo Drive and 750W Low Inertia Servo Motor

Servo Drive	ASD-A2-0721-□
Low Inertia	ECMA-C△0807□S
Servo Motor	ECMA-C△0907□S
Motor Power Cable (Without Brake)	ASD-ABPW000X
Power Connector (Without Brake)	ASDBCAPW0000
Motor Power Cable (With Brake)	ASD-ABPW010X
Power Connector (With Brake)	ASDBCAPW0100
Incremental Type Encoder Cable	ASD-ABEN000X
Absolute Type	
Encoder Cable	ASD-A2EB000X
Encoder Connector	ASD-ABEN0000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

750W Servo Drive and 600W High Inertia Servo Motor

Servo Drive	ASD-A2-0721-□
High Inertia Servo Motor	ECMA-G△1306□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

1kW Servo Drive and 1kW Low Inertia Servo Motor

Servo Drive	ASD-A2-1021-□
Low Inertia Servo Motor	ECMA-C△1010□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

1Kw Servo Drive and 1kW Low Inertia Servo Motor

Servo Drive	ASD-A2-1021-□
Low Inertia Servo Motor	ECMA-C∆0910□S
Motor Power Cable (Without Brake)	ASD-ABPW000X
Power Connector (Without Brake)	ASDBCAPW0000

A-22 Revision September 2012

Motor Power Cable (With Brake)	ASD-ABPW010X
Power Connector (With Brake)	ASDBCAPW0100
Incremental Type Encoder Cable	ASD-ABEN000X
Absolute Type Encoder Cable	ASD-A2EB000X
Encoder Connector	ASD-ABEN0000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

1kW Servo Drive and 1kW Medium Inertia Servo Motor

Servo Drive	ASD-A2-1021-□
Medium Inertia Servo Motor	ECMA-E△1310□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

1kW Servo Drive and 900W High Inertia Servo Motor

Servo Drive	ASD-A2-1021-□
High Inertia Servo Motor	ECMA-G△1309□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

1.5kW Servo Drive and 1.5kW Medium Inertia Servo Motor

Servo Drive	ASD-A2-1521-□
Medium Inertia Servo Motor	ECMA-E△1315□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

2kW Servo Drive and 2kW Low Inertia Servo Motor

Servo Drive	ASD-A2-2023-□
Low Inertia Servo Motor	ECMA-C△1020□S
Motor Power Cable (Without Brake)	ASD-A2PW100X
Motor Power Cable (With Brake)	ASD-A2PW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

A-24 Revision September 2012

2kW Servo Drive and 2kW Medium Inertia Servo Motor

Servo Drive	ASD-A2-2023-□
Medium Inertia Servo Motor	ECMA-E△1320□S
Motor Power Cable (Without Brake)	ASD-A2PW100X
Motor Power Cable (With Brake)	ASD-A2PW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

2kW Servo Drive and 2kW Medium Inertia Servo Motor

Servo Drive	ASD-A2-2023-□
Medium Inertia Servo Motor	ECMA-E△1820□S
Motor Power Cable (Without Brake)	ASD-CAPW200X
Motor Power Cable (With Brake)	ASD-CAPW210X
Power Connector	ASD-CAPW2000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

3kW Servo Drive and 3kW Medium Inertia Servo Motor

Servo Drive	ASD-A2-3023-□
Medium Inertia Servo Motor	ECMA-E△1830□S
Motor Power Cable (Without Brake)	ASD-CAPW200X
Motor Power Cable (With Brake)	ASD-CAPW210X
Power Connector	ASD-CAPW2000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

3kW Servo Drive and 3kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-3023-□
Medium-High Inertia Servo Motor	ECMA-F△1830□S
Motor Power Cable (Without Brake)	ASD-CAPW200X
Motor Power Cable (With Brake)	ASD-CAPW210X
Power Connector	ASD-CAPW2000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

A-26 Revision September 2012

4.5kW Servo Drive and 4.5kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-4523-□
Medium-High Inertia Servo Motor	ECMA-F△1845□S
Motor Power Cable (Without Brake)	ASD-CAPW320X
Motor Power Cable (With Brake)	ASD-CAPW330X
Power Connector	ASD-CAPW2000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

5.5kW Servo Drive and 5.5kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-5523-□
Medium-High Inertia Servo Motor	ECMA-F△1855□3
Motor Power Cable (Without Brake)	-
Motor Power Cable (With Brake)	-
Power Connector	ASD-CAPW4000
Brake Connector	ASD-CNBR1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

7.5kW Servo Drive and 7.5kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-7523-□
Medium-High Inertia Servo Motor	ECMA-F△1875□3
Motor Power Cable (Without Brake)	-
Motor Power Cable (With Brake)	-
Power Connector	ASD-CAPW4000
Brake Connector	ASD-CNBR1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

11kW Servo Drive and 11kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-1B23-□
Medium-High Inertia Servo Motor	ECMA-F1221B□3
Motor Power Cable (Without Brake)	-
Motor Power Cable (With Brake)	-
Power Connector	ASD-CAPW4000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

A-28 Revision September 2012

15kW Servo Drive and 15kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-1F23-□
Medium-High Inertia Servo Motor	ECMA-L1221F□S
Motor Power Cable (Without Brake)	-
Motor Power Cable (With Brake)	-
Power Connector	ASD-CAPW4000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

- 1) The boxes (\square) at the ends of the servo drive model names are for optional configurations (Full-close control, CANopen, DMCNET and extension port for digital input). For the actual model name, please refer to the ordering information of the actual purchased product.
- 2) The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit).
- 3) The boxes (\square) in the model names are for optional configurations (keyway, brake and oil seal). (Please refer to section 1.2 for model explanation.)

Appendix A Accessories

Servo Drive, Servo Motor and Accessories Combinations - 400V Series

750W Servo Drive and 750W Low Inertia Servo Motor

Servo Drive	ASD-A2-0743-□
Low Inertia Servo Motor	ECMA-J10807□S
Motor Power Cable (Without Brake)	ASD-CAPW540X
Power Connector (Without Brake)	ASD-CAPW5400
Motor Power Cable (With Brake)	ASD-ABPW510X
Power Connector (With Brake)	ASD-CAPW5100
Incremental Type Encoder Cable	ASD-ABEN000X
Absolute Type Encoder Cable	ASD-A2EB000X
Encoder Connector	ASD-ABEN0000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

1kW Servo Drive and 1kW Medium Inertia Servo Motor

Servo Drive	ASD-A2-1043-□
Medium Inertia Servo Motor	ECMA-K11310□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

A-30 Revision September 2012

1.5kW Servo Drive and 1.5kW Medium Inertia Servo Motor

Servo Drive	ASD-A2-1543-□
Medium Inertia Servo Motor	ECMA-K11315□S
Motor Power Cable (Without Brake)	ASD-CAPW100X
Motor Power Cable (With Brake)	ASD-CAPW110X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

2kW Servo Drive and 2kW Medium Inertia Servo Motor

Servo Drive	ASD-A2-2043-□
Medium Inertia Servo Motor	ECMA-K11320□S
Motor Power Cable (Without Brake)	ASD-CAPW120X
Motor Power Cable (With Brake)	ASD-CAPW130X
Power Connector	ASD-CAPW1000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

3kW Servo Drive and 3kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-3043-□
Medium-High Inertia Servo Motor	ECMA-L△11830□S
Motor Power Cable (Without Brake)	ASD-CAPW220X
Motor Power Cable (With Brake)	ASD-CAPW230X
Power Connector	ASD-CAPW2000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

4.5kW Servo Drive and 4.5kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-4543-□
Medium-High Inertia Servo Motor	ECMA-L11845□S
Motor Power Cable (Without Brake)	ASD-CAPW220X
Motor Power Cable (With Brake)	ASD-CAPW230X
Power Connector	ASD-CAPW2000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

A-32 Revision September 2012

5.5kW Servo Drive and 5.5kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-5543-□
Medium-High Inertia Servo Motor	ECMA-L11855□3
Motor Power Cable (Without Brake)	ASD-CAPW220X
Motor Power Cable (With Brake)	ASD-CAPW230X
Power Connector	ASD-CAPW2000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

7.5kW Servo Drive and 7.5kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-7543-□
Medium-High Inertia Servo Motor	ECMA-L11875□3
Motor Power Cable (Without Brake)	ASD-CAPW320X
Motor Power Cable (With Brake)	ASD-CAPW330X
Power Connector	ASD-CAPW2000
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

11kW Servo Drive and 11kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-1B43-□
Medium-High Inertia Servo Motor	ECMA-L1221B□3
Motor Power Cable (Without Brake)	-
Motor Power Cable (With Brake)	-
Power Connector	-
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

15kW Servo Drive and 15kW Medium-High Inertia Servo Motor

Servo Drive	ASD-A2-1F43-□
Medium-High Inertia Servo Motor	ECMA-L1221F□3
Motor Power Cable (Without Brake)	-
Motor Power Cable (With Brake)	-
Power Connector	-
Incremental Type Encoder Cable	ASD-CAEN100X
Absolute Type Encoder Cable	ASD-A2EB100X
Encoder Connector	ASD-CAEN1000

(X=3 indicates that the cable length is 3m; X=5 indicates that the cable length is 5m)

- 1) The boxes (\square) at the ends of the servo drive model names are for optional configurations (Full-close control, CANopen, DMCNET and extension port for digital input). For the actual model name, please refer to the ordering information of the actual purchased product.
- 2) The boxes (\triangle) in the model names are for encoder resolution types (\triangle =1: Incremental encoder, 20-bit; \triangle =2: Incremental encoder, 17-bit).
- 3) The boxes (\square) in the model names are for optional configurations (keyway, brake and oil seal). (Please refer to section 1.2 for model explanation.)

A-34 Revision September 2012

Other Accessories

Other Accessories (for ASDA-A2 series all models)	
Description	Delta Part Number
50Pin I/O signal connector (CN1)	ASD-CNSC0050
Terminal Block Module	ASD-BM-50A
RS-232 Communication Cable	ASD-CARS0003
Communication Cable between Drive and Computer (for PC)	DOP-CAUSBAB
CANopen Communication Cable	TAP-CB03/TAP-CB04
CANopen Distribution Box	TAP-CN03
RS-485 Connector	ASD-CNIE0B06
Regenerative Resistor 400W 40Ω	BR400W040
Regenerative Resistor 1kW 20Ω	BR1K0W020
Regenerative Resistor 3kW 10Ω	BR1K5W005

This page intentionally left blank

A-36 Revision September 2012

Appendix B Maintenance and Inspection

Delta AC servo drives are based on solid state electronics technology. Preventive maintenance is required to operate this AC servo drives in its optimal condition, and to ensure a long life. It is recommended to perform a periodic maintenance and inspection of the AC servo drive by a qualified technician. Before any maintenance and inspection, always turn off the AC input power to the unit.

> Be sure to disconnect AC power and ensure that the internal capacitors have fully discharged before performing the maintenance and inspection!

Basic Inspection

After power is in connected to the AC servo drive, the charge LED will be lit which indicates that the AC servo drive is ready.

ltem	Content
General Inspection	 Periodically inspect the screws of the servo drive, motor shaft, terminal block and the connection to mechanical system. Tighten screws as necessary as they may loosen due to vibration and varying temperatures. Ensure that oil, water, metallic particles or any foreign objects do not fall inside the servo drive, motor, control panel or ventilation slots and holes. As these will cause damage. Ensure the correct installation and the control panel. It should be free from airborne dust, harmful gases or liquids. Ensure that all wiring instructions and recommendations are followed; otherwise damage to the drive and or motor may result.
Inspection before operation (Control power is not applied)	 Inspect the servo drive and servo motor to insure they were not damaged. To avoid an electric shock, be sure to connect the ground terminal of servo drive to the ground terminal of control panel. Before making any connection, wait 10 minutes for capacitors to discharge after the power is disconnected, alternatively, use an appropriate discharge device to discharge. Ensure that all wiring terminals are correctly insulated. Ensure that all wiring is correct or damage and or malfunction may result. Visually check to ensure that there are not any unused screws, metal strips, or any conductive or inflammable materials inside the drive. Never put inflammable objects on servo drive or close to the external regenerative resistor. Make sure control switch is OFF. If the electromagnetic brake is being used, ensure that it is correctly wired.

ltem	Content
Inspection before operation	 If required, use an appropriate electrical filter to eliminate noise to the servo drive.
(Control power is not applied)	 Ensure that the external applied voltage to the drive is correct and matched to the controller.
Inspection during operation (Control power is applied))	 Ensure that the cables are not damaged, stressed excessively or loaded heavily. When the motor is running, pay close attention on the connection of the cables and notice that if they are damaged, frayed or over extended.
	 Check for abnormal vibrations and sounds during operation. If the servo motor is vibrating or there are unusual noises while the motor is running, please contact the dealer or manufacturer for assistance.
	 Ensure that all user-defined parameters are set correctly. Since the characteristics of various machinery are different, in order to avoid accident or cause damage, do not adjust the parameter abnormally and ensure the parameter setting is not an excessive value.
	 Ensure to reset some parameters when the servo drive is off (Please refer to Chapter 7). Otherwise, it may result in malfunction.
	 If there is no contact sound or there be any unusual noises when the relay of the servo drive is operating, please contact your distributor for assistance or contact with Delta.
	 Check for abnormal conditions of the power indicators and LED display. If there is any abnormal condition of the power indicators and LED display, please contact your distributor for assistance or contact with Delta.

Maintenance

- Use and store the product in a proper and normal environment.
- Periodically clean the surface and panel of servo drive and motor.
- Make sure the conductors or insulators are corroded and/or damaged.
- Do not disassemble or damage any mechanical part when performing maintenance.
- Clean off any dust and dirt with a vacuum cleaner. Place special emphasis on cleaning the ventilation ports and PCBs. Always keep these areas clean, as accumulation of dust and dirt can cause unforeseen failures.

B-2 Revision September 2012

Life of Replacement Components

■ Smooth capacitor

The characteristics of smooth capacitor would be deteriorated by ripple current affection. The life of smooth capacitor varies according to ambient temperature and operating conditions. The common guaranteed life of smooth capacitor is ten years when it is properly used in normal air-conditioned environment.

■ Relay

The contacts will wear and result in malfunction due to switching current. The life of relay varies according to power supply capacity. Therefore, the common guaranteed life of relay is cumulative 100,000 times of power on and power off.

■ Cooling fan

The cooling fan life is limited and should be changed periodically. The cooling fan will reach the end of its life in $2\sim3$ years when it is in continuous operation. However, it also must be replaced if the cooling fan is vibrating or there are unusual noises.

This page intentionally left blank.